Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.729
Filter
1.
Addict Biol ; 29(5): e13402, 2024 May.
Article in English | MEDLINE | ID: mdl-38797559

ABSTRACT

Increases in harmful drinking among older adults indicate the need for a more thorough understanding of the relationship between later-life alcohol use and brain health. The current study investigated the relationships between alcohol use and progressive grey and white matter changes in older adults using longitudinal data. A total of 530 participants (aged 70 to 90 years; 46.0% male) were included. Brain outcomes assessed over 6 years included total grey and white matter volume, as well as volume of the hippocampus, thalamus, amygdala, corpus callosum, orbitofrontal cortex and insula. White matter integrity was also investigated. Average alcohol use across the study period was the main exposure of interest. Past-year binge drinking and reduction in drinking from pre-baseline were additional exposures of interest. Within the context of low-level average drinking (averaging 11.7 g per day), higher average amount of alcohol consumed was associated with less atrophy in the left (B = 7.50, pFDR = 0.010) and right (B = 5.98, pFDR = 0.004) thalamus. Past-year binge-drinking was associated with poorer white matter integrity (B = -0.013, pFDR = 0.024). Consuming alcohol more heavily in the past was associated with greater atrophy in anterior (B = -12.73, pFDR = 0.048) and posterior (B = -17.88, pFDR = 0.004) callosal volumes over time. Across alcohol exposures and neuroimaging markers, no other relationships were statistically significant. Within the context of low-level drinking, very few relationships between alcohol use and brain macrostructure were identified. Meanwhile, heavier drinking was negatively associated with white matter integrity.


Subject(s)
Alcohol Drinking , Atrophy , Brain , Gray Matter , Magnetic Resonance Imaging , White Matter , Humans , Male , Aged , Female , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Brain/drug effects , White Matter/diagnostic imaging , White Matter/pathology , White Matter/drug effects , Aged, 80 and over , Gray Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Atrophy/pathology , Aging/pathology , Aging/physiology , Binge Drinking/pathology , Binge Drinking/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/drug effects , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/drug effects , Amygdala/diagnostic imaging , Amygdala/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Corpus Callosum/drug effects
2.
BMC Neurol ; 24(1): 174, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789945

ABSTRACT

BACKGROUND: The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS: Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS: Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION: This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.


Subject(s)
Magnetic Resonance Imaging , Thalamus , Torticollis , Humans , Male , Female , Middle Aged , Torticollis/diagnostic imaging , Torticollis/pathology , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Thalamus/pathology , Adult , Aged , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/pathology
3.
Behav Brain Res ; 469: 115045, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38734034

ABSTRACT

Post-acute COVID syndrome (PACS) is a global health concern and is often associated with debilitating symptoms. Post-COVID fatigue is a particularly frequent and troubling issue, and its underlying mechanisms remain incompletely understood. One potential contributor is micropathological injury of subcortical and brainstem structures, as has been identified in other patient populations. Texture-based analysis (TA) may be used to measure such changes in anatomical MRI data. The present study develops a methodology of voxel-wise TA mapping in subcortical and brainstem regions, which is then applied to T1-weighted MRI data from a cohort of 48 individuals who had PACS (32 with and 16 without ongoing fatigue symptoms) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19. Both groups were assessed an average of 4-5 months post-infection. There were no significant differences between PACS and control groups, but significant differences were observed within the PACS groups, between those with and without fatigue symptoms. This included reduced texture energy and increased entropy, along with reduced texture correlation, cluster shade and profile in the putamen, pallidum, thalamus and brainstem. These findings provide new insights into the neurophysiological mechanisms that underlie PACS, with altered tissue texture as a potential biomarker of this debilitating condition.


Subject(s)
Brain Stem , COVID-19 , Fatigue , Magnetic Resonance Imaging , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , COVID-19/diagnostic imaging , Male , Female , Fatigue/diagnostic imaging , Fatigue/etiology , Fatigue/pathology , Middle Aged , Adult , Brain Stem/diagnostic imaging , Brain Stem/pathology , Brain/diagnostic imaging , Brain/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , Aged , Putamen/diagnostic imaging , Putamen/pathology , SARS-CoV-2
4.
Neuroimage Clin ; 42: 103609, 2024.
Article in English | MEDLINE | ID: mdl-38718640

ABSTRACT

BACKGROUND: Prior research has established a link between thalamic pathology and cognitive impairment (CI) in people with multiple sclerosis (pwMS). However, the translation of these findings to pwMS in everyday clinical settings has been insufficient. OBJECTIVE: To assess which global and/or thalamic imaging biomarkers can be used to identify pwMS at risk for CI and cognitive worsening (CW) in a real-world setting. METHODS: This was an international, multi-center (11 centers), longitudinal, retrospective, real-word study of people with relapsing-remitting MS (pwRRMS). Brain MRI exams acquired at baseline and follow-up were collected. Cognitive status was evaluated using the Symbol Digit Modalities Test (SDMT). Thalamic volume (TV) measurement was performed on T2-FLAIR, as well as on T1-WI, when available. Thalamic dysconnectivity, T2-lesion volume (T2-LV), and volumes of gray matter (GM), whole brain (WB) and lateral ventricles (LVV) were also assessed. RESULTS: 332 pwMS were followed for an average of 2.8 years. At baseline, T2-LV, LVV, TV and thalamic dysconnectivity on T2-FLAIR (p < 0.016), and WB, GM and TV volumes on T1-WI (p < 0.039) were significantly worse in 90 (27.1 %) CI vs. 242 (62.9 %) non-CI pwRRMS. Greater SDMT decline over the follow-up was associated with lower baseline TV on T2-FLAIR (standardized ß = 0.203, p = 0.002) and greater thalamic dysconnectivity (standardized ß = -0.14, p = 0.028) in a linear regression model. CONCLUSIONS: PwRRMS with thalamic atrophy and worse thalamic dysconnectivity present more frequently with CI and experience greater CW over mid-term follow-up in a real-world setting.


Subject(s)
Atrophy , Cognitive Dysfunction , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Thalamus , Humans , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/complications , Female , Male , Adult , Thalamus/pathology , Thalamus/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Atrophy/pathology , Middle Aged , Magnetic Resonance Imaging/methods , Retrospective Studies , Longitudinal Studies
6.
Brain Res Bull ; 211: 110937, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38570077

ABSTRACT

Adult survivors of childhood brain tumors often present with cognitive deficits that affect their quality of life. Studying brain structure and function in brain tumor survivors can help understand the underlying mechanisms of their cognitive deficits to improve long-term prognosis of these patients. This study analyzed voxel-based morphometry (VBM) derived from T1-weighted MRI and the amplitude of low-frequency fluctuation (ALFF) from resting-state functional magnetic resonance imaging (rs-fMRI) to examine the structural and functional alterations in 35 brain tumor survivors using 35 matching healthy individuals as controls. Compared with healthy controls, brain tumor survivors had decreased gray matter volumes (GMV) in the thalamus and increased GMV in the superior frontal gyrus. Functionally, brain tumor survivors had lower ALFF values in the inferior temporal gyrus and medial prefrontal area and higher ALFF values in the thalamus. Importantly, we found concurrent but negatively correlated structural and functional alterations in the thalamus based on observed significant differences in GMV and ALFF values. These findings on concurrent brain structural and functional alterations provide new insights towards a better understanding of the cognitive deficits in brain tumor survivors.


Subject(s)
Brain Neoplasms , Cancer Survivors , Magnetic Resonance Imaging , Thalamus , Humans , Male , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Thalamus/pathology , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adolescent , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Multimodal Imaging/methods , Child , Survivors
7.
Behav Brain Res ; 466: 114992, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38599250

ABSTRACT

Type 2 diabetes mellitus (T2DM) patients often suffer from depressive symptoms, which seriously affect cooperation in treatment and nursing. The amygdala plays a significant role in depression. This study aims to explore the microstructural alterations of the amygdala in T2DM and to investigate the relationship between the alterations and depressive symptoms. Fifty T2DM and 50 healthy controls were included. Firstly, the volumes of subcortical regions and subregions of amygdala were calculated by FreeSurfer. Covariance analysis (ANCOVA) was conducted between the two groups with covariates of age, sex, and estimated total intracranial volume to explore the differences in volume of subcortical regions and subregions of amygdala. Furthermore, the structural covariance within the amygdala subregions was performed. Moreover, we investigate the correlation between depressive symptoms and the volume of subcortical regions and amygdala subregions in T2DM. We observed a reduction in the volume of the bilateral cortico-amygdaloid transition area, left basal nucleus, bilateral accessory basal nucleus, left anterior amygdaloid area of amygdala, the left thalamus and left hippocampus in T2DM. T2DM patients showed decreased structural covariance connectivity between left paralaminar nucleus and the right central nucleus. Moreover, there was a negative correlation between self-rating depression scale scores and the volume of the bilateral cortico-amygdaloid transition area in T2DM. This study reveals extensive structural alterations in the amygdala subregions of T2DM patients. The reduction in the volume of the bilateral cortico-amygdaloid transition area may be a promising imaging marker for early recognition of depressive symptoms in T2DM.


Subject(s)
Amygdala , Depression , Diabetes Mellitus, Type 2 , Magnetic Resonance Imaging , Humans , Diabetes Mellitus, Type 2/pathology , Amygdala/pathology , Amygdala/diagnostic imaging , Male , Female , Middle Aged , Depression/diagnostic imaging , Depression/pathology , Adult , Aged , Hippocampus/pathology , Hippocampus/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology
8.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200222, 2024 May.
Article in English | MEDLINE | ID: mdl-38635941

ABSTRACT

BACKGROUND AND OBJECTIVES: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. METHODS: We paired a large cohort of 1,123 patients with MS with the same number of healthy controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions at the thalamic nuclei level, we validated a segmentation strategy consisting of deep learning-based synthesis of sequences, which were used for automatic multiatlas segmentation. Then, through a lifespan-based approach, we could model the dynamics of the 4 main thalamic nuclei groups. RESULTS: All analyses converged toward a higher rate of atrophy for the posterior and medial groups compared with the anterior and lateral groups. We also demonstrated that focal MS white matter lesions were associated with atrophy of groups of nuclei when specifically located within the associated thalamocortical projections. The volumes of the most affected posterior group, but also of the anterior group, were better associated with clinical disability than the volume of the whole thalamus. DISCUSSION: These findings point toward the thalamic nuclei adjacent to the third ventricle as more susceptible to neurodegeneration during the entire course of MS through potentiation of disconnection effects by regional factors. Because this information can be obtained even from standard T1-weighted MRI, this paves the way toward such an approach for future monitoring of patients with MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Magnetic Resonance Imaging , Atrophy/pathology
9.
J Integr Neurosci ; 23(4): 77, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38682227

ABSTRACT

BACKGROUND: Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by motor impairment and non-motor symptoms. The involvement of the thalamus in MNDs, especially in conditions such as amyotrophic lateral sclerosis (ALS), and its interaction with frontotemporal dementia (FTD), has garnered increasing research interest. This systematic review analyzed magnetic resonance imaging (MRI) studies that focused on thalamic alterations in MNDs to understand the significance of these changes and their correlation with clinical outcomes. METHODS: Following PRISMA 2020 guidelines, the PubMed and Scopus databases were searched from inception to June 2023 for studies related to MRI findings in the thalamus of patients with MNDs. Eligible studies included adult patients diagnosed with ALS or other forms of MND who underwent brain MRI, with outcomes related to thalamic alterations. Studies were evaluated for risk of bias using the Newcastle-Ottawa scale. RESULTS: A total of 52 studies (including 3009 MND patients and 2181 healthy controls) used various MRI techniques, including volumetric analysis, diffusion tensor imaging, and functional MRI, to measure thalamic volume, connectivity, and other alterations. This review confirmed significant thalamic changes in MNDs, such as atrophy and microstructural degradation, which are associated with disease severity, progression, and functional disability. Thalamic involvement varies across different MND subtypes and is influenced by the presence of cognitive impairment and mutations in genes including chromosome 9 open reading frame 72 (C9orf72). The synthesis of findings across studies indicates that thalamic pathology is a prevalent early biomarker of MNDs that contributes to motor and cognitive deficits. The thalamus is a promising target for monitoring as its dysfunction underpins a variety of clinical symptoms in MNDs. CONCLUSIONS: Thalamic alterations provide valuable insights into the pathophysiology and progression of MNDs. Multimodal MRI techniques are potent tools for detecting dynamic thalamic changes, indicating structural integrity, connectivity disruption, and metabolic activity.


Subject(s)
Magnetic Resonance Imaging , Motor Neuron Disease , Thalamus , Humans , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/physiopathology , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/pathology , Motor Neuron Disease/physiopathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology
10.
Exp Neurol ; 376: 114775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604438

ABSTRACT

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.


Subject(s)
Cerebral Cortex , Epilepsy , Receptors, GABA-A , Thalamus , Animals , Female , Male , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Electroencephalography , Epilepsy/genetics , Epilepsy/physiopathology , Gene Knock-In Techniques , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Sleep/physiology , Sleep/genetics , Thalamus/metabolism , Thalamus/pathology
11.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670100

ABSTRACT

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Subject(s)
Autism Spectrum Disorder , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Nerve Tissue Proteins , Thalamus , Animals , Thalamus/metabolism , Thalamus/pathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , Lamotrigine/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Channelopathies/pathology , Humans , Disease Models, Animal , Male , Neurons/metabolism , Female , Mice, Inbred C57BL , Mutation/genetics , Sleep/physiology , Sleep/drug effects , Sleep/genetics , Potassium Channels
12.
Aging (Albany NY) ; 16(6): 4965-4979, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38526330

ABSTRACT

The transition to menopause is associated with various physiological changes, including alterations in brain structure and function. However, menopause-related structural and functional changes are poorly understood. The purpose of this study was not only to compare the brain volume changes between premenopausal and postmenopausal women, but also to evaluate the functional connectivity between the targeted brain regions associated with structural atrophy in postmenopausal women. Each 21 premenopausal and postmenopausal women underwent magnetic resonance imaging (MRI). T1-weighted MRI and resting-state functional MRI data were used to compare the brain volume and seed-based functional connectivity, respectively. In statistical analysis, multivariate analysis of variance, with age and whole brain volume as covariates, was used to evaluate surface areas and subcortical volumes between the two groups. Postmenopausal women showed significantly smaller cortical surface, especially in the left medial orbitofrontal cortex (mOFC), right superior temporal cortex, and right lateral orbitofrontal cortex, compared to premenopausal women (p < 0.05, Bonferroni-corrected) as well as significantly decreased functional connectivity between the left mOFC and the right thalamus was observed (p < 0.005, Monte-Carlo corrected). Although postmenopausal women did not show volume atrophy in the right thalamus, the volume of the right pulvinar anterior, which is one of the distinguished thalamic subnuclei, was significantly decreased (p < 0.05, Bonferroni-corrected). Taken together, our findings suggest that diminished brain volume and functional connectivity may be linked to menopause-related symptoms caused by the lower sex hormone levels.


Subject(s)
Magnetic Resonance Imaging , Postmenopause , Humans , Female , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Thalamus/pathology , Atrophy/pathology
13.
J Forensic Leg Med ; 103: 102672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484485

ABSTRACT

A male in his late 30s was found dead in his home. He was diagnosed with human immunodeficiency virus (HIV) about six years prior. The HIV infection was well controlled before his death. He was 166 cm in height and 75 kg in weight. Aside from discoloration of the skin on the right lower patellar, there were no obvious injuries. His brain weighed 1456 g. A cut surface of the brain revealed left thalamic hemorrhage. Histologically, infiltration of phagocytic cells was observed in the bleeding site. Thalamic hemorrhage was considered to be his cause of death in this case. Due to the effects of anti-HIV therapy, the mortality rate from HIV infection has decreased and the causes of death of HIV-infected persons have changed. HIV-infected persons have been suggested to be associated with cerebrovascular disease, especially juvenile ischemic stroke. Patients with acquired immunodeficiency syndrome (AIDS) have an increased risk of cerebrovascular disease. Possible mechanisms of cerebrovascular disease in HIV-infected individuals include coagulopathy, secondary effects of embolism and central nervous system infection, and direct vascular disease due to HIV. At the time of autopsy, his post-mortem interval was estimated to be approximately two weeks. Therefore, it was difficult to clarify histologically the cerebrovascular disorder that caused his cerebral hemorrhage. In recent years, anti-HIV therapy has reduced the number of AIDS-related deaths, but deaths in HIV-infected people from cardiovascular disease are increasing. This case is considered to be a valuable forensic autopsy case of an HIV-infected patient who actually died due to cerebral hemorrhage in Japan.


Subject(s)
Cerebral Hemorrhage , HIV Infections , Humans , Male , HIV Infections/complications , Cerebral Hemorrhage/pathology , Adult , Forensic Pathology , Thalamus/pathology
14.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Article in English | MEDLINE | ID: mdl-38431758

ABSTRACT

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


Subject(s)
DNA Copy Number Variations , DiGeorge Syndrome , Gene Dosage , Magnetic Resonance Imaging , Humans , Female , Male , DNA Copy Number Variations/genetics , Adult , Adolescent , Child , Young Adult , Middle Aged , Child, Preschool , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , DiGeorge Syndrome/diagnostic imaging , Longitudinal Studies , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/growth & development , Brain/diagnostic imaging , Brain/pathology , Brain/growth & development , Amygdala/diagnostic imaging , Amygdala/pathology , Thalamus/diagnostic imaging , Thalamus/growth & development , Thalamus/pathology , Organ Size
15.
Ann Clin Transl Neurol ; 11(5): 1148-1159, 2024 May.
Article in English | MEDLINE | ID: mdl-38433494

ABSTRACT

OBJECTIVE: Abnormalities in the gray matter structure of cerebral small vessel disease (CSVD) have been observed throughout the brain. However, whether cortico-cortical connections exist between regions of gray matter atrophy in patients with CSVD has not been fully elucidated. This question was tested by comparing the gray matter covariance networks in CSVD patients with and without cognitive impairment (CI). METHODS: We performed multivariate modeling of the gray matter volume measurements of 61 patients with CI (CSVD-CI), 85 patients without CI (CSVD-NC), and 108 healthy controls using source-based morphological analysis (SBM) to obtain gray matter structural covariance networks at the population level. Then, correlations between structural covariance networks and cognitive functions were analyzed in CSVD patients. Finally, a support vector machine (SVM) classifier was used with the gray matter covariance network as a classification feature to identify CI among the CSVD population. RESULTS: The results of the analysis of all the subjects showed that compared with healthy controls, the expression of the thalamic covariance network, cerebellum covariance network, and calcarine cortex covariance network was reduced in patients with CSVD. Moreover, CSVD-CI patients showed a significant reduction in the expression of the thalamic covariance network, encompassing the thalamus and the parahippocampal gyrus, relative to CSVD-NC patients, which persisted after excluding CSVD patients with thalamic lacunes. In patients with CSVD, cognitive functions were positively correlated with measures of the thalamic covariance network. More than 80% of CSVD patients with CI were correctly identified by the SVM classifier. INTERPRETATION: Our findings provide new evidence to explain the distribution state of gray matter reduction in CSVD patients, and the thalamic covariance network is the core region for early gray matter reduction during the development of CSVD disease, which is related to cognitive deficits. Reduced expression of thalamic covariance networks may provide a neuroimaging biomarker for the early identification of cognitive impairment in CSVD patients.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Gray Matter , Magnetic Resonance Imaging , Thalamus , Humans , Male , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Aged , Middle Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , Nerve Net/diagnostic imaging , Nerve Net/pathology , Support Vector Machine
16.
Mult Scler ; 30(6): 687-695, 2024 May.
Article in English | MEDLINE | ID: mdl-38469809

ABSTRACT

BACKGROUND: Loss of brain gray matter fractional volume predicts multiple sclerosis (MS) progression and is associated with worsening physical and cognitive symptoms. Within deep gray matter, thalamic damage is evident in early stages of MS and correlates with physical and cognitive impairment. Natalizumab is a highly effective treatment that reduces disease progression and the number of inflammatory lesions in patients with relapsing-remitting MS (RRMS). OBJECTIVE: To evaluate the effect of natalizumab on gray matter and thalamic atrophy. METHODS: A combination of deep learning-based image segmentation and data augmentation was applied to MRI data from the AFFIRM trial. RESULTS: This post hoc analysis identified a reduction of 64.3% (p = 0.0044) and 64.3% (p = 0.0030) in mean percentage gray matter volume loss from baseline at treatment years 1 and 2, respectively, in patients treated with natalizumab versus placebo. The reduction in thalamic fraction volume loss from baseline with natalizumab versus placebo was 57.0% at year 2 (p < 0.0001) and 41.2% at year 1 (p = 0.0147). Similar findings resulted from analyses of absolute gray matter and thalamic fraction volume loss. CONCLUSION: These analyses represent the first placebo-controlled evidence supporting a role for natalizumab treatment in mitigating gray matter and thalamic fraction atrophy among patients with RRMS. CLINICALTRIALS.GOV IDENTIFIER: NCT00027300URL: https://clinicaltrials.gov/ct2/show/NCT00027300.


Subject(s)
Atrophy , Gray Matter , Immunologic Factors , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Natalizumab , Thalamus , Humans , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Natalizumab/pharmacology , Natalizumab/therapeutic use , Gray Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Adult , Thalamus/pathology , Thalamus/diagnostic imaging , Thalamus/drug effects , Male , Female , Immunologic Factors/pharmacology , Atrophy/pathology , Middle Aged , Deep Learning
17.
Rinsho Shinkeigaku ; 64(4): 280-285, 2024 Apr 24.
Article in Japanese | MEDLINE | ID: mdl-38522912

ABSTRACT

A 75-year-old woman was referred to our department in October 2022 with ataxia and involuntary movements of the right upper and lower limbs. She had experienced a left pontine hemorrhage in March 2021, which was managed conservatively. However, she had residual right-sided hemiplegia. In addition, she had cerebellar ataxia and a 2 |Hz resting tremor of the right upper and lower limbs, which was enhanced while maintaining posture and contemplation. Based on her history, and the findings of MRI and nuclear medicine imaging, we diagnosed the patient with Holmes tremor due to pontine hemorrhage. Holmes tremor is a rare movement disorder secondary to brainstem and thalamic lesions, characterized by a unilateral low-frequency tremor. In this case, 123I-IMP SPECT and MRI shows damage to the cerebellothalamic tract and dentaro-rubro-olivary pathway.


Subject(s)
Magnetic Resonance Imaging , Tomography, Emission-Computed, Single-Photon , Tremor , Humans , Female , Aged , Tremor/etiology , Tremor/diagnostic imaging , Olivary Nucleus/diagnostic imaging , Olivary Nucleus/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , Iofetamine , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/etiology , Iodine Radioisotopes
18.
NMR Biomed ; 37(6): e5119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383137

ABSTRACT

Advanced imaging techniques (tractography) enable the mapping of white matter (WM) pathways and the understanding of brain connectivity patterns. We combined tractography with a network-based approach to examine WM microstructure on a network level in people with relapsing-remitting multiple sclerosis (pw-RRMS) and healthy controls (HCs) over 2 years. Seventy-six pw-RRMS matched with 43 HCs underwent clinical assessments and 3T MRI scans at baseline (BL) and 2-year follow-up (2-YFU). Probabilistic tractography was performed, accounting for the effect of lesions, producing connectomes of 25 million streamlines. Network differences in fibre density across pw-RRMS and HCs at BL and 2-YFU were quantified using network-based statistics (NBS). Longitudinal network differences in fibre density were quantified using NBS in pw-RRMS, and were tested for correlations with disability, cognition and fatigue scores. Widespread network reductions in fibre density were found in pw-RRMS compared with HCs at BL in cortical regions, with more reductions detected at 2-YFU. Pw-RRMS had reduced fibre density at BL in the thalamocortical network compared to 2-YFU. This effect appeared after correction for age, was robust across different thresholds, and did not correlate with lesion volume or disease duration. Pw-RRMS demonstrated a robust and long-distance improvement in the thalamocortical WM network, regardless of age, disease burden, duration or therapy, suggesting a potential locus of neuroplasticity in MS. This network's role over the disease's lifespan and its potential implications in prognosis and treatment warrants further investigation.


Subject(s)
Cerebral Cortex , Multiple Sclerosis, Relapsing-Remitting , Thalamus , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Female , Male , Adult , Thalamus/diagnostic imaging , Thalamus/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Diffusion Tensor Imaging
19.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38212287

ABSTRACT

This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.


Subject(s)
Connectome , Ischemic Stroke , Stroke , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Male , Connectome/methods , Ischemic Stroke/pathology , Thalamus/pathology , Magnetic Resonance Imaging/methods , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Fatigue/diagnostic imaging , Fatigue/etiology
20.
J Med Imaging Radiat Oncol ; 68(2): 167-170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185912

ABSTRACT

An early-adolescent girl presented with incoordination, headache, vomiting and dysphonia. MRI brain demonstrated diffuse increased T2 and FLAIR signal in bilateral thalami, consistent with anaplastic astrocytomas. A stereotactic burr-hole biopsy provided frozen tissues sections demonstrating an IDH-1 wildtype astrocytoma (anaplastic grade III according to prior WHO classification 2016-21). Chemoradiotherapy was commenced. Bilateral thalamic high-grade astrocytomas are very rare in the paediatric population and require timely diagnosis and interdisciplinary management. CT and MR imaging help point towards this diagnosis in the correct clinical context.


Subject(s)
Astrocytoma , Brain Neoplasms , Child , Female , Humans , Adolescent , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Astrocytoma/diagnostic imaging , Astrocytoma/therapy , Magnetic Resonance Imaging/methods , Thalamus/pathology , Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL
...