Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 99(9): 3949-59, 2015 May.
Article in English | MEDLINE | ID: mdl-25412577

ABSTRACT

Thermoactinomyces is known for its resistance to extreme environmental conditions and its ability to digest a wide range of hard-to-degrade compounds. Here, Thermoactinomyces sp. strain CDF isolated from soil was found to completely degrade intact chicken feathers at 55 °C, with the resulting degradation products sufficient to support growth as the primary source of both carbon and nitrogen. Although feathers were not essential for the expression of keratinase, the use of this substrate led to a further 50-300 % increase in enzyme production level under different nutrition conditions, with extracellular keratinolytic activity reaching its highest level (∼400 U/mL) during the late-log phase. Full degradation of feathers required the presence of living cells, which are thought to supply reducing agents necessary for the cleavage of keratin disulfide bonds. Direct contact between the hyphae and substrate may enhance the reducing power and protease concentrations present in the local microenvironment, thereby facilitating keratin degradation. The gene encoding the major keratinolytic protease (protease C2) of strain CDF was cloned, revealing an amino acid sequence identical to that of subtilisin-like E79 protease from Thermoactinomyces sp. E79, albeit with significant differences in the upstream flanking region. Exogenous expression of protease C2 in Escherichia coli resulted in the production of inclusion bodies with proteolytic activity, which could be solubilized to an alkaline solution to produce mature protease C2. Purified protease C2 was able to efficiently hydrolyze α- and ß-keratins at 60-80 °C and pH 11.0, representing a promising candidate for enzymatic processing of hard-to-degrade proteins such as keratinous wastes.


Subject(s)
Feathers/metabolism , Keratins/metabolism , Peptide Hydrolases/metabolism , Thermoactinomyces/enzymology , Animals , Carbon/metabolism , Chickens , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Inclusion Bodies , Nitrogen/metabolism , Sequence Homology, Amino Acid , Soil Microbiology , Temperature , Thermoactinomyces/growth & development , Thermoactinomyces/isolation & purification , Thermoactinomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...