Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 37(6): 1686-96, 1998 Feb 10.
Article in English | MEDLINE | ID: mdl-9484240

ABSTRACT

The introduction into peptide chains of alpha-aminoisobutyric acid (Aib) has proven to stabilize the helical structure in short peptides by restricting the available range of polypeptide backbone conformations. In order to evaluate the potential stabilizing effect of Aib at the protein level, we have studied the conformational and stability properties of Aib-containing analogs of the carboxy-terminal subdomain 255-316 of thermolysin. Previous NMR studies have shown that this disulfide-free 62-residue fragment forms a dimer in solution and that the global 3D structure of each monomer (3 alpha-helices encompassing residues 260-274, 281-295, and 301-311) is largely coincident with that of the corresponding region in the X-ray structure of intact thermolysin. The Aib analogs of fragment 255-316 were prepared by a semisynthetic approach in which the natural fragment 255-316 was coupled to synthetic analogs of peptide 303-316 using V8-protease in 50% (v/v) aqueous glycerol [De Filippis, V., and Fontana, A. (1990) Int. J. Pept. Protein Res. 35, 219-227]. The Ala residue in position 304, 309, or 312 of fragment 255-316 was replaced by Aib, leading to the singly substituted fragments Ala304Aib, Ala309Aib, and Ala312Aib. Moreover, fragment Ala304Aib/Ala309Aib with a double Ala-->Aib exchange in positions 304 and 309 was produced. Far- and near-UV circular dichroism measurements demonstrated that both secondary and tertiary structures of the natural fragment 255-316 are fully retained upon Ala-->Aib substitution(s). Thermal unfolding measurements, carried out by recording the ellipticity at 222 nm upon heating, showed that the melting temperatures (Tm) of analogs Ala304Aib and Ala309Aib were 2.2 and 5.4 degrees C higher than that of the Ala-containing natural species (Tm = 63.5 degrees C), respectively, whereas the Tm of the Ala312Aib analog was lowered by -0.6 degree C. The enhanced stability of the Ala304Aib analog can be quantitatively explained on the basis of a reduced backbone entropy of unfolding due to the restriction of the conformational space allowed to Aib in respect to Ala, while the larger stabilization observed for the Ala309Aib analog can be accounted for by both entropic and hydrophobic effects. In fact, whereas Ala304 is a surface residue, Ala309 is shielded from the solvent, and thus the enhanced stability of fragment Ala309Aib is also due to the burial of an additional -CH3 group with respect to the natural fragment. The slightly destabilizing effect of the Ala-->Aib exchange in position 312 appears to derive from unfavorable strain energy effects, since phi and psi values for Ala312 are out of the allowed angles for Aib. Of interest, the simultaneous incorporation of Aib at positions 304 and 309 leads to a significant and additive increase of +8 degrees C in Tm. The results of this study indicate that the rational incorporation of Aib into a polypeptide chain can be a general procedure to significantly stabilize proteins.


Subject(s)
Alanine , Amino Acid Substitution , Aminoisobutyric Acids , Peptide Fragments/chemistry , Protein Conformation , Temperature , Amino Acid Sequence , Aminoisobutyric Acids/chemical synthesis , Circular Dichroism , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemical synthesis , Protein Folding , Protein Structure, Tertiary , Thermolysin/chemical synthesis , Thermolysin/chemistry
2.
Protein Sci ; 6(10): 2233-41, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9336846

ABSTRACT

We have studied the conformation as well as V8 protease-mediated synthesis of peptide fragments, namely amino acid residues 295-316 (TC-peptide) of thermolysin and residues 1-20 (S-peptide) of ribonuclease A, to examine whether "conformational trapping" of the product can facilitate reverse proteolysis. The circular dichroism study showed cosolvent-mediated cooperative helix formation in TC-peptide with attainment of about 30-35% helicity in the presence of 40% 1-propanol and 2-propanol solutions at pH 6 and 4 degrees C. The thermal melting profiles of TC-peptide in the above cosolvents were very similar. V8 protease catalyzed the synthesis of TC-peptide from a 1:1 mixture of the non-interacting complementary fragments (TC295-302 and TC303-316) in the presence of the above cosolvents at pH 6 and 4 degrees C. In contrast, V8 protease did not catalyze the ligation of S1-9 and S10-20, although S-peptide could assume helical conformation in the presence of the cosolvent used for the semisynthetic reaction. V8 protease was able to synthesize an analog of S-peptide (SA-peptide) in which residues 10-14 were substituted (RQHMD-->VAAAK). While S-peptide exhibited helical conformation in the presence of aqueous propanol solutions, SA-peptide displayed predominantly beta-sheet conformation. SA-peptide showed enhanced resistance to proteolysis as compared with S-peptide. Thus, failure of semisynthesis of S-peptide may be a consequence of high flexibility around the 9-10 peptide bond due to its proximity to the helix stop signal. The results suggest that protease-mediated ligations may be achieved by design and manipulation of the conformational aspects of the product.


Subject(s)
Peptide Fragments/chemical synthesis , Protein Conformation , Ribonuclease, Pancreatic/chemical synthesis , Serine Endopeptidases/metabolism , Thermolysin/chemical synthesis , 1-Propanol , Amino Acid Sequence , Circular Dichroism , Crystallization , Hydrogen-Ion Concentration , Molecular Sequence Data , Protein Structure, Secondary , Solutions , Temperature
3.
Int J Pept Protein Res ; 35(3): 219-27, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2113042

ABSTRACT

Enzyme-catalyzed synthesis of two polypeptide fragments, one of which is obtained by chemical synthesis, in the presence of proteolytic enzymes and in aqueous organic solvents constitutes a convenient procedure for the synthesis of proteins and their analogs. This novel semisynthetic procedure was investigated for preparing COOH-terminal fragments of the metallo-protease thermolysin. Fragment 205-316, obtained by autolysis of the protein in the presence of EDTA, was first cleaved selectively with Staphylococcus aureus V8 protease at the level of the single Glu302 residue into fragments 205-302 and 303-316. Upon incubation for 2-5 days of fragment 205-302 with a 5-fold excess of peptide 303-316, prepared by solid phase synthesis, with V8-protease in 0.1 M ammonium acetate, pH 6.0, containing 50% glycerol as organic cosolvent, enzyme-catalyzed reformation of the peptide bond was achieved in yields up to approximately 90% (based on fragment 205-302). The same procedure was used to prepare also the thermolysin fragments 205-315 and 205-311 by enzymatic coupling of fragment 205-302 to peptide 303-315 or 303-311, these last prepared by proteolytic digestion of the synthetic peptide 303-316. This procedure of semisynthesis opens up an approach for the site-directed modification of the tetrahelical COOH-terminal fragment 205-316 of thermolysin at the level of its helical segment encompassing residues 301-312 in the native, intact protein. Such analogs will be useful for examining structure-folding-stability relationships in this folded fragment possessing domain-like characteristics.


Subject(s)
Peptide Fragments/chemical synthesis , Thermolysin/chemical synthesis , Amino Acid Sequence , Carboxypeptidase B , Carboxypeptidases/metabolism , Chromatography, High Pressure Liquid , Edetic Acid , Hot Temperature , Kinetics , Molecular Sequence Data , Peptide Fragments/metabolism , Protein Denaturation , Serine Endopeptidases/metabolism , Thermolysin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...