Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.497
Filter
1.
Article in English | MEDLINE | ID: mdl-38691431

ABSTRACT

In hippocampus, synaptic plasticity and rhythmic oscillations reflect the cytological basis and the intermediate level of cognition, respectively. Transcranial ultrasound stimulation (TUS) has demonstrated the ability to elicit changes in neural response. However, the modulatory effect of TUS on synaptic plasticity and rhythmic oscillations was insufficient in the present studies, which may be attributed to the fact that TUS acts mainly through mechanical forces. To enhance the modulatory effect on synaptic plasticity and rhythmic oscillations, transcranial magneto-acoustic stimulation (TMAS) which induced a coupled electric field together with TUS's ultrasound field was applied. The modulatory effect of TMAS and TUS with a pulse repetition frequency of 100 Hz were compared. TMAS/TUS were performed on C57 mice for 7 days at two different ultrasound intensities (3 W/cm2 and 5 W/cm [Formula: see text]. Behavioral tests, long-term potential (LTP) and local field potentials in vivo were performed to evaluate TUS/TMAS modulatory effect on cognition, synaptic plasticity and rhythmic oscillations. Protein expression based on western blotting were used to investigate the under- lying mechanisms of these beneficial effects. At 5 W/cm2, TMAS-induced LTP were 113.4% compared to the sham group and 110.5% compared to TUS. Moreover, the relative power of high gamma oscillations (50-100Hz) in the TMAS group ( 1.060±0.155 %) was markedly higher than that in the TUS group ( 0.560±0.114 %) and sham group ( 0.570±0.088 %). TMAS significantly enhanced the synchronization of theta and gamma oscillations as well as theta-gamma cross-frequency coupling. Whereas, TUS did not show relative enhancements. TMAS provides enhanced effect for modulating the synaptic plasticity and rhythmic oscillations in hippocampus.


Subject(s)
Acoustic Stimulation , Hippocampus , Mice, Inbred C57BL , Transcranial Magnetic Stimulation , Animals , Mice , Transcranial Magnetic Stimulation/methods , Male , Hippocampus/physiology , Neuronal Plasticity/physiology , Cognition/physiology , Long-Term Potentiation/physiology , Ultrasonic Waves , Theta Rhythm/physiology
2.
Brain Behav ; 14(5): e3517, 2024 May.
Article in English | MEDLINE | ID: mdl-38702896

ABSTRACT

INTRODUCTION: Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS: We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS: Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS: These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.


Subject(s)
Alpha Rhythm , Attention , Memory, Short-Term , Music , Theta Rhythm , Humans , Memory, Short-Term/physiology , Attention/physiology , Male , Female , Child , Theta Rhythm/physiology , Alpha Rhythm/physiology , Auditory Perception/physiology , Electroencephalography , Visual Perception/physiology , Brain/physiology
3.
Sci Rep ; 14(1): 11847, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38782921

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.


Subject(s)
Cerebellum , Evoked Potentials , Executive Function , Prefrontal Cortex , Transcranial Magnetic Stimulation , Humans , Male , Transcranial Magnetic Stimulation/methods , Female , Adult , Cerebellum/physiology , Executive Function/physiology , Prefrontal Cortex/physiology , Evoked Potentials/physiology , Young Adult , Healthy Volunteers , Cross-Over Studies , Theta Rhythm/physiology , Cognition/physiology , Dorsolateral Prefrontal Cortex/physiology
4.
Sci Rep ; 14(1): 11281, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760450

ABSTRACT

5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.


Subject(s)
Hippocampus , Prefrontal Cortex , Sleep , Wakefulness , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats , Hippocampus/drug effects , Hippocampus/physiology , Wakefulness/drug effects , Wakefulness/physiology , Male , Sleep/drug effects , Sleep/physiology , Electroencephalography , Theta Rhythm/drug effects , Hallucinogens/pharmacology
5.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Article in English | MEDLINE | ID: mdl-38702935

ABSTRACT

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Subject(s)
Antipsychotic Agents , Aripiprazole , Disease Models, Animal , Dizocilpine Maleate , Hippocampus , Hyperkinesis , Schizophrenia , Animals , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Schizophrenia/drug therapy , Hippocampus/drug effects , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Dizocilpine Maleate/pharmacology , Mice , Hyperkinesis/drug therapy , Male , Locomotion/drug effects , Locomotion/physiology , Excitatory Amino Acid Antagonists/pharmacology , Mice, Inbred C57BL , Animals, Newborn , Neurons/drug effects , Theta Rhythm/drug effects , Theta Rhythm/physiology
6.
Article in English | MEDLINE | ID: mdl-38717876

ABSTRACT

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Subject(s)
Algorithms , Electroencephalography , Memory, Short-Term , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Electroencephalography/methods , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Normal Distribution , Neurovascular Coupling/physiology , Young Adult , Memory, Short-Term/physiology , Healthy Volunteers , Reproducibility of Results , Multivariate Analysis , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Brain Mapping/methods , Theta Rhythm/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Nonlinear Dynamics , Delta Rhythm/physiology , Alpha Rhythm/physiology
7.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38755011

ABSTRACT

The ability to remember changes in the surroundings is fundamental for daily life. It has been proposed that novel events producing dopamine release in the hippocampal CA1 region could modulate spatial memory formation. However, the role of hippocampal dopamine increase on weak or strong spatial memories remains unclear. We show that male mice exploring two objects located in a familiar environment for 5 min created a short-term memory (weak) that cannot be retrieved 1 d later, whereas 10 min exploration created a long-term memory (strong) that can be retrieved 1 d later. Remarkably, hippocampal dopamine elevation during the encoding of weak object location memories (OLMs) allowed their retrieval 1 d later but dopamine elevation during the encoding of strong OLMs promoted the preference for a familiar object location over a novel object location after 24 h. Moreover, dopamine uncaging after the encoding of OLMs did not have effect on weak memories whereas on strong memories diminished the exploration of the novel object location. Additionally, hippocampal dopamine elevation during the retrieval of OLMs did not allow the recovery of weak memories and did not affect the retrieval of strong memory traces. Finally, dopamine elevation increased hippocampal theta oscillations, indicating that dopamine promotes the recurrent activation of specific groups of neurons. Our experiments demonstrate that hippocampal dopaminergic modulation during the encoding of OLMs depends on memory strength indicating that hyperdopaminergic levels that enhance weak experiences could compromise the normal storage of strong memories.


Subject(s)
Dopamine , Hippocampus , Mice, Inbred C57BL , Spatial Memory , Animals , Dopamine/metabolism , Male , Spatial Memory/physiology , Hippocampus/physiology , Hippocampus/metabolism , Mice , Theta Rhythm/physiology , Exploratory Behavior/physiology , Mental Recall/physiology , Memory, Long-Term/physiology , Memory, Short-Term/physiology
8.
Nature ; 629(8012): 630-638, 2024 May.
Article in English | MEDLINE | ID: mdl-38720085

ABSTRACT

Hippocampal representations that underlie spatial memory undergo continuous refinement following formation1. Here, to track the spatial tuning of neurons dynamically during offline states, we used a new Bayesian learning approach based on the spike-triggered average decoded position in ensemble recordings from freely moving rats. Measuring these tunings, we found spatial representations within hippocampal sharp-wave ripples that were stable for hours during sleep and were strongly aligned with place fields initially observed during maze exploration. These representations were explained by a combination of factors that included preconfigured structure before maze exposure and representations that emerged during θ-oscillations and awake sharp-wave ripples while on the maze, revealing the contribution of these events in forming ensembles. Strikingly, the ripple representations during sleep predicted the future place fields of neurons during re-exposure to the maze, even when those fields deviated from previous place preferences. By contrast, we observed tunings with poor alignment to maze place fields during sleep and rest before maze exposure and in the later stages of sleep. In sum, the new decoding approach allowed us to infer and characterize the stability and retuning of place fields during offline periods, revealing the rapid emergence of representations following new exploration and the role of sleep in the representational dynamics of the hippocampus.


Subject(s)
Bayes Theorem , Hippocampus , Maze Learning , Sleep , Spatial Memory , Animals , Sleep/physiology , Rats , Hippocampus/physiology , Male , Maze Learning/physiology , Spatial Memory/physiology , Rats, Long-Evans , Wakefulness/physiology , Neurons/physiology , Theta Rhythm/physiology , Models, Neurological
9.
J Neuroeng Rehabil ; 21(1): 93, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816860

ABSTRACT

BACKGROUND: Transcranial alternating current stimulation (tACS) is a prominent non-invasive brain stimulation method for modulating neural oscillations and enhancing human cognitive function. This study aimed to investigate the effects of individualized theta tACS delivered in-phase and out-of-phase between the dorsal anterior cingulate cortex (dACC) and left dorsolateral prefrontal cortex (lDLPFC) during inhibitory control performance. METHODS: The participants engaged in a Stroop task with phase-lagged theta tACS over individually optimized high-density electrode montages targeting the dACC and lDLPFC. We analyzed task performance, event-related potentials, and prestimulus electroencephalographic theta and alpha power. RESULTS: We observed significantly reduced reaction times following out-of-phase tACS, accompanied by reduced frontocentral N1 and N2 amplitudes, enhanced parieto-occipital P1 amplitudes, and pronounced frontocentral late sustained potentials. Out-of-phase stimulation also resulted in significantly higher prestimulus frontocentral theta and alpha activity. CONCLUSIONS: These findings suggest that out-of-phase theta tACS potently modulates top-down inhibitory control, supporting the feasibility of phase-lagged tACS to enhance inhibitory control performance.


Subject(s)
Inhibition, Psychological , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Male , Female , Adult , Young Adult , Electroencephalography/methods , Evoked Potentials/physiology , Gyrus Cinguli/physiology , Reaction Time/physiology , Theta Rhythm/physiology , Stroop Test , Dorsolateral Prefrontal Cortex/physiology
10.
Article in English | MEDLINE | ID: mdl-38801679

ABSTRACT

Compared to traditional continuous performance tasks, virtual reality-based continuous performance tests (VR-CPT) offer higher ecological validity. While previous studies have primarily focused on behavioral outcomes in VR-CPT and incorporated various distractors to enhance ecological realism, little attention has been paid to the effects of distractors on EEG. Therefore, our study aimed to investigate the influence of distractors on EEG during VR-CPT. We studied visual distractors and auditory distractors separately, recruiting 68 subjects (M =20.82, SD =1.72) and asking each to complete four tasks. These tasks were categorized into four groups according to the presence or absence of visual and auditory distractors. We conducted paired t-tests on the mean relative power of the five electrodes in the ROI region across different frequency bands. Significant differences were found in theta waves between Group 3 (M =2.49, SD =2.02) and Group 4 (M =2.68, SD =2.39) (p < 0.05); in alpha waves between Group 3 (M =2.08, SD =3.73) and Group 4 (M =3.03, SD =4.60) (p < 0.001); and in beta waves between Group 1 (M = -4.44 , SD =2.29) and Group 2 (M = -5.03 , SD =2.48) (p < 0.001), as well as between Group 3 (M = -4.48 , SD =2.03) and Group 4 (M = -4.67 , SD =2.23) (p < 0.05). The incorporation of distractors in VR-CPT modulates EEG signals across different frequency bands, with visual distractors attenuating theta band activity, auditory distractors enhancing alpha band activity, and both types of distractors reducing beta oscillations following target stimuli. This insight holds significant promise for the rehabilitation of children and adolescents with attention deficits.


Subject(s)
Attention , Electroencephalography , Virtual Reality , Humans , Male , Female , Electroencephalography/methods , Young Adult , Attention/physiology , Adult , Visual Perception/physiology , Theta Rhythm/physiology , Acoustic Stimulation/methods , Alpha Rhythm/physiology , Photic Stimulation , Auditory Perception/physiology , Psychomotor Performance/physiology
11.
Neuropsychologia ; 199: 108905, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38740179

ABSTRACT

Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.


Subject(s)
Auditory Perception , Magnetoencephalography , Music , Theta Rhythm , Humans , Theta Rhythm/physiology , Male , Female , Auditory Perception/physiology , Adult , Young Adult , Acoustic Stimulation , Bayes Theorem , Brain/physiology
12.
Sci Rep ; 14(1): 12101, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802558

ABSTRACT

Anxiety is among the most fundamental mammalian behaviors. Despite the physiological and pathological importance, its underlying neural mechanisms remain poorly understood. Here, we recorded the activity of olfactory bulb (OB) and medial prefrontal cortex (mPFC) of rats, which are critical structures to brain's emotional processing network, while exploring different anxiogenic environments. Our results show that presence in anxiogenic contexts increases the OB and mPFC regional theta activities. Also, these local activity changes are associated with enhanced OB-mPFC theta power- and phase-based functional connectivity as well as OB-to-mPFC information transfer. Interestingly, these effects are more prominent in the unsafe zones of the anxiogenic environments, compared to safer zones. This consistent trend of changes in diverse behavioral environments as well as local and long-range neural activity features suggest that the dynamics of OB-mPFC circuit theta oscillations might underlie different types of anxiety behaviors, with possible implications for anxiety disorders.


Subject(s)
Anxiety , Olfactory Bulb , Prefrontal Cortex , Theta Rhythm , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Animals , Anxiety/physiopathology , Theta Rhythm/physiology , Olfactory Bulb/physiology , Olfactory Bulb/physiopathology , Male , Rats , Rats, Sprague-Dawley , Behavior, Animal/physiology
13.
Cortex ; 175: 28-40, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691923

ABSTRACT

The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.


Subject(s)
Cognition , Deep Brain Stimulation , Hippocampus , Parietal Lobe , Theta Rhythm , Deep Brain Stimulation/methods , Theta Rhythm/physiology , Hippocampus/physiology , Male , Humans , Parietal Lobe/physiology , Cognition/physiology , Memory, Episodic , Female , Gyrus Cinguli/physiology , Adult
14.
Sci Rep ; 14(1): 7895, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570599

ABSTRACT

A central aspect of episodic memory is the formation of associations between stimuli from different modalities. Current theoretical approaches assume a functional role of ongoing oscillatory power and phase in the theta band (3-7 Hz) for the encoding of crossmodal associations. Furthermore, ongoing activity in the theta range as well as alpha (8-12 Hz) and low beta activity (13-20 Hz) before the presentation of a stimulus is thought to modulate subsequent cognitive processing, including processes that are related to memory. In this study, we tested the hypothesis that pre-stimulus characteristics of low frequency activity are relevant for the successful formation of crossmodal memory. The experimental design that was used specifically allowed for the investigation of associative memory independent from individual item memory. Participants (n = 51) were required to memorize associations between audiovisual stimulus pairs and distinguish them from newly arranged ones consisting of the same single stimuli in the subsequent recognition task. Our results show significant differences in the state of pre-stimulus theta and alpha power between remembered and not remembered crossmodal associations, clearly relating increased power to successful recognition. These differences were positively correlated with memory performance, suggesting functional relevance for behavioral measures of associative memory. Further analysis revealed similar effects in the low beta frequency ranges, indicating the involvement of different pre-stimulus-related cognitive processes. Phase-based connectivity measures in the theta band did not differ between remembered and not remembered stimulus pairs. The findings support the assumed functional relevance of theta band oscillations for the formation of associative memory and demonstrate that an increase of theta as well as alpha band oscillations in the pre-stimulus period is beneficial for the establishment of crossmodal memory.


Subject(s)
Memory, Episodic , Humans , Mental Recall , Recognition, Psychology , Cognition , Theta Rhythm , Electroencephalography
15.
PLoS One ; 19(4): e0297995, 2024.
Article in English | MEDLINE | ID: mdl-38564573

ABSTRACT

Visuo-spatial working memory (VSWM) for sequences is thought to be crucial for daily behaviors. Decades of research indicate that oscillations in the gamma and theta bands play important functional roles in the support of visuo-spatial working memory, but the vast majority of that research emphasizes measures of neural activity during memory retention. The primary aims of the present study were (1) to determine whether oscillatory dynamics in the Theta and Gamma ranges would reflect item-level sequence encoding during a computerized spatial span task, (2) to determine whether item-level sequence recall is also related to these neural oscillations, and (3) to determine the nature of potential changes to these processes in healthy cognitive aging. Results indicate that VSWM sequence encoding is related to later (∼700 ms) gamma band oscillatory dynamics and may be preserved in healthy older adults; high gamma power over midline frontal and posterior sites increased monotonically as items were added to the spatial sequence in both age groups. Item-level oscillatory dynamics during the recall of VSWM sequences were related only to theta-gamma phase amplitude coupling (PAC), which increased monotonically with serial position in both age groups. Results suggest that, despite a general decrease in frontal theta power during VSWM sequence recall in older adults, gamma band dynamics during encoding and theta-gamma PAC during retrieval play unique roles in VSWM and that the processes they reflect may be spared in healthy aging.


Subject(s)
Memory, Short-Term , Mental Recall , Spatial Memory , Theta Rhythm , Electroencephalography
16.
BMC Psychol ; 12(1): 245, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689352

ABSTRACT

Decision-making under uncertainty, a cornerstone of human cognition, is encapsulated by the "secretary problem" in optimal stopping theory. Our study examines this decision-making challenge, where participants are required to sequentially evaluate and make irreversible choices under conditions that simulate cognitive overload. We probed neurophysiological responses by engaging 27 students in a secretary problem simulation while undergoing EEG monitoring, focusing on Event-Related Potentials (ERPs) P200 and P400, and Theta to Beta Ratio (TBR) dynamics.Results revealed a nuanced pattern: the P200 component's amplitude declined from the initial to the middle offers, suggesting a diminishing attention span as participants grew accustomed to the task. This attenuation reversed at the final offer, indicating a heightened cognitive processing as the task concluded. In contrast, the P400 component's amplitude peaked at the middle offer, hinting at increased cognitive evaluation, and tapered off at the final decision. Additionally, TBR dynamics illustrated a fluctuation in attentional control and emotional regulation throughout the decision-making sequence, enhancing our understanding of the cognitive strategies employed.The research elucidates the dynamic interplay of cognitive processes in high-stakes environments, with neurophysiological markers fluctuating significantly as participants navigated sequential choices. By correlating these fluctuations with decision-making behavior, we provide insights into the evolving strategies from heightened alertness to strategic evaluation. Our findings offer insights that could inform the use of neurophysiological data in the development of decision-making frameworks, potentially contributing to the practical application of cognitive research in real-life contexts.


Subject(s)
Attention , Decision Making , Electroencephalography , Evoked Potentials , Humans , Decision Making/physiology , Evoked Potentials/physiology , Male , Female , Young Adult , Attention/physiology , Adult , Cognition/physiology , Brain/physiology , Uncertainty , Theta Rhythm/physiology , Beta Rhythm/physiology
17.
Aging (Albany NY) ; 16(8): 7119-7130, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38643463

ABSTRACT

BACKGROUND: Non-invasive brain stimulation is considered as a promising technology for treating patients with disorders of consciousness (DOC). Various approaches and protocols have been proposed; however, few of them have shown potential effects on patients with vegetative state (VS). This study aimed to explore the neuro-modulation effects of intermittent theta burst stimulation (iTBS) on the brains of patients with VS and to provide a pilot investigation into its possible role in treating such patients. METHODS: We conducted a sham-controlled crossover study, a real and a sham session of iTBS were delivered over the left dorsolateral prefrontal cortex of such patients. A measurement of an electroencephalography (EEG) and a behavioral assessment of the Coma Recovery Scale-Revised (CRS-R) were applied to evaluate the modulation effects of iTBS before and after stimulation. RESULTS: No meaningful changes of CRS-R were found. The iTBS altered the spectrum, complexity and functional connectivity of the patients. The real stimulation induced a trend of decreasing of delta power at T1 and T2 in the frontal region, significant increasing of permutation entropy at the T2 in the left frontal region. In addition, brain functional connectivity, particularly inter-hemispheric connectivity, was strengthened between the electrodes of the frontal region. The sham stimulation, however, did not induce any significant changes of the brain activity. CONCLUSIONS: One session of iTBS significantly altered the oscillation power, complexity and functional connectivity of brain activity of VS patients. It may be a valuable tool on modulating the brain activities of patients with VS.


Subject(s)
Cross-Over Studies , Electroencephalography , Persistent Vegetative State , Transcranial Magnetic Stimulation , Humans , Persistent Vegetative State/physiopathology , Persistent Vegetative State/therapy , Male , Female , Middle Aged , Transcranial Magnetic Stimulation/methods , Adult , Theta Rhythm/physiology , Brain/physiopathology , Aged
18.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38621992

ABSTRACT

Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.


Subject(s)
Discrimination, Psychological , Neurons , Somatosensory Cortex , Theta Rhythm , Visual Cortex , Animals , Male , Theta Rhythm/physiology , Somatosensory Cortex/physiology , Visual Cortex/physiology , Discrimination, Psychological/physiology , Neurons/physiology , Hippocampus/physiology , Visual Perception/physiology , Touch Perception/physiology , Action Potentials/physiology , Rats, Long-Evans , Rats
19.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38621991

ABSTRACT

The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.


Subject(s)
CA1 Region, Hippocampal , Mammillary Bodies , Neurons , Rats, Long-Evans , Sleep , Theta Rhythm , Wakefulness , Animals , Mammillary Bodies/physiology , Male , Neurons/physiology , Sleep/physiology , Rats , Theta Rhythm/physiology , Wakefulness/physiology , CA1 Region, Hippocampal/physiology , Action Potentials/physiology , Electrophysiological Phenomena/physiology
20.
Hear Res ; 446: 109007, 2024 May.
Article in English | MEDLINE | ID: mdl-38608331

ABSTRACT

Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing (DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities (auditory and visual). The objective of this pioneering study was to identify electroencephalographic (EEG) marker pattern differences in visual and auditory VWM performances in CIs compared to NH peers and possible differences between unilateral cochlear implant (UCI) and bilateral cochlear implant (BCI) users. The main results revealed differences in theta and gamma EEG bands. Compared with hearing controls and BCIs, UCIs showed hypoactivation of theta in the frontal area during the most complex condition of the auditory task and a correlation of the same activation with VWM performance. Hypoactivation in theta was also observed, again for UCIs, in the left hemisphere when compared to BCIs and in the gamma band in UCIs compared to both BCIs and NHs. For the latter two, a correlation was found between left hemispheric gamma oscillation and performance in the audio task. These findings, discussed in the light of recent research, suggest that unilateral CI is deficient in supporting auditory VWM in DHH. At the same time, bilateral CI would allow the DHH child to approach the VWM benchmark for NH children. The present study suggests the possible effectiveness of EEG in supporting, through a targeted approach, the diagnosis and rehabilitation of VWM in DHH children.


Subject(s)
Acoustic Stimulation , Auditory Perception , Cochlear Implantation , Cochlear Implants , Electroencephalography , Memory, Short-Term , Persons With Hearing Impairments , Visual Perception , Humans , Child , Female , Cochlear Implantation/instrumentation , Male , Persons With Hearing Impairments/rehabilitation , Persons With Hearing Impairments/psychology , Case-Control Studies , Theta Rhythm , Photic Stimulation , Gamma Rhythm , Adolescent , Speech Perception , Correction of Hearing Impairment/instrumentation , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Deafness/physiopathology , Deafness/rehabilitation , Deafness/surgery , Hearing
SELECTION OF CITATIONS
SEARCH DETAIL
...