Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805648

ABSTRACT

Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.


Subject(s)
Genetic Variation , Insecticides , Neonicotinoids , Varroidae , Animals , Bees/parasitology , Bees/drug effects , Varroidae/drug effects , Neonicotinoids/toxicity , Insecticides/toxicity , Thiazoles/toxicity , Thiamethoxam , Guanidines/toxicity , Host-Parasite Interactions , Nitro Compounds/toxicity
2.
Chemosphere ; 358: 142244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705411

ABSTRACT

Neonicotinoids are a class of broad-spectrum insecticides that are dominant in the world market. They are widely distributed in the environment. Understanding the sources, distribution, and fate of these contaminants is critical to mitigating their effects and maintaining the health of aquatic ecosystems. Contamination of surface and groundwater by neonicotinoids has become a widespread problem worldwide, requiring comprehensive action to accurately determine the mechanisms behind the migration of these pesticides, their properties, and their adverse effects on the environment. A new approach to risk analysis for groundwater intake contamination with emerging contaminants was proposed. It was conducted on the example of four neonicotinoids (acetamiprid, clothianidin, thiamethoxam, and imidacloprid) in relation to groundwater accessed by a hypothetical groundwater intake, based on data obtained in laboratory tests using a dynamic method (column experiments). The results of the risk analysis conducted have shown that in this case study the use of acetamiprid and thiamethoxam for agricultural purposes poses an acceptable risk, and does not pose a risk to the quality of groundwater extracted from the intake for food purposes. Consequently, it does not pose a risk to the health and life of humans and other organisms depending on that water. The opposite situation is observed for clothianidin and imidacloprid, which pose a higher risk of groundwater contamination. For higher maximum concentration of neonicotinoids used in the risk analysis, the concentration of clothianidin and imidacloprid in the groundwater intake significantly (from several to several hundred thousand times) exceeds the maximum permissible levels for drinking water (<0.1 µg/L). This risk exists even if the insecticides containing these pesticides are used according to the information sheet provided by the manufacturer (lower maximum concentration), which results in exceeding the maximum permissible levels for drinking water from several to several hundred times.


Subject(s)
Groundwater , Insecticides , Neonicotinoids , Water Pollutants, Chemical , Groundwater/chemistry , Neonicotinoids/analysis , Water Pollutants, Chemical/analysis , Insecticides/analysis , Risk Assessment , Environmental Monitoring , Thiamethoxam/analysis , Humans , Thiazoles/analysis , Guanidines/analysis , Drinking Water/chemistry , Nitro Compounds/analysis
3.
Talanta ; 275: 126190, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703483

ABSTRACT

Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Insecticides , Neonicotinoids , Insecticides/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Neonicotinoids/analysis , Guanidines/analysis , Guanidines/chemistry , Thiamethoxam/analysis , Thiazoles/analysis , Thiazoles/chemistry , Nitro Compounds/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Thiazines
4.
Chemosphere ; 359: 142371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768784

ABSTRACT

Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 µg/L) > THM (2.74 µg/L) > IMI (0.97 µg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 µg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 µg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.


Subject(s)
Insecticides , Neonicotinoids , Oryza , Soil Pollutants , Insecticides/analysis , Neonicotinoids/analysis , Oryza/chemistry , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring , Nitro Compounds/analysis , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Humans , Risk Assessment , Thiamethoxam , Guanidines/analysis , Thiazoles
5.
PLoS One ; 19(5): e0303238, 2024.
Article in English | MEDLINE | ID: mdl-38709762

ABSTRACT

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Subject(s)
Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
6.
Chemosphere ; 359: 142343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754491

ABSTRACT

The current research highlights the fabrication of a novel SnS2/CO32-@Ni-Co LDH (SnS2/NCL) by precipitating Ni-Co LDH over hydrothermally synthesized SnS2 nanoparticles for the enhanced degradation of thiamethoxam (THM) insecticide through the advanced oxidation process. The effect of several reaction parameters was optimized, and a maximum degradation of 98.1 ± 1.2 % with a rate constant of 0.0541 min-1 of 10 ppm THM was reached at a catalyst loading of 0.16 gL-1 using 0.3 mM of H2O2 within 70 min of visible light irradiation. The effect of metal cations, inorganic anions, dissolved organic matter, organic compounds and water samples on the photodegradation performance of SnS2/NCL nanocomposite was also examined to evaluate the prepared photocatalyst's suitability for use in actual wastewater conditions. The metal cations blocked the active sites of the photocatalyst and reduced the degradation efficiency except for Fe2+ ions, since it is a Fenton reagent and increased the production of hydroxyl radicals. Inorganic anions are the scavengers of hydroxyl radicals and hinder photocatalytic activity. Meanwhile, lake water containing varying degrees of co-existing ions shows the lowest degradation efficiency among other water samples. The SnS2/NCL nanocomposite could be reused for five cycles while maintaining a photocatalytic efficiency of 83.6 ± 0.3 % in the fifth run. The prepared SnS2/NCL nanocomposite also showed excellent photodegradation of several other emerging organic pollutants with an efficiency of over 80 % under optimum conditions. Incorporating Ni-Co LDH with SnS2 helped to delocalize photoinduced charges, leading to increased photocatalytic activity and a slower electron-hole recombination rate. The present research highlights the photocatalytic activity of SnS2/NCL photocatalysts for the photocatalytic degradation of emerging contaminants from wastewater.


Subject(s)
Insecticides , Photolysis , Thiamethoxam , Tin Compounds , Water Pollutants, Chemical , Catalysis , Thiamethoxam/chemistry , Insecticides/chemistry , Water Pollutants, Chemical/chemistry , Tin Compounds/chemistry , Sulfides/chemistry , Oxidation-Reduction , Nanocomposites/chemistry , Nickel/chemistry , Cobalt/chemistry , Wastewater/chemistry , Light , Hydrogen Peroxide/chemistry
7.
Environ Sci Pollut Res Int ; 31(19): 28578-28593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558333

ABSTRACT

The application of perovskite lanthanum ferrite (LaFeO3) as a photocatalyst has shown significant potential in the removal of persistent organic and inorganic contaminants. In the present research, LaFeO3 and various composites consisting of LaFeO3 and TiO2 were prepared. The photocatalytic efficiency of the produced catalysts was assessed by measuring their effectiveness in degrading thiamethoxam, a pesticide belonging to the second generation of neonicotinoids. Experimental investigations were carried out to examine the impact of various factors on the degradation process, including variables like concentration of thiamethoxam, catalyst amount, and pH level. The produced catalysts were characterized by various techniques, including field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). The highest degradation rates were observed when using the synthesized catalyst, 1% LaFeO3/TiO2 (LFTO1), under both UV-C and direct sunlight conditions. This performance outperformed TiO2 and bare LaFeO3. When exposed to ultraviolet (UV-C) radiation at an intensity of 15 W m-2 and under neutral pH conditions, LFTO1 achieved approximately 97% degradation, while under direct sunlight, the LFTO1 photocatalyst exhibited a degradation rate of 79% within a 120-min reaction period. The enhanced activity of LFTO1 could be attributed to its increased surface area, reduced bandgap, and lower electron-hole recombination. The investigation of reaction kinetics showed that the degradation of thiamethoxam followed a pseudo-first-order rate law. Furthermore, LFTO1 can be employed up to 5 times without experiencing any loss in its catalytic activity, thus confirming its long-term utility.


Subject(s)
Thiamethoxam , Titanium , Titanium/chemistry , Thiamethoxam/chemistry , Catalysis , Ferric Compounds/chemistry , Lanthanum/chemistry , Neonicotinoids/chemistry , Calcium Compounds/chemistry
8.
Ecotoxicol Environ Saf ; 277: 116355, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38669871

ABSTRACT

The neonicotinoid insecticide thiamethoxam (TMX) is widely used to protect crops against insect pests. Despite some desirable properties such as its low toxicity to birds and mammals, concerns have been raised about its toxicity to non-target arthropods, including freshwater insects like chironomids. Whereas multiple studies have investigated chronic effects of neonicotinoids in chironomid larvae at standardized laboratory conditions, a better understanding of their chronic toxicity under variable temperatures and exposure is needed for coherent extrapolation from the laboratory to the field. Here, we developed a quantitative mechanistic effect model for Chironomus riparius, to simulate the species' life history under dynamic temperatures and exposure concentrations of TMX. Laboratory experiments at four different temperatures (12, 15, 20, 23 °C) and TMX concentrations between 4 and 51 µg/L were used to calibrate the model. Observed concentration-dependent effects of TMX in C. riparius included slower growth, later emergence, and higher mortality rates with increasing concentrations. Furthermore, besides a typical accelerating effect on the organisms' growth and development, higher temperatures further increased the effects associated with TMX. With some data-informed modeling decisions, most prominently the inclusion of a size dependence that makes larger animals more sensitive to TMX, the model was parametrized to convincingly reproduce the data. Experiments at both a constant (20 °C) and a dynamically increasing temperature (15-23 °C) with pulsed exposure were used to validate the model. Finally, the model was used to simulate realistic exposure conditions using two reference exposure scenarios measured in Missouri and Nebraska, utilizing a moving time window (MTW) and either a constant temperature (20 °C) or the measured temperature profiles belonging to each respective scenario. Minimum exposure multiplication factors leading to a 10% effect (EP10) in the survival at pupation, i.e., the most sensitive endpoint found in this study, were 25.67 and 21.87 for the Missouri scenario and 38.58 and 44.64 for the Nebraska scenario, when using the respective temperature assumptions. While the results illustrate that the use of real temperature scenarios does not systematically modify the EPx in the same direction (making it either more or less conservative when used as a risk indicator), the advantage of this approach is that it increases the realism and thus reduces the uncertainty associated with the model predictions.


Subject(s)
Chironomidae , Insecticides , Larva , Temperature , Thiamethoxam , Animals , Thiamethoxam/toxicity , Chironomidae/drug effects , Insecticides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Life Cycle Stages/drug effects , Neonicotinoids/toxicity
9.
Anal Methods ; 16(12): 1756-1762, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38440844

ABSTRACT

Single-chain variable fragments (scFvs) are valuable in the development of immunoassays for pesticide detection. In this study, scFvs specific to thiamethoxam (Thi) were successfully isolated from a library generated by chicken immunization through heterologous coating selection. These scFvs were subsequently expressed with fusion with an Avi tag and alkaline phosphatase. After combination and optimization, a scFv-biotin based enzyme linked immunosorbent assay (ELISA) was developed for the detection of Thi, demonstrating an impressive half-maximum signal inhibition concentration (IC50) of 30 ng mL-1 and a limit of detection (LOD) of 1.8 ng mL-1. The immunoassay exhibited minimal cross-reactivity with other neonicotinoid insecticides, except for 7.5% for imidacloprid and 6.7% for imidaclothiz. The accuracy of the assay was confirmed by testing spiked samples of apple, pear, cabbage, and cucumber, which resulted in average recoveries ranging between 82% and 119%, closely aligning with the results obtained through high-performance liquid chromatography. Therefore, the chicken scFv-biotin based assay showed promise as a high-throughput screening tool for Thi in agricultural samples.


Subject(s)
Insecticides , Single-Chain Antibodies , Animals , Thiamethoxam , Single-Chain Antibodies/genetics , Single-Chain Antibodies/chemistry , Chickens , Biotin , Insecticides/analysis
10.
Environ Toxicol Chem ; 43(5): 952-964, 2024 May.
Article in English | MEDLINE | ID: mdl-38517100

ABSTRACT

Pesticides, especially the newly developed neonicotinoids, are increasingly used in many countries around the world, including Cameroon, to control pests involved in crop destruction or disease transmission. Unfortunately, the pesticides also pose tremendous environmental problems because a predominant amount of their residues enter environmental matrices to affect other nontargeted species including humans. This therefore calls for continuous biomonitoring of these insecticides in human populations. The present study sought to assess the neonicotinoid insecticide exposures in two agrarian regions of Cameroon, the South-West region and Littoral region. The study involved 188 men, including 125 farmers and 63 nonfarmers. Spot urine samples were obtained from these subjects and subjected to liquid chromatographic-tandem mass spectrometric analysis for concentrations of neonicotinoid compounds, including acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, nitenpyram, thiamethoxam, and N-dm-acetamiprid. Neonicotinoid compounds were detected in all study participants, and residues of all the screened pesticides were detected among participants. N-dm-Acetamiprid and imidacloprid were the most prevalent among the subjects (100.0% and 93.1%, respectively), whereas nitenpyram was less common (3.2%). The median values of imidacloprid and total urinary neonicotinoid concentrations were elevated among farmers (0.258 vs. 0.126 µg/L and 0.829 vs. 0.312 µg/L, respectively). Altogether the findings showed that both the farmer and nonfarmer study populations of Cameroon were exposed to multiple residues of neonicotinoids, with relatively higher levels of pesticides generally recorded among farmers. Although exposure levels of the neonicotinoids were generally lower than their respective reference doses, these results warrant further research on the health risk evaluation of multiple residues of the pesticides and reinforcement of control measures to minimize the exposure risks, especially among farmers. Environ Toxicol Chem 2024;43:952-964. © 2024 SETAC.


Subject(s)
Farmers , Neonicotinoids , Occupational Exposure , Thiazines , Humans , Male , Neonicotinoids/analysis , Neonicotinoids/urine , Occupational Exposure/analysis , Cameroon , Adult , Middle Aged , Nitro Compounds/analysis , Insecticides/analysis , Insecticides/urine , Young Adult , Thiazoles/analysis , Thiazoles/urine , Pesticides/analysis , Pesticides/urine , Guanidines/analysis , Guanidines/urine , Thiamethoxam , Environmental Monitoring
11.
Environ Pollut ; 348: 123853, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552772

ABSTRACT

Microplastics (MPs) pollution, together with its consequential effect on aquatic biota, represent a burgeoning environmental concern that has garnered significant scholarly attention. Thiamethoxam (TMX), a prevalently utilized neonicotinoid insecticide, is renowned for its neurotoxic impact and selective action against targeted pests. The aquatic environment serves as a receptacle for numerous pollutants, such as MPs and neonicotinoid insecticides. However, there is currently a lack of comprehensive understanding regarding the toxic effects of co-exposure to aged MPs and neonicotinoid insecticides in aquatic organisms. Therefore, we endeavor to elucidate the deleterious impacts of aged polystyrene (PS) and TMX on zebrafish (Danio rerio) larvae when present at environmentally relevant concentrations, and to reveal the underlying molecular mechanisms driving these effects. Our study showed that exposure to aged PS, TMX, or their combination notably inhibited the heart rate and locomotion of zebrafish larvae, with a pronounced effect observed under combined exposure. Aged PS and TMX were found to diminish the activity of antioxidative enzymes (SOD, CAT, and GST), elevate MDA levels, and disrupt neurotransmitter homeostasis (5-HT, GABA and ACh). Notably, the mixtures exhibited synergistic effects. Moreover, gene expression related to oxidative stress (e.g., gstr1, gpx1a, sod1, cat1, p38a, ho-1, and nrf2b) and neurotransmission (e.g., ache, ChAT, gat1, gabra1, 5ht1b, and 5ht1aa) was significantly altered upon co-exposure to aged PS and TMX in larval zebrafish. In summary, our findings support the harmful effects of aged MPs and the neonicotinoid insecticides they carry on aquatic organisms. Results from this study enhance our understanding of the biological risks of MPs and insecticides, as well as help fill existing knowledge gaps on neonicotinoid insecticides and MPs coexistence toxicity in aquatic environment.


Subject(s)
Insecticides , Perciformes , Water Pollutants, Chemical , Animals , Thiamethoxam/metabolism , Zebrafish/metabolism , Insecticides/metabolism , Microplastics/toxicity , Plastics/metabolism , Larva , Polystyrenes/metabolism , Aquatic Organisms , Water Pollutants, Chemical/metabolism
12.
J Hazard Mater ; 469: 133852, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38430593

ABSTRACT

The present investigation was planned to bridge the knowledge gap on spatiotemporal variations of pesticide pollution in small streams adjacent to paddy fields, and to visualize the associated risks in the aquatic ecosystems. We screened 106 pesticides using GCMSMS and LCMSMS from 10 small streams (n = 212, surface water samples) adjacent to paddy fields over seven months. Fifty-five pesticides were detected across different streams and months. The highest mean concentration was detected for fenobucarb (272 ng L-1), followed by thiamethoxam (199 ng L-1). The highest maximum concentration was detected for thiamethoxam ( 13,264 ng L-1), followed by triflumezopyrim ( 11,505 ng L-1). The highest detection frequency was recorded for fenobucarb (80.00%), followed by pretilachlor (79.00%). Out of the ten streams, Attabira stream had the highest mean number of pesticides detected in each sample. Maximum number of pesticides were detected in October followed by September. Pesticides namely, hexaconazole, pretilachlor, tricyclazole, fenobucarb and thiamethoxam were consistently detected across all streams. The risk assessment against the fishes, micro-invertebrates and algae were measured by risk quotient index (RQ). Twenty-five pesticides out of the detected pesticides (n = 55) had risk quotient values greater than 1. The highest RQmax values were observed in case of fenpropathrin followed by cyfluthrin-3. The highest RQmean value was observed in case of cyfluthrin, indicating its higher toxicity to fishes. The present study reveals that small streams are polluted with pesticides and there is a need to develop strategies and policy interventions in regularizing the pesticide uses for reducing the pesticide pollution in aquatic systems.


Subject(s)
Acetanilides , Carbamates , Nitriles , Pesticides , Pyrethrins , Water Pollutants, Chemical , Animals , Pesticides/analysis , Ecosystem , Thiamethoxam , Environmental Monitoring , Water Pollutants, Chemical/analysis , Fishes , Risk Assessment , Agriculture
13.
J Agric Food Chem ; 72(13): 6942-6953, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506763

ABSTRACT

Thiamethoxam (THX), when applied to the soil, can be taken up by citrus roots and subsequently transported to the leaves, providing effective protection of plants against the Asian citrus psyllid (Diaphorina citri Kuwayama). In this study, the field experiments showed that the coapplication of THX and nitrogen fertilizer (AN) did not affect THX uptake in six-year-old citrus plants. However, their coapplication promoted THX uptake in three-year-old Potassium trifoliate rootstocks and relieved the inhibition of AN at a higher level on plant growth characteristics, including biomass and growth of root and stem. RNA-seq analysis found that THX induced upregulation of a cationic amino acid transporter (PtCAT7) in citrus leaves. PtCAT7 facilitated THX uptake in the yeast strain to inhibit its growth, and the PtCAT7 protein was localized on the plasma membrane. Our results demonstrate that THX and N fertilizer can be coapplied and PtCAT7 may be involved in THX uptake in citrus.


Subject(s)
Citrus , Hemiptera , Insecticides , Animals , Thiamethoxam , Seedlings , Insecticides/pharmacology , Neonicotinoids/pharmacology , Fertilizers , Amino Acid Transport Systems
14.
Crit Rev Toxicol ; 54(3): 194-213, 2024 03.
Article in English | MEDLINE | ID: mdl-38470098

ABSTRACT

Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.


Subject(s)
Guanidines , Insecticides , Thiazines , Thiazoles , Animals , Humans , Thiamethoxam , Insecticides/toxicity , Oxazines/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Risk Assessment , Mammals
15.
Sci Rep ; 14(1): 5717, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459097

ABSTRACT

To determine the extent of pesticide buildup and their environmental contamination, the environmental half-lives of pesticides are examined. The influence of the factors affecting the half-lives of fipronil and thiamethoxam including soil type, sterilization, temperature, and time and their interactions was studied using experimental modeling design by Minitab software. Based on the dissipation kinetics data, fipronil concentrations reduced gradually over 60 days while thiamethoxam concentrations decreased strongly. Also, fipronil and thiamethoxam dissipated more rapidly in calcareous soil than in alluvial soil. Thiamethoxam, however, disappeared more rapidly than fipronil in all treatments. Incubation at 50 °C leads to rapid the pesticide degradation. For prediction of the dissipation rate, model 5 was found to be the best fit, Residue of insecticide (%) = 15.466 - 11.793 Pesticide - 1.579 Soil type + 0.566 Sterilization - 3.120 Temperature, R2 = 0.94 and s = 3.80. Also, the predicted DT50 values were calculated by a model, DT50 (day) = 20.20 - 0.30 Pesticide - 7.97 Soil Type + 0.07 Sterilization - 2.04 Temperature. The shortest experimental and predicted DT50 values were obtained from treatment of thiamethoxam at 50 °C in calcareous soil either sterilized (7.36 and 9.96 days) or non-sterilized (5.92 and 9.82 days), respectively. The experimental DT50 values of fipronil and thiamethoxam ranged from 5.92 to 59.95 days while, the modeled values ranged from 9.82 to 30.58 days. According to the contour plot and response surface plot, temperature and sterilization were the main factors affecting the half-lives of fipronil and thiamethoxam. The DT50 values of fipronil and thiamethoxam increased in alluvial soil and soil with low temperature. In general, there is a high agreement between the experimental results and the modeled results.


Subject(s)
Insecticides , Pesticide Residues , Pesticides , Pyrazoles , Soil Pollutants , Thiamethoxam , Soil , Neonicotinoids , Pesticide Residues/analysis , Insecticides/metabolism , Pesticides/metabolism , Kinetics , Soil Pollutants/metabolism
16.
Ecotoxicology ; 33(3): 253-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468020

ABSTRACT

In agroecosystems, insects contend with chemical insecticides often encountered at sublethal concentrations. Insects' exposure to these mild stresses may induce hormetic effects, which has consequences for managing insect pests. In this study, we used an electrical penetration graph (EPG) technique to investigate the feeding behavior and an age-stage, two-sex life table approach to estimate the sublethal effects of thiamethoxam on greenbug, Schizaphis graminum. The LC5 and LC10 of thiamethoxam significantly decreased longevity and fecundity of directly exposed adult aphids (F0). However, the adult longevity, fecundity, and reproductive days (RPd)-indicating the number of days in which the females produce offspring - in the progeny generation (F1) exhibited significant increase when parental aphids (F0) were treated with LC5 of the active ingredient. Subsequently, key demographic parameters such as intrinsic rate of increase (r) and net reproductive rate (R0) significantly increased at LC5 treatment. EPG recordings showed that total durations of non-probing (Np), intercellular stylet pathway (C), and salivary secretion into the sieve element (E1) were significantly increased, while mean duration of probing (Pr) and total duration of phloem sap ingestion and concurrent salivation (E2) were decreased in F0 adults exposed to LC5 and LC10. Interestingly, in the F1 generation, total duration of Np was significantly decreased while total duration of E2 was increased in LC5 treatment. Taken together, our results showed that an LC5 of thiamethoxam induces intergenerational hormetic effects on the demographic parameters and feeding behavior of F1 individuals of S. graminum. These findings have important implications on chemical control against S. graminum and highlight the need for a deeper understanding of the ecological consequences of such exposures within pest management strategies across the agricultural landscapes.


Subject(s)
Aphids , Insecticides , Humans , Animals , Female , Thiamethoxam , Reproduction , Insecticides/toxicity , Feeding Behavior , Demography
17.
Pest Manag Sci ; 80(6): 3000-3009, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38312101

ABSTRACT

BACKGROUND: To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS: The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 µm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 µm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION: Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Neonicotinoids , Solanum tuberosum , Thiamethoxam , Thiazoles , Animals , Aphids/drug effects , Aphids/genetics , Solanum tuberosum/parasitology , Insecticides/pharmacology , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Wasps/drug effects , Wasps/physiology , Oxazines/pharmacology , Nitro Compounds/pharmacology , Nymph/drug effects , Nymph/growth & development , Nymph/parasitology
18.
J Environ Manage ; 353: 120172, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38310799

ABSTRACT

Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 µg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.


Subject(s)
Pesticide Residues , Pesticides , Vigna , Humans , Thiamethoxam/analysis , Thiamethoxam/metabolism , Pesticide Residues/analysis , Pesticide Residues/chemistry , Vigna/metabolism , Bioaccumulation , Food Contamination/analysis
19.
Sci Rep ; 14(1): 2406, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286866

ABSTRACT

A field study was conducted to investigate the persistence of foliar-applied thiamethoxam 25% WG at a rate of 25 g ai ha-1 and chlorantraniliprole 18.5% SC at 30 g ai ha-1 in various parts of rice plants, including whole grain rice, brown rice, bran, husk, straw, and cooked rice. Liquid Chromatography-Mass spectrometry/Mass spectrometry was used for sample analysis. Chlorantraniliprole residues were found to persist in whole grains, bran, husk, and straw at the time of harvest, while thiamethoxam residue was not detected in harvested grains, processed products, or straw. The study concluded that foliar-applied chlorantraniliprole and thiamethoxam did not pose any dietary risk in cooked rice. In a pre-storage seed treatment study, thiamethoxam 30% FS at 3 mL kg-1 was evaluated against Angoumois grain moth infestation during storage. The seeds remained unharmed for nine months and exhibited significantly less moth damage (2.0%) even after twelve months of storage. Thiamethoxam residues persisted for more than one year in whole rice grain, brown rice, bran, and husk with seed treatment, with higher residue levels observed in bran and husk. Parboiling and cooking led to the degradation of thiamethoxam residues.


Subject(s)
Insecticides , Oryza , ortho-Aminobenzoates , Insecticides/metabolism , Thiamethoxam/metabolism , Oryza/metabolism , Seeds/chemistry
20.
Se Pu ; 42(1): 52-63, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38197206

ABSTRACT

Pesticide residues in food and their hazardous effects have attracted much attention given the increased and widespread use of pesticides. The long-term consumption of food containing pesticide residues is an important pathway for the gradual accumulation of pesticides in the human body. Urine is often monitored as a biological sample for low-dose exposure to pesticides, and urine collection is a relatively convenient sampling technique in general population research. In order to effectively monitor residual levels of multiple pesticides in human urine and provide an important technological approach for health risk assessment, a rapid screening and confirmatory detection method for 118 pesticides in urine was established using QuEChERS method as a pretreatment combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS). The 118 pesticides analyzed included organophosphorus, carbamate, neonicotinoid, and strobilurin fungicides and other widely used pesticides. Following systematic optimization of the pretreatment process, LC separation conditions, and MS/MS parameters, 118 pesticides were extracted from urine samples and analyzed within 2 h. In brief, the target analytes in 5 mL urine samples were extracted with 10 mL of acetonitrile and added with 5 g of anhydrous MgSO4 and 1 g of NaCl as water-removal and salting-out agents, respectively. After centrifugation, 6 mL of the supernatant was cleaned using the QuEChERS method with 300 mg of C18, 300 mg of primary secondary amine (PSA) and 900 mg of anhydrous MgSO4 as the purification adsorbent. After nitrogen blowing and solubilization, the 118 target analytes were separated on a ZORBAX Eclipse Plus C18 analytical chromatographic column (100 mm×2.1 mm, 1.8 µm) with gradient elution using (A) 0.01% formic acid aqueous solution (containing 2 mmol/L ammonium formate) and (B) 0.01% formic acid methanol solution (containing 2 mmol/L ammonium formate) as mobile phases. The gradient elution program was as follows: 0-0.5 min, 5%B; 0.5-1.5 min, 5%B-20%B; 1.5-2.5 min, 20%B-50%B; 2.5-8.0 min, 50%B-80%B; 8.0-9.0 min, 80%B-98%B; 9.0-11.0 min, 98%B; 11.0-11.5 min, 98%B-5%B; 11.5-15.0 min, 5%B. The analytes were then determined by UHPLC-MS/MS with positive/negative ion switching in dynamic multiple-reaction monitoring mode and quantified using the external standard method. The results indicated that the proposed method can determine 118 pesticides in urine simultaneously and rapidly. The limits of detection and limits of quantification were 0.10 and 0.50 µg/L, respectively, and the matrix effects were less than 20%for all targeted compounds. The recoveries of the 118 pesticides in urine were between 70.2% and 104% at three spiked levels of 0.50, 1.00, and 5.00 µg/L, and the relative standard deviations ranged from 2.8% to 9.3%. The method was applied to 10 actual urine samples, and the results revealed the presence of six pesticides, including thiamethoxam, clothianidin, acetamiprid, dinotefuran, isoproturon, and dimethomorph, with contents ranging from

Subject(s)
Pesticide Residues , Pesticides , Humans , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Thiamethoxam
SELECTION OF CITATIONS
SEARCH DETAIL
...