Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.342
Filter
1.
An Acad Bras Cienc ; 96(2): e20231247, 2024.
Article in English | MEDLINE | ID: mdl-38808881

ABSTRACT

Thiosemicarbazones are promising classes of compounds with antitumor activity. For this study, six 2,4-dihydroxy-benzylidene-thiosemicarbazones compounds were synthesized. These compounds were submitted to different assays in silico, in vitro and in vivo to evaluate the toxicological, antioxidant and antitumor effects. The in silico results were evaluated by the SwissADME and pkCSM platforms and showed that all compounds had good oral bioavailability profiles. The in vitro and in vivo toxicity assays showed that the compounds showed low cytotoxicity against different normal cells and did not promote hemolytic effects. The single dose acute toxicity test (2000 mg/kg) showed that none of the compounds were toxic to mice. In in vitro antioxidant activity assays, the compounds showed moderate to low activity, with PB17 standing out for the ABTS radical capture assay. The in vivo antioxidant activity highlighted the compounds 1, 6 and 8 that promoted a significant increase in the concentration of liver antioxidant enzymes. Finally, all compounds showed promising antitumor activity against different cell lines, especially MCF-7 and DU145 lines, in addition, they inhibited the growth of sarcoma 180 at concentrations lower than 50 mg/kg. These results showed that the evaluated compounds can be considered as potential antitumor agents.


Subject(s)
Antineoplastic Agents , Antioxidants , Thiosemicarbazones , Animals , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Mice , Humans , Male , Cell Line, Tumor , Computer Simulation , Drug Screening Assays, Antitumor , Female , Benzylidene Compounds/pharmacology , Benzylidene Compounds/chemistry
2.
BMC Vet Res ; 20(1): 196, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741109

ABSTRACT

BACKGROUND: Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS: Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS: [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.


Subject(s)
Dog Diseases , Misonidazole , Neoplasms , Positron Emission Tomography Computed Tomography , Tumor Hypoxia , Animals , Dogs , Misonidazole/analogs & derivatives , Positron Emission Tomography Computed Tomography/veterinary , Positron Emission Tomography Computed Tomography/methods , Dog Diseases/diagnostic imaging , Dog Diseases/drug therapy , Female , Tumor Hypoxia/drug effects , Male , Neoplasms/veterinary , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Thiosemicarbazones/therapeutic use , Thiosemicarbazones/pharmacology , Coordination Complexes
3.
Bioorg Chem ; 148: 107486, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788367

ABSTRACT

The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Drug Screening Assays, Antitumor , Thiosemicarbazones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Apoptosis/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Female , Dose-Response Relationship, Drug , Cell Line, Tumor , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Platinum/chemistry , Platinum/pharmacology , Autophagy/drug effects
4.
Bioorg Chem ; 147: 107338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583253

ABSTRACT

Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Fluorometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Binding Sites , Molecular Structure , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Structure-Activity Relationship , Ribosomes/metabolism , Ribosomes/drug effects , Dose-Response Relationship, Drug , Animals , Cattle , Azithromycin/pharmacology , Azithromycin/chemistry , Azithromycin/metabolism
5.
J Med Chem ; 67(7): 5744-5757, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38553427

ABSTRACT

To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Thiosemicarbazones , Humans , Serum Albumin, Human/chemistry , Copper/chemistry , Serum Albumin/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Indomethacin/therapeutic use , Tumor Microenvironment , Prodrugs/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124117, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38461559

ABSTRACT

Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.


Subject(s)
Antineoplastic Agents , Thiadiazoles , Thiosemicarbazones , Molecular Docking Simulation , Density Functional Theory , Copper/pharmacology , Copper/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Cyclization , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Spectrometry, Fluorescence , DNA/chemistry , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
7.
ACS Chem Neurosci ; 15(7): 1432-1455, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38477556

ABSTRACT

Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.


Subject(s)
Alzheimer Disease , Thiosemicarbazones , Humans , Blood-Brain Barrier/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Copper/metabolism , Neuroinflammatory Diseases , Thiosemicarbazones/pharmacology , Thiosemicarbazones/metabolism , Thiosemicarbazones/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
8.
Chem Biodivers ; 21(5): e202400363, 2024 May.
Article in English | MEDLINE | ID: mdl-38470083

ABSTRACT

Reactions between sodium tetrachloropalladate and 2- (or 4-) substituted 4-phenyl-3-thiosemicarbazone ligands (HLR), with various electron-donating and electron-withdrawing substituents (R = OCH3, NO2, and Cl), afford square-planar complexes of the general formula [Pd(LR)2]. Ground-state geometry optimization and the vibrational analysis of cis- and trans-isomers of the complexes were carried out to get an insight into the stereochemistry of the complexes. Natural bond orbital analysis was used to analyze how the nature of the substituent affects the natural charge of the metal center, the type of hybridization, and the strength of the M-N and M-S bonds. Using spectrophotometry, the stability of the complexes, and their DNA binding abilities were assessed. The Pd(II) complexes showed moderate cytotoxicity against MCF-7 and Caco-2 cell lines, two of the assessed malignant cell lines, resulting in all known cell death types, including early apoptotic bodies and late apoptotic vacuoles as well as evident necrotic bodies.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Palladium , Thiosemicarbazones , Humans , Palladium/chemistry , Palladium/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Ligands , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Caco-2 Cells , Cell Proliferation/drug effects , MCF-7 Cells , Molecular Structure , Apoptosis/drug effects , Cell Death/drug effects , Structure-Activity Relationship , DNA/chemistry , DNA/metabolism , DNA/drug effects
9.
Mol Pharm ; 21(4): 1987-1997, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38507593

ABSTRACT

The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Organometallic Compounds , Thiosemicarbazones , Humans , Copper/pharmacology , Thiosemicarbazones/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology
10.
Int J Biol Macromol ; 266(Pt 2): 131068, 2024 May.
Article in English | MEDLINE | ID: mdl-38531526

ABSTRACT

An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ±â€¯0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ±â€¯0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Morpholines , Phosphoric Diester Hydrolases , Pyrophosphatases , Thiosemicarbazones , Morpholines/chemistry , Morpholines/pharmacology , Morpholines/chemical synthesis , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Humans , Kinetics , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Computer Simulation , Structure-Activity Relationship , Ligands
11.
Turkiye Parazitol Derg ; 48(1): 39-44, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38449366

ABSTRACT

Objective: A series of aromatic thiosemicarbazone-oxime [TP1 and TP2] derivatives and their Ni(II), Cu(II), and Co(II) complexes were synthesized, and their larvicidal activity was evaluated against Aedes aegypti and Aedes albopictus larvae. The efficacy of these substances to Aedes albopictus larvae has been demonstrated for the first time. Methods: Laboratory colonized Aedes aegypti and Aedes albopictus larvae were subjected to larvicidal activity tests. Larval mortality rates at 24 and 48 hours were recorded and LC50 values were calculated. The study was carried out at Aydin Adnan Menderes University in 2021. Results: For Aedes aegypti, LC50 of TP1 and its Co(II) complex were 15.41, 9.75, µg/mL whereas for TP2 and its Co(II) complex, LC50 were 21.62, 20.50 µg/mL after 24 and 48 h respectively. For Aedes albopictus, TP1 and its Co(II) complex showed an LC50 of 12.06, 8.75 µg/mL, whereas TP2 and its Co(II) complex showed an LC50 of 32.87, 25.48 µg/mL, for 24, and 48 h respectively. Conclusion: Both TP1 and TP2 compounds and their Co(II) complexes presented high efficacy against the larvae; it can be said that C=S groups in thiosemicarbazone derivatives are effective in showing activity and for this reason, studies should be continued to make these components effective.


Subject(s)
Aedes , Coordination Complexes , Thiosemicarbazones , Humans , Animals , Larva , Thiosemicarbazones/pharmacology
12.
Anticancer Agents Med Chem ; 24(9): 649-667, 2024.
Article in English | MEDLINE | ID: mdl-38367264

ABSTRACT

INTRODUCTION: Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3 -. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHODS: A series of novel thiosemicarbazone-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULTS: The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION: To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.


Subject(s)
Benzenesulfonamides , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Sulfonamides , Thiosemicarbazones , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Humans , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug
13.
Dalton Trans ; 53(11): 5073-5083, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38375910

ABSTRACT

A series of Pd(II) complexes of the general formula [PdX(NNS)] (X = Cl, Br, I, NCS and phenyl-tetrazole-thiolato; NNS = 2-quinolinecarboxyaldehyde-N4-phenylthiosemicarbazone) was tested against four malignant cell lines for their antiproliferative properties and the outcomes were compared to those seen in normal mouse splenocytes. Various auxiliary ligands were substituted in order to investigate the impact of the character of the ligand on the cytotoxicity of this class of Pd(II) complexes. The iodo complex was the most cytotoxic compound towards the Caco-2 cell line in this study. The improved apoptosis and necrosis cell modes were in accordance with the fragmentation results of DNA, which revealed increased fragmentation terminals, especially in isothiocyanate and tetrazole-thiolato complexes. After 24 hours, at half the IC50 of each complex, the complex-treated cells exhibited considerable genotoxicity when compared to the corresponding non-treated control especially in the case of isothiocyanate and tetrazole-thiolato complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Thiosemicarbazones , Humans , Animals , Mice , Cell Line, Tumor , Thiosemicarbazones/pharmacology , Ligands , Caco-2 Cells , Antineoplastic Agents/pharmacology , Apoptosis , Tetrazoles , Isothiocyanates/pharmacology , Coordination Complexes/pharmacology
14.
Int Immunopharmacol ; 126: 111259, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37992446

ABSTRACT

Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.


Subject(s)
Thiosemicarbazones , Animals , Sheep , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Carrageenan , Molecular Structure , Edema/chemically induced , Edema/drug therapy , Cyclooxygenase 2 Inhibitors/pharmacology
15.
J Inorg Biochem ; 251: 112438, 2024 02.
Article in English | MEDLINE | ID: mdl-38029536

ABSTRACT

Cancer continues to pose a global threat, underscoring the urgent need for more effective and safer treatment options. Gold-based compounds have recently emerged as promising candidates due to their diverse range of biological activities. In this study, three gold(III) complexes derived from thiosemicarbazone ligands have been synthesized, fully characterized, including their X-ray crystal structures. We conducted initial mode-of-action studies on DNA and BSA, followed by a comprehensive investigation into the cytotoxic effects of these novel gold(III) complexes on lung cancer cells (A549, H2052, and H28). The results demonstrated a concentration-dependent cytotoxic response, with H28 cells exhibiting the highest sensitivity to the treatment. Furthermore, the analysis of the cell cycle revealed that these compounds induce cell cycle arrest and promote apoptosis as a response to treatment. We also observed distinct morphological changes and increased oxidative stress, contributing significantly to cell death. Notably, these complexes exhibited the ability to suppress interleukin-6 production in mesothelioma cell lines, and this highlights their anti-inflammatory potential. To gain an initial understanding of cytotoxicity on healthy cells, hemolysis tests were conducted against human blood cells, with no evidence of hemolysis. Furthermore, a toxicity assessment through the in vivo Galleria mellonella model underscored the absence of detectable toxicity. These findings prove that these complexes are promising novel therapeutic agents for lung cancer.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Lung Neoplasms , Thiosemicarbazones , Humans , Gold/chemistry , Lung Neoplasms/drug therapy , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Hemolysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
16.
Biometals ; 37(1): 247-265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37938497

ABSTRACT

Malaria, a relentless and ancient adversary, continues to cast its shadow over vast swathes of the globe, afflicting millions of people and have a heavy toll on human health and well-being. Despite substantial progress in the fight against this parasitic disease in recent decades, malaria still persists as a substantial global health concern, especially in some specific region which have limited resources and vulnerable populations. Thus, to ascertain an combating agent for malaria and its associated dysfunction, 4-(4-ethylphenyl)-3-thiosemicarbazide and benzaldehydes based two new thiosemicarbazone ligands (1-2) and their cobalt(II), nickel(II), copper(II), zinc(II) metal complexes (3-10) were synthesized in the present research work. The synthesized compounds were comprehensive characterized through spectral and physical investigations, demonstrating octahedral stereochemistry of the complexes. Further, the antimalarial and antioxidant potential of the compounds (1-10) were analyzed by micro assay and DPPH assay protocols, respectively, to examine the therapeutic aspect of the compounds. The performed biological evaluations revealed that the complexes are more efficient in controlling infectious ailment in comparison of ligands. The complexes (5), (6), (10) shows significant efficiency for malarial and oxidant dysfunctions whereas Zn(II) complex (6) exhibit highest potency with 1.02 ± 0.07 and 2.28 ± 0.05 µM IC50 value. Furthermore, to support the highest antimalarial potency of the (3-6) complexes and their associated ligand (1), the computational studies like molecular docking, DFT, MESP and ADMET analysis were executed which were supported the biological efficacy of the complex (6) by providing numerous parameters like binding interaction electronegativity, electrophilicity, HOMO value and electron density.


Subject(s)
Antimalarials , Coordination Complexes , Malaria , Thiosemicarbazones , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Molecular Docking Simulation , Antioxidants/pharmacology , Antioxidants/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Zinc/chemistry , Copper/chemistry , Chelating Agents
17.
Int J Biol Macromol ; 255: 128229, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981274

ABSTRACT

Enzymatic browning is of concern as it can affect food safety and quality. In this study, an effective and safe tyrosinase inhibitor and anti-browning agent, methyl 4-pyridyl ketone thiosemicarbazone (4-PT), was synthesised and characterised using Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The vibrational frequencies of 4-PT were studied theoretically using vibrational energy distribution analysis (VEDA). Density functional theory (DFT) was applied to elucidate its chemical properties, including the Mulliken atomic charges, molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM) and reduced density gradient non-covalent interactions (RDG-NCIs). Moreover, 4-PT was compared with kojic acid in terms of its effectiveness as a tyrosinase inhibitor and anti-browning agent. The toxicity and physicochemical properties of 4-PT were predicted via ADME evaluation, which proved that 4-PT is safer than kojic acid. Experimentally, 4-PT (IC50 = 5.82 µM, browning index (10 days) = 0.292 ± 0.002) was proven to be an effective tyrosinase inhibitor and anti-browning agent compared to kojic acid (IC50 = 128.17 µM, browning index (10 days) = 0.332 ± 0.002). Furthermore, kinetic analyses indicated that the type of tyrosinase inhibition is a mixed inhibition, with Km and Vmax values of 0.85 mM and 2.78 E-09 µM/s, respectively. Finally, the mechanism of 4-PT for tyrosinase inhibition was proven by 1D, second derivative and 2D IR spectroscopy, molecular docking and molecular dynamic simulation approaches.


Subject(s)
Agaricales , Thiosemicarbazones , Monophenol Monooxygenase/chemistry , Molecular Docking Simulation , Thiosemicarbazones/pharmacology , Magnetic Resonance Spectroscopy , Ketones , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
18.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139350

ABSTRACT

The number of people affected by cancer and antibiotic-resistant bacterial infections has increased, such that both diseases are already seen as current and future leading causes of death globally. To address this issue, based on a combined in silico and in vitro approach, we explored the anticancer potential of known antibacterials with a thiazolidinedione-thiosemicarbazone (TZD-TSC) core structure. A cytotoxicity assessment showed encouraging results for compounds 2-4, with IC50 values against T98G and HepG2 cells in the low micromolar range. TZD-TSC 3 proved to be most toxic to cancer cell lines, with IC50 values of 2.97 ± 0.39 µM against human hepatoma HepG2 cells and IC50 values of 28.34 ± 2.21 µM against human glioblastoma T98G cells. Additionally, compound 3 induced apoptosis and showed no specific hemolytic activity. Furthermore, treatment using 3 on cancer cell lines alters these cells' morphology and further suppresses migratory activity. Molecular docking, in turn, suggests that 3 would have the capacity to simultaneously target HDACs and PPARγ, by the activation of PPARγ and the inhibition of both HDAC4 and HDAC8. Thus, the promising preliminary results obtained with TZD-TSC 3 represent an encouraging starting point for the rational design of novel chemotherapeutics with dual antibacterial and anticancer activities.


Subject(s)
Antineoplastic Agents , Thiazolidinediones , Thiosemicarbazones , Humans , Structure-Activity Relationship , Cell Line, Tumor , Molecular Docking Simulation , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , PPAR gamma , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Thiazolidinediones/pharmacology , Anti-Bacterial Agents/pharmacology , Molecular Structure , Cell Proliferation , Histone Deacetylases/metabolism , Repressor Proteins/metabolism
19.
J Med Chem ; 66(22): 15453-15476, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37922410

ABSTRACT

The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 µM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Myoglobin , Ferric Compounds , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , Oxidation-Reduction , Antineoplastic Agents/pharmacology , Copper
20.
PLoS One ; 18(11): e0295012, 2023.
Article in English | MEDLINE | ID: mdl-38032914

ABSTRACT

A series of 38 thiosemicarbazone derivatives based on camphene and limonene were evaluated for their antiproliferative activity. Among them, 19 were synthesized and characterized using proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR). For initial compound selection, human melanoma cells (SK-MEL-37) were exposed to a single concentration of a compound (100 µM) for 24, 48, and 72 hours, and cell detachment was visually observed. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Nineteen compounds (4, 6, 8, 11, 13, 14, 15, 16, 17, 18, 20, 22, 25, 26, 31, 3', 4', 6', and 9') yielded cell viability below 20%. Subsequently, IC50 values for these compounds were determined, ranging from 11.56 to 55.38 µM, after 72 hours of treatment. Compound 17 (o-hydroxybenzaldehyde (-)-camphene-based thiosemicarbazone) demonstrated the lowest IC50 value, followed by compound 4 (benzaldehyde (-) camphene-based thiosemicarbazone) at 12.84 µM. Regarding compound 4, we observed the induction of a characteristic ladder pattern of DNA fragmentation through gel electrophoresis. Furthermore, fluorescence, flow cytometry and scanning microscopy assays revealed morphological changes consistent with apoptosis induction. Additionally, the measurement of caspase 6 and 8 activity in cellular extracts after treatment for 2, 4, 6, and 24 hours suggested the potential involvement of the extrinsic apoptosis pathway in the mechanism of action of compound 4. Further investigations, including molecular docking studies, are required to fully explore the potential of compound 4 and the other selected compounds, highlighting their promising role in future melanoma therapy research.


Subject(s)
Antineoplastic Agents , Melanoma , Thiosemicarbazones , Humans , Limonene/pharmacology , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Molecular Docking Simulation , Cell Proliferation , Melanoma/drug therapy , Melanoma/pathology , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Drug Screening Assays, Antitumor
SELECTION OF CITATIONS
SEARCH DETAIL
...