Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Sci Rep ; 14(1): 4048, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374400

ABSTRACT

Extramammary Paget disease (EMPD) is a rare skin cancer that primarily affects older individuals predominantly in areas with apocrine sweat glands. Although most early EMPD lesions are indolent, patients with metastatic EMPD have a poor prognosis due to the lack of effective systemic treatment. In this study, we investigated the role of forkhead box M1 (FOXM1), a potent transcription factor, in EMPD and assessed the potential of FOXM1 as a therapeutic target. Immunohistochemistry of 112 primary and 17 metastatic EMPD samples revealed that FOXM1 expression increased with tumor progression. Patients in whom FOXM1 was expressed in more than 10% of tumor cells had significantly shorter disease-specific survival than the other patients (p = 0.0397). In in vitro studies using our newly established EMPD cell line, KS-EMPD-1, we found high expression of FOXM1. Knockdown of FOXM1 impaired tumor cell viability, migration, and invasion. Inhibition of FOXM1 using thiostrepton also reduced tumor cell viability in a dose-dependent manner. These findings suggest that FOXM1 is a promising therapeutic target for patients with EMPD.


Subject(s)
Forkhead Box Protein M1 , Paget Disease, Extramammary , Humans , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/pathology , Cell Line, Tumor , Thiostrepton/pharmacology , Treatment Outcome
2.
Cell Mol Immunol ; 20(11): 1352-1366, 2023 11.
Article in English | MEDLINE | ID: mdl-37752225

ABSTRACT

Thiostrepton (TST) is a natural antibiotic with pleiotropic properties. This study aimed to elucidate the therapeutic effect of TST on experimental colitis and identify its targets. The effect of TST on colon inflammation was evaluated in a dextran sulfate sodium (DSS)-induced colitis model and a T-cell transfer colitis model. The therapeutic targets of TST were investigated by cytokine profiling, immunophenotyping and biochemical approaches. The effect of TST on the gut microbiota and its contribution to colitis were evaluated in mice with DSS-induced colitis that were subjected to gut microbiota depletion and fecal microbiota transplantation (FMT). Alterations in the gut microbiota caused by TST were determined by 16S rDNA and metagenomic sequencing. Here, we showed that TST treatment significantly ameliorated colitis in the DSS-induced and T-cell transfer models. Specifically, TST targeted the retinoic acid-related orphan nuclear receptor RORγt to reduce the production of IL-17A by γδ T cells, type 3 innate lymphoid cells (ILC3s) and Th17 cells in mice with DSS-induced colitis. Similarly, TST selectively prevented the development of Th17 cells in the T-cell transfer colitis model and the differentiation of naïve CD4+ T cells into Th17 cells in vitro. Mechanistically, TST induced the ubiquitination and degradation of RORγt by promoting the binding of Itch to RORγt. Moreover, TST also reversed dysbiosis to control colonic inflammation. Taken together, these results from our study describe the previously unexplored role of TST in alleviating colonic inflammation by reducing IL-17A production and modulating dysbiosis, suggesting that TST is a promising candidate drug for the treatment of IBD.


Subject(s)
Colitis , Interleukin-17 , Animals , Mice , Interleukin-17/metabolism , Thiostrepton/metabolism , Thiostrepton/pharmacology , Thiostrepton/therapeutic use , Immunity, Innate , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Dysbiosis , Lymphocytes/metabolism , Colitis/chemically induced , Colitis/therapy , Colon/metabolism , Inflammation/metabolism , Ubiquitination , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
3.
Mol Biol Rep ; 49(11): 10387-10397, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36097108

ABSTRACT

OBJECTIVE: FoxM1 transcription factor contributes to tumor metastasis and poor prognosis in many cancers including triple-negative breast cancer (TNBC). In this study, we examined the effects of FoxM1 inhibitor Thiostrepton (THIO) alone or in combination with MEK inhibitor Selumetinib (SEL) on metastatic parameters in vitro and in vivo. METHODS: Cell viability was determined by MTT assay. Immunoblotting and immunohistochemistry was used to assess metastasis-related protein expressions in 4T1 cells and its allograft tumor model in BALB/c mice. In vivo uPA activity was determined by enzymatic methods. RESULTS: Both inhibitors were effective on the expressions of FoxM1, ERK, p-ERK, Twist, E-cadherin, and Vimentin alone or in combination in vitro. THIO significantly decreased 4T1 cell migration and changed the cell morphology from mesenchymal-like to epithelial-like structure. THIO was more effective than in combination with SEL in terms of metastatic protein expressions in vivo. THIO alone significantly inhibited mean tumor growth, decreased lung metastasis rate and tumor foci, however, no significant changes in these parameters were observed in the combined group. Immunohistochemically, FoxM1 expression intensity was decreased with THIO and its combination with SEL in the tumors. CONCLUSIONS: This study suggests that inhibiting FoxM1 as a single target is more effective than combined treatment with MEK in theTNBC allograft model. The therapeutic efficacy of THIO should be investigated with further studies on appropriate drug delivery systems.


Subject(s)
Thiostrepton , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Thiostrepton/pharmacology , Thiostrepton/chemistry , Thiostrepton/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Forkhead Box Protein M1/genetics , Cell Line, Tumor , Cell Proliferation , Mitogen-Activated Protein Kinase Kinases
4.
Free Radic Biol Med ; 193(Pt 1): 385-404, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36152915

ABSTRACT

Gastric cancer is a leading cause of tumor-associated death worldwide. Metastasis and chemoresistance are crucial barriers for gastric cancer treatment. The Forkhead Box M1 (FOXM1) transcription factor has been reported as a promising treatment target for various types of tumors, but its effects on gastric cancer progression are not fully understood. In the present study, we found that FOXM1 expression levels were significantly up-regulated in human gastric cancer cell lines and tissues, and its expression was much higher in patients with metastasis. We then found that suppressing FOXM1 with its inhibitor thiostrepton (THIO) significantly reduced the proliferation of gastric cancer cells, while induced G0/G1 and apoptosis. Moreover, reactive oxygen species (ROS) production, mitochondrial impair and autophagy were remarkably provoked in gastric cancer cells treated with THIO, which were required for the regulation of apoptotic cell death. Furthermore, THIO exposure considerably suppressed the migration, invasion and angiogenesis in gastric cancer cells. The inhibitory effects of THIO on tumor growth and metastasis were confirmed in an established gastric cancer xenograft mouse model without detectable toxicity. Intriguingly, our in vitro studies showed that the anti-cancer effects of THIO on gastric cancer were almost abolished upon FOXM1 over-expression, indicating the necessity of FOXM1 suppression in THIO-inhibited tumor growth. In addition, higher FOXM1 expression was detected in gastric cancer cells with chemoresistance. Both in vitro and in vivo studies illustrated that THIO strongly promoted the drug-resistant gastric cancer cells to chemotherapies, proved by the considerably decreased cell proliferation and epithelial-mesenchymal transition (EMT) process. Together, these findings revealed that FOXM1 was a promising therapeutic target for gastric cancer treatment, and THIO exerted potential as an therapeutic agent for the disease.


Subject(s)
Stomach Neoplasms , Thiostrepton , Animals , Humans , Mice , Apoptosis , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Thiostrepton/pharmacology , Thiostrepton/therapeutic use
5.
Front Cell Infect Microbiol ; 12: 907043, 2022.
Article in English | MEDLINE | ID: mdl-35873171

ABSTRACT

Trypanosoma cruzi, the causal agent of Chagas disease, has peroxiredoxins (PRXs) expressed in all stages of the parasite and whose function is to detoxify oxidizing agents, such as reactive oxygen species (ROS). These proteins are central for the survival and replication of the parasite and have been proposed as virulence factors. Because of their importance, they have also been considered as possible therapeutic targets, although there is no specific drug against them. One of them, the mitochondrial PRX (TcMPX), is important in the detoxification of ROS in this organelle and has a role in the infectivity of T. cruzi. However, their structural characteristics are unknown, and possible inhibitors have not been proposed. The aim was to describe in detail some structural characteristics of TcMPX and compare it with several PRXs to find possible similarities and repositioning the antibiotic Thiostrepton as a potential inhibitor molecule. It was found that, in addition to the characteristic active site of a 2-cys PRX, this protein has a possible transmembrane motif and motifs involved in resistance to hyper oxidation. The homology model suggests a high structural similarity with human PRX3. This similarity was corroborated by cross-recognition using an anti-human PRX antibody. In addition, molecular docking showed that Thiostrepton, a potent inhibitor of human PRX3, could bind to TcMPX and affect its function. Our results show that Thiostrepton reduces the proliferation of T. cruzi epimastigotes, cell-derived trypomastigotes, and blood trypomastigotes with low cytotoxicity on Vero cells. We also demonstrated a synergic effect of Thriostepton and Beznidazol. The convenience of seeking treatment alternatives against T. cruzi by repositioning compounds as Thiostrepton is discussed.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chlorocebus aethiops , Humans , Molecular Docking Simulation , Peroxiredoxin III/metabolism , Peroxiredoxin III/pharmacology , Peroxiredoxin III/therapeutic use , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism , Thiostrepton/metabolism , Thiostrepton/pharmacology , Thiostrepton/therapeutic use , Trypanosoma cruzi/metabolism , Vero Cells
6.
Acta Pharmacol Sin ; 43(11): 2956-2966, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35422085

ABSTRACT

The forkhead box M1 (FoxM1) protein, a transcription factor, plays critical roles in regulating tumor growth and drug resistance, while cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, is involved in the ubiquitin-proteasome pathway. In this study, we investigated the effects of c-FLIP on the expression and ubiquitination levels of FoxM1 along with drug susceptibility in non-small-cell lung cancer (NSCLC) cells. We first showed that the expression levels of FoxM1 and c-FLIP were increased and positively correlated (R2 = 0.1106, P < 0.0001) in 90 NSCLC samples. The survival data from prognostic analysis demonstrated that high expression of c-FLIP and/or FoxM1 was related to poor prognosis in NSCLC patients and that the combination of FoxM1 and c-FLIP could be a more precise prognostic biomarker than either alone. Then, we explored the functions of c-FLIP/FoxM1 in drug resistance in NSCLC cell lines and a xenograft mouse model in vivo. We showed that c-FLIP stabilized FoxM1 by inhibiting its ubiquitination, thus upregulated the expression of FoxM1 at post-transcriptional level. In addition, a positive feedback loop composed of FoxM1, ß-catenin and p65 also participated in c-FLIP-FoxM1 axis. We revealed that c-FLIP promoted the resistance of NSCLC cells to thiostrepton and osimertinib by upregulating FoxM1. Taken together, these results reveal a new mechanism by which c-FLIP regulates FoxM1 and the function of this interaction in the development of thiostrepton and osimertinib resistance. This study provides experimental evidence for the potential therapeutic benefit of targeting the c-FLIP-FoxM1 axis for lung cancer treatment.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Forkhead Box Protein M1 , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Thiostrepton/pharmacology , Thiostrepton/therapeutic use , Thiostrepton/metabolism , Drug Resistance, Neoplasm/genetics
7.
Eur J Pharmacol ; 914: 174661, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34863996

ABSTRACT

The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.


Subject(s)
Bacterial Infections , Thiostrepton/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Humans , Signal Transduction/drug effects
8.
Leuk Lymphoma ; 62(13): 3170-3180, 2021 12.
Article in English | MEDLINE | ID: mdl-34369229

ABSTRACT

Forkhead box M1 (FoxM1) is a transcription factor that plays an important role in the etiology of many cancers, however, its role has not been elucidated in B-precursor acute lymphoblastic leukemia (B-pre-ALL). In the current study, we showed that the downregulation of FoxM1 by its inhibitor thiostrepton inhibited cell viability and induced caspase-dependent apoptosis in a panel of B-pre-ALL cell lines. Thiostrepton led downregulation of FoxM1 accompanied by decreased expression of Aurora kinase A, B, matrix metalloproteinases, and oncogene SKP2 as well as MTH1. Downregulation of the FoxM1/SKP2/MTH1 axis led to increase in the Bax/Bcl2 ratio and suppression of antiapoptotic proteins. Thiostrepton-mediated apoptosis was prevented by N-acetyl cysteine, a scavenger of reactive oxygen species. Co-treatment of B-pre-ALL with subtoxic doses of thiostrepton and bortezomib potentiated the proapoptotic action. Altogether, our results suggest that targeting FoxM1expression could be an attractive strategy for the treatment of B-pre-ALL.


Subject(s)
Apoptosis , Forkhead Box Protein M1 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Thiostrepton , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Thiostrepton/pharmacology
9.
Nucleic Acids Res ; 49(14): 8384-8395, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34255843

ABSTRACT

Bacteria have evolved sophisticated mechanisms to deliver potent toxins into bacterial competitors or into eukaryotic cells in order to destroy rivals and gain access to a specific niche or to hijack essential metabolic or signaling pathways in the host. Delivered effectors carry various activities such as nucleases, phospholipases, peptidoglycan hydrolases, enzymes that deplete the pools of NADH or ATP, compromise the cell division machinery, or the host cell cytoskeleton. Effectors categorized in the family of polymorphic toxins have a modular structure, in which the toxin domain is fused to additional elements acting as cargo to adapt the effector to a specific secretion machinery. Here we show that Photorhabdus laumondii, an entomopathogen species, delivers a polymorphic antibacterial toxin via a type VI secretion system. This toxin inhibits protein synthesis in a NAD+-dependent manner. Using a biotinylated derivative of NAD, we demonstrate that translation is inhibited through ADP-ribosylation of the ribosomal 23S RNA. Mapping of the modification further showed that the adduct locates on helix 44 of the thiostrepton loop located in the GTPase-associated center and decreases the GTPase activity of the EF-G elongation factor.


Subject(s)
Bacterial Toxins/pharmacology , GTP Phosphohydrolases/genetics , RNA, Ribosomal, 23S/genetics , Type VI Secretion Systems/drug effects , ADP-Ribosylation/drug effects , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , NAD/genetics , Peptide Elongation Factor G/genetics , Photorhabdus/chemistry , Photorhabdus/genetics , Protein Biosynthesis/drug effects , RNA, Ribosomal, 23S/drug effects , Thiostrepton/chemistry , Thiostrepton/pharmacology
10.
Nat Commun ; 12(1): 773, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536439

ABSTRACT

Macrophages are plastic and, in response to different local stimuli, can polarize toward multi-dimensional spectrum of phenotypes, including the pro-inflammatory M1-like and the anti-inflammatory M2-like states. Using a high-throughput phenotypic screen in a library of ~4000 FDA-approved drugs, bioactive compounds and natural products, we find ~300 compounds that potently activate primary human macrophages toward either M1-like or M2-like state, of which ~30 are capable of reprogramming M1-like macrophages toward M2-like state and another ~20 for the reverse repolarization. Transcriptional analyses of macrophages treated with 34 non-redundant compounds identify both shared and unique targets and pathways through which the tested compounds modulate macrophage activation. One M1-activating compound, thiostrepton, is able to reprogram tumor-associated macrophages toward M1-like state in mice, and exhibit potent anti-tumor activity. Our compound-screening results thus help to provide a valuable resource not only for studying the macrophage biology but also for developing therapeutics through modulating macrophage activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Biological Products/pharmacology , High-Throughput Screening Assays/methods , Macrophage Activation/drug effects , Macrophages/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Biological Products/chemistry , Cell Line, Tumor , Cells, Cultured , Gene Expression/drug effects , Gene Ontology , Humans , Macrophages/classification , Macrophages/metabolism , Mice, Inbred C57BL , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Phenotype , THP-1 Cells , Thiostrepton/chemistry , Thiostrepton/pharmacology
11.
J Pharm Sci ; 110(6): 2508-2516, 2021 06.
Article in English | MEDLINE | ID: mdl-33515584

ABSTRACT

Forkhead box M1 (FOXM1) is known to play a role in breast cancer progression. FOXM1 inhibition becomes one of the strategies in developing the novel cancer therapy. Recently, thiostrepton has been recognized as a potent FOXM1 inhibitor. To improve its potential, we aimed to develop a nanodelivery system for thiostrepton. Here, liposome-encapsulated thiostrepton (TSLP) was developed. Physiochemical properties were characterized by TEM and dynamic light scattering technique. The biological activities were also evaluated, by cellular internalization, MTT assay, spheroid formation assay and RT-PCR. The result showed that the range sizes of TSLP were 152 ± 2 nm, polydispersity index (PdI) of 0.23 ± 0.02 and zeta potential of -20.2 ± 0.1 mV. As expected, TSLP showed a higher potential in reducing FOXM1 levels in MCF-7 cells than free thiostrepton. Additionally, TSLP significantly improved the efficiently and specificity of thiostrepton in reducing cell viability of MCF-7, but not of the fibroblast (HDFn) cells. Interestingly, TSLP had an ability to induce MCF-7 cell death in both 2D monolayer and 3D spheroid culture. In conclusions, TSLP could possibly be one of the potential developments using nano-delivery system to improve abilities and specificity of thiostrepton in breast cancer cell inhibition and death inducing, with decreasing non-specific toxicity.


Subject(s)
Breast Neoplasms , Thiostrepton , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Female , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liposomes , Thiostrepton/pharmacology
12.
J Cancer Res Clin Oncol ; 147(5): 1499-1518, 2021 May.
Article in English | MEDLINE | ID: mdl-33221995

ABSTRACT

PURPOSE: Malignant rhabdoid tumor (MRT) is a rare, highly aggressive sarcoma with an uncertain cell of origin. Despite the existing standard of intensive multimodal therapy, the prognosis of patients with MRT is very poor. Novel antitumor agents are needed for MRT patients. Forkhead box transcription factor 1 (FOXM1) is overexpressed and is correlated with the pathogenesis in several human malignancies. In this study, we identified the clinicopathological and prognostic values of the expression of FOXM1 and its roles in the progression of MRT. METHODS: We investigated the FOXM1 expression levels and their clinical significance in 23 MRT specimens using immunohistochemistry and performed clinicopathologic and prognostic analyses. We also demonstrated correlations between the downregulation of FOXM1 and oncological characteristics using small interfering RNA (siRNA) and FOXM1 inhibitor in MRT cell lines. RESULTS: Histopathological analyses revealed that primary renal MRTs showed significantly low FOXM1 protein expression levels (p = 0.032); however, there were no significant differences in other clinicopathological characteristics or the survival rate. FOXM1 siRNA and FOXM1 inhibitor (thiostrepton) successfully downregulated the mRNA and protein expression of FOXM1 in vitro and the downregulation of FOXM1 inhibited cell proliferation, drug resistance to chemotherapeutic agents, migration, invasion, and caused the cell cycle arrest and apoptosis of MRT cell lines. A cDNA microarray analysis showed that FOXM1 regulated FANCD2 and NBS1, which are key genes for DNA damage repair. CONCLUSION: This study demonstrates that FOXM1 may serve as a promising therapeutic target for MRT.


Subject(s)
Antineoplastic Agents/pharmacology , Forkhead Box Protein M1/antagonists & inhibitors , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , DNA Damage/drug effects , DNA Damage/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Female , Humans , Immunohistochemistry/methods , Infant , Male , Nuclear Proteins/genetics , Prognosis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Survival Rate , Thiostrepton/pharmacology
13.
Cancer Res ; 80(24): 5554-5568, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33087324

ABSTRACT

Peritoneal spread is the primary mechanism of metastasis of ovarian cancer, and survival of ovarian cancer cells in the peritoneal cavity as nonadherent spheroids and their adherence to the mesothelium of distant organs lead to cancer progression, metastasis, and mortality. However, the mechanisms that govern this metastatic process in ovarian cancer cells remain poorly understood. In this study, we cultured ovarian cancer cell lines in adherent and nonadherent conditions in vitro and analyzed changes in mRNA and protein levels to identify mechanisms of tumor cell survival and proliferation in adherent and nonadherent cells. EGFR or ERBB2 upregulated ZEB1 in nonadherent cells, which caused resistance to cell death and increased tumor-initiating capacity. Conversely, Forkhead box M1 (FOXM1) was required for the induction of integrin ß1, integrin-α V, and integrin-α 5 for adhesion of cancer cells. FOXM1 also upregulated ZEB1, which could act as a feedback inhibitor of FOXM1, and caused the transition of adherent cells to nonadherent cells. Strikingly, the combinatorial treatment with lapatinib [dual kinase inhibitor of EGFR (ERBB1) and ERBB2] and thiostrepton (FOXM1 inhibitor) reduced growth and peritoneal spread of ovarian cancer cells more effectively than either single-agent treatment in vivo. In conclusion, these results demonstrate that FOXM1 and EGFR/ERBB2 pathways are key points of vulnerability for therapy to disrupt peritoneal spread and adhesion of ovarian cancer cells. SIGNIFICANCE: This study describes the mechanism exhibited by ovarian cancer cells required for adherent cell transition to nonadherent form during peritoneal spread and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5554/F1.large.jpg.


Subject(s)
ErbB Receptors/metabolism , Forkhead Box Protein M1/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/secondary , Receptor, ErbB-2/metabolism , Signal Transduction/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Disease Models, Animal , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Forkhead Box Protein M1/antagonists & inhibitors , Forkhead Box Protein M1/genetics , Gene Knockdown Techniques , Humans , Lapatinib/pharmacology , Lapatinib/therapeutic use , Mice , Peritoneal Neoplasms/prevention & control , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Signal Transduction/drug effects , Thiostrepton/pharmacology , Thiostrepton/therapeutic use , Transfection
14.
J Immunother Cancer ; 8(1)2020 03.
Article in English | MEDLINE | ID: mdl-32221018

ABSTRACT

BACKGROUND: Immunogenic cell death (ICD) is a peculiar modality of cellular demise that elicits adaptive immune responses and triggers T cell-dependent immunity. METHODS: Fluorescent biosensors were employed for an unbiased drug screen approach aiming at the identification of ICD enhancers. RESULTS: Here, we discovered thiostrepton as an enhancer of ICD able to boost chemotherapy-induced ATP release, calreticulin exposure and high-mobility group box 1 exodus. Moreover, thiostrepton enhanced anticancer immune responses of oxaliplatin (OXA) in vivo in immunocompetent mice, yet failed to do so in immunodeficient animals. Consistently, thiostrepton combined with OXA altered the ratio of cytotoxic T lymphocytes to regulatory T cells, thus overcoming immunosuppression and reinstating anticancer immunosurveillance. CONCLUSION: Altogether, these results indicate that thiostrepton can be advantageously combined with chemotherapy to enhance anticancer immunogenicity.


Subject(s)
Neoplasms/drug therapy , Neoplasms/immunology , Oxaliplatin/pharmacology , T-Lymphocytes, Cytotoxic/immunology , Thiostrepton/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Autophagy/immunology , Calreticulin/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , HMGB1 Protein/metabolism , Humans , Immunogenic Cell Death , Mice , Mice, Inbred C57BL , Neoplasms/metabolism , T-Lymphocytes, Cytotoxic/drug effects
15.
Article in English | MEDLINE | ID: mdl-32094131

ABSTRACT

Antiretroviral therapy (ART) suppresses HIV-1 replication but fails to cure the infection. The presence of an extremely stable viral latent reservoir, primarily in resting memory CD4+ T cells, remains a major obstacle to viral eradication. The "shock and kill" strategy targets these latently infected cells and boosts immune recognition and clearance, and thus, it is a promising approach for an HIV-1 functional cure. Although some latency-reversing agents (LRAs) have been reported, no apparent clinical progress has been made, so it is still vital to seek novel and effective LRAs. Here, we report that thiostrepton (TSR), a proteasome inhibitor, reactivates latent HIV-1 effectively in cellular models and in primary CD4+ T cells from ART-suppressed individuals ex vivo TSR does not induce global T cell activation, severe cytotoxicity, or CD8+ T cell dysfunction, making it a prospective LRA candidate. We also observed a significant synergistic effect of reactivation when TSR was combined with JQ1, prostratin, or bryostatin-1. Interestingly, six TSR analogues also show reactivation abilities that are similar to or more effective than that of TSR. We further verified that TSR upregulated expression of heat shock proteins (HSPs) in CD4+ T cells, which subsequently activated positive transcriptional elongation factor b (p-TEFb) and NF-κB signals, leading to viral reactivation. In summary, we identify TSR as a novel LRA which could have important significance for applications to an HIV-1 functional cure in the future.


Subject(s)
Anti-HIV Agents/pharmacology , Antiviral Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Heat-Shock Proteins/drug effects , NF-kappa B/drug effects , Positive Transcriptional Elongation Factor B/drug effects , Signal Transduction/drug effects , Thiostrepton/pharmacology , Virus Activation/drug effects , Virus Latency/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cell Line , Drug Synergism , HIV Infections/virology , High-Throughput Screening Assays , Humans , Prospective Studies
16.
Appl Microbiol Biotechnol ; 104(8): 3459-3471, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32095861

ABSTRACT

The biosynthesis of the valuable antibiotic enduracidin by Streptomyces fungicidicus TXX3120 is a complex multistep process. To identify the rate-limiting step of the entire biosynthetic process, we carried out a deep RNA sequencing towards the mycelia of TXX3120 at different fermentation stages. Comparative RNA-seq analysis indicated that the expression level of the endC gene during the enduracidin production phase was evidently lower than that of the other relevant genes to enduracidin biosynthesis. This result was further confirmed by quantitative RT-PCR, and the giant non-ribosomal peptide synthase (NRPS) encoded by endC was predicated to be the rate-limiting enzyme in enduracidin biosynthesis. To increase the expression of endC during the enduracidin production phase, a reporter-based selection system was developed by genetically replacing the initial part of the endC gene with a thiostrepton resistance gene (tsr), which will then act as a selectable marker to report the expression level of the rate-limiting gene endC, thereby facilitating the selection of enduracidin-overproducing mutants following random mutagenesis. After one round of mutagenesis, thiostrepton resistance selection, and restoration of the endC gene, three mutant strains with improved endC expression levels were obtained. Their highest enduracidin titers reached 9780.54, 9272.46, and 8849.06 U/mL, respectively representing 2.31-, 2.19-, and 2.09-fold of the initial industrial strain TXX3120. Our research provides a useful strategy for the rational breeding of industrial strains that synthesize complex natural products.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Biosynthetic Pathways/genetics , Mutagenesis , Niacin/biosynthesis , Streptomyces/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Multigene Family , Peptide Synthases/genetics , Peptide Synthases/metabolism , RNA-Seq , Streptomyces/enzymology , Thiostrepton/pharmacology
17.
J Exp Clin Cancer Res ; 39(1): 23, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992359

ABSTRACT

BACKGROUND: Tripartite motif-containing proteins (TRIM) play a crucial role in carcinogenesis. Little attention has been focused on the possible functions of TRIM6 on carcinogenesis. METHODS: The expression levels of TRIM6 were assessed in colorectal cancer (CRC) samples. TRIM6 expression was knocked down in CRC cell lines, and subjected to Cell counting kit-8 (CCK-8), bromodeoxyuridine (BrdU) incorporation and cell cycle assays. Immunoprecipitation and proteomics analysis was performed to identify potential associated proteins of TRIM6. RESULTS: TRIM6 expression was up-regulated in CRC samples and TRIM6 expression may be an independent prognostic marker for CRC. Knocking down TRIM6 expression suppressed CRC cell proliferation, induced cell cycle arrested at G2/M phase and increased sensitivity to 5-fluorouracil and oxaliplatin. TIS21, an anti-proliferative protein involved in the regulation of G2/M arrest, was identified as an interaction partner of TRIM6. Moreover, CRC cells with TRIM6 overexpression showed decreased TIS21 protein stability. TIS21 ubiquitination was increased in CRC cells overexpressing TRIM6, but not in those overexpressing TRIM6 E3 catalytic mutant (C15A). Further, Lys5 was essential for TRIM6 mediated TIS21 ubiquitination. TIS21 overexpression reversed the induced effects of TRIM6 overexpression on CRC cell proliferation, and the levels of forkhead box M1 (FoxM1), phosphorylated FoxM1, Cyclin B1 and c-Myc. Thiostrepton, a specific inhibitor for FoxM1, was less effective in anti-proliferative activity against CRC cells with lower level of TRIM6 in vitro and in vivo. CONCLUSIONS: Our study suggests that TRIM6 promotes the progression of CRC via TIS21/FoxM1.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Forkhead Box Protein M1/metabolism , Immediate-Early Proteins/metabolism , Thiostrepton/pharmacology , Tripartite Motif Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Aged , Animals , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , G2 Phase Cell Cycle Checkpoints/drug effects , HCT116 Cells , HEK293 Cells , Humans , M Phase Cell Cycle Checkpoints/drug effects , Male , Mice , Mice, Nude , Middle Aged , Random Allocation , Tripartite Motif Proteins/biosynthesis , Ubiquitin-Protein Ligases/biosynthesis
18.
Invest New Drugs ; 38(2): 264-273, 2020 04.
Article in English | MEDLINE | ID: mdl-30993588

ABSTRACT

Background Thiostrepton, a natural antibiotic, has recently been shown to be a potential anticancer drug for certain cancers, but its study in nasopharyngeal carcinoma (NPC) is still limited. The aims of this study were to investigate the anticancer effect of thiostrepton on NPC cells and to explore its underlying mechanism. Methods The effects of thiostrepton on the proliferation, migration, and invasion of NPC cells were investigated by a WST-1 assay, wound healing assay, and cell invasion assay, respectively. Microarrays were conducted and further analyzed by Ingenuity Pathways Analysis (IPA) to determine the molecular mechanism by which thiostrepton affects NPC cells. Results Our results showed that thiostrepton reduced NPC cell viability in a dose-dependent manner. Thiostrepton inhibited the migration and invasion of NPC cells in wound healing and cell invasion assays. The microarray data analyzed by IPA indicated the top 5 ingenuity canonical pathways, which were unfolded protein response, NRF2-mediated oxidative stress response, retinoate biosynthesis I, choline biosynthesis III, and pancreatic adenocarcinoma signaling. Conclusion Thiostrepton effectively suppressed NPC cell proliferation, migration, and invasion, likely by several mechanisms. Thiostrepton may be a potential therapeutic agent for treating NPC in the future.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Thiostrepton/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics
19.
Molecules ; 24(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835481

ABSTRACT

Mycobacterium abscessus is a rapid-growing, multidrug-resistant, non-tuberculous mycobacterial species responsible for a variety of human infections, such as cutaneous and pulmonary infections. M. abscessus infections are very difficult to eradicate due to the natural and acquired multidrug resistance profiles of M. abscessus. Thus, there is an urgent need for the development of effective drugs or regimens against M. abscessus infections. Here, we report the activity of a US Food and Drug Administration approved drug, thiostrepton, against M. abscessus. We found that thiostrepton significantly inhibited the growth of M. abscessus wild-type strains, subspecies, clinical isolates, and drug-resistant mutants in vitro and in macrophages. In addition, treatment of macrophages with thiostrepton significantly decreased proinflammatory cytokine production in a dose-dependent manner, suggesting an inhibitory effect of thiostrepton on inflammation induced during M. abscessus infection. We further showed that thiostrepton exhibits antimicrobial effects in vivo using a zebrafish model of M. abscessus infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/drug effects , Thiostrepton/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Cell Line , Cytokines/biosynthesis , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/metabolism , Mycobacterium abscessus/classification , Mycobacterium abscessus/genetics , Thiostrepton/therapeutic use , Zebrafish
20.
Nat Immunol ; 20(12): 1631-1643, 2019 12.
Article in English | MEDLINE | ID: mdl-31740799

ABSTRACT

Osteoclasts have a unique bone-destroying capacity, playing key roles in steady-state bone remodeling and arthritic bone erosion. Whether the osteoclasts in these different tissue settings arise from the same precursor states of monocytoid cells is presently unknown. Here, we show that osteoclasts in pannus originate exclusively from circulating bone marrow-derived cells and not from locally resident macrophages. We identify murine CX3CR1hiLy6CintF4/80+I-A+/I-E+ macrophages (termed here arthritis-associated osteoclastogenic macrophages (AtoMs)) as the osteoclast precursor-containing population in the inflamed synovium, comprising a subset distinct from conventional osteoclast precursors in homeostatic bone remodeling. Tamoxifen-inducible Foxm1 deletion suppressed the capacity of AtoMs to differentiate into osteoclasts in vitro and in vivo. Furthermore, synovial samples from human patients with rheumatoid arthritis contained CX3CR1+HLA-DRhiCD11c+CD80-CD86+ cells that corresponded to mouse AtoMs, and human osteoclastogenesis was inhibited by the FoxM1 inhibitor thiostrepton, constituting a potential target for rheumatoid arthritis treatment.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Bone Marrow Cells/physiology , Forkhead Box Protein M1/metabolism , Macrophages/physiology , Osteoclasts/physiology , Animals , CX3C Chemokine Receptor 1/metabolism , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Forkhead Box Protein M1/antagonists & inhibitors , Forkhead Box Protein M1/genetics , Humans , Male , Mice , Mice, Inbred DBA , Mice, Transgenic , Osteogenesis , Thiostrepton/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...