Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Bioorg Chem ; 143: 107022, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142558

ABSTRACT

Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-ß1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.


Subject(s)
Antifibrotic Agents , Thiosemicarbazones , Humans , Thiosemicarbazones/metabolism , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/metabolism , Thiourea/metabolism , Carbon Tetrachloride
2.
Sci Total Environ ; 873: 162295, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801323

ABSTRACT

Arsenic (As) is a group-1 carcinogenic metalloid that threatens global food safety and security, primarily via its phytotoxicity in the staple crop rice. In the present study, ThioAC, the co-application of thiourea (TU, a non-physiological redox regulator) and N. lucentensis (Act, an As-detoxifying actinobacteria), was evaluated as a low-cost approach for alleviating As(III) toxicity in rice. To this end, we phenotyped rice seedlings subjected to 400 mg kg-1 As(III) with/without TU, Act or ThioAC and analyzed their redox status. Under As-stress conditions, ThioAC treatment stabilized photosynthetic performance, as indicated by 78 % higher total chlorophyll accumulation and 81 % higher leaf biomass, compared with those of As-stressed plants. Further, ThioAC improved root lignin levels (2.08-fold) by activating the key enzymes of lignin biosynthesis under As-stress. The extent of reduction in total As under ThioAC (36 %) was significantly higher than TU (26 %) and Act (12 %), compared to those of As-alone treatment, indicating their synergistic interaction. The supplementation of TU and Act activated enzymatic and non-enzymatic antioxidant systems, respectively, with a preference for young (TU) and old (Act) leaves. Additionally, ThioAC activated enzymatic antioxidants, specifically GR (∼3-fold), in a leaf-age specific manner and suppressed ROS-producing enzymes to near-control levels. This coincided with 2-fold higher induction of polyphenols and metallothionins in ThioAC-supplemented plants, resulting in improved antioxidant defence against As-stress. Thus, our findings highlighted ThioAC application as a robust, cost-effective ameliorative strategy, for achieving As-stress mitigation in a sustainable manner.


Subject(s)
Arsenic , Oryza , Antioxidants/metabolism , Arsenic/toxicity , Arsenic/metabolism , Oryza/metabolism , Lignin/metabolism , Thiourea/metabolism , Thiourea/pharmacology , Oxidative Stress , Plants/metabolism , Seedlings/metabolism
3.
Plant Physiol Biochem ; 195: 14-24, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584629

ABSTRACT

The present study analyzed the effects of individual microbes and their consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and P. flexa NDAS28R) either alone or in interaction with thiourea (TU) on growth and responses of rice plants subjected to As stress (50 mg kg-1 in soil) in a pot experiment. The bacteria used in the experiment were isolated from As contaminated fields of Nadia, West Bengal and showed significant As removal potential in in vitro experiment. The results revealed significant growth improvement, biomass accumulation, and decline in malondialdehyde levels in rice plants in bacterial and TU treatments as compared to control As treatment. The best results were observed in a bacterial consortium (B1-2-3), which induced a profound increase of 65%, 43%, 127% and 83% in root length, shoot length, leaf width and fresh weight, respectively. Sulfur metabolism and cell wall synthesis were stimulated upon bacterial and TU amendment in plants. The maximum reduction in As concentration was observed in B2 in roots (-55%) and in B1-2-3 in shoot (-83%). The combined treatment of B1-2-3 + TU proved to be less effective as compared to that of B1-2-3 in terms of As reduction and growth improvement. Hence, the usage of bacterial consortium obtained in the present work is a sustainable approach, which might find relevance in field conditions to achieve As reduction in rice grains and to attain higher growth of plants without the need for additional TU supplementation.


Subject(s)
Arsenic , Bacillus licheniformis , Oryza , Soil Pollutants , Oryza/metabolism , Arsenic/pharmacology , Thiourea/metabolism , Thiourea/pharmacology , Bacteria/metabolism , Soil Pollutants/metabolism , Soil , Plant Roots/metabolism
4.
J Med Chem ; 65(20): 14180-14200, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36256875

ABSTRACT

The Gram-negative pathogen Pseudomonas aeruginosa causes severe infections mainly in immunocompromised or cystic fibrosis patients and is able to resist antimicrobial treatments. The extracellular lectin LecB plays a key role in bacterial adhesion to the host and biofilm formation. For the inhibition of LecB, we designed and synthesized a set of fucosyl amides, sulfonamides, and thiourea derivatives. Then, we analyzed their binding to LecB in competitive and direct binding assays. We identified ß-fucosyl amides as unprecedented high-affinity ligands in the two-digit nanomolar range. X-ray crystallography of one α- and one ß-anomer of N-fucosyl amides in complex with LecB revealed the interactions responsible for the high affinity of the ß-anomer at atomic level. Further, the molecules showed good stability in murine and human blood plasma and hepatic metabolism, providing a basis for future development into antibacterial drugs.


Subject(s)
Lectins , Pseudomonas aeruginosa , Humans , Mice , Animals , Pseudomonas aeruginosa/metabolism , Lectins/metabolism , Ligands , Amides/pharmacology , Amides/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Sulfonamides/metabolism , Thiourea/metabolism , Biofilms
5.
J Hazard Mater ; 435: 129020, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650738

ABSTRACT

Arsenic (As) is a ubiquitous carcinogenic metalloid that enters into human food chain, through rice consumption. To unravel the conundrum of oxidative vs. reductive stress, the differential root-system architecture (RSA) was studied under As (a ROS producer) and thiourea (TU; a ROS scavenger) alone treatments, which indicated 0.80- and 0.74-fold reduction in the number of lateral roots (NLR), respectively compared with those of control. In case of As+TU treatment, NLR was increased by 4.35-fold compared with those of As-stress, which coincided with partial restoration of redox-status and auxin transport towards the root-tip. The expression levels of 16 ROS related genes, including RBOHC, UPB-1 C, SHR1, PUCHI, were quantified which provided the molecular fingerprint, in accordance with endogenous ROS signature. LC-MS based untargeted and targeted metabolomics data revealed that As-induced oxidative stress was metabolically more challenging than TU alone-induced reductive stress. Cis/trans-ferruloyl putrescine and γ-glutamyl leucine were identified as novel As-responsive metabolites whose levels were decreased and increased, respectively under As+TU than As-treated roots. In addition, the overall amino acid accumulation was increased in As+TU than As-treated roots, indicating the improved nutritional availability. Thus, the study revealed dynamic interplay between "ROS-metabolites-RSA", to the broader context of TU-mediated amelioration of As-stress in rice.


Subject(s)
Arsenic , Oryza , Arsenic/metabolism , Arsenic/toxicity , Humans , Oryza/genetics , Oryza/metabolism , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Thiourea/metabolism , Thiourea/pharmacology
6.
J Biomol Struct Dyn ; 40(18): 8232-8247, 2022 11.
Article in English | MEDLINE | ID: mdl-33860726

ABSTRACT

In search of potent urease inhibitor indole analogues (1-22) were synthesized and evaluated for their urease inhibitory potential. All analogues (1-22) showed a variable degree of inhibitory interaction potential having IC50 value ranging between 0.60 ± 0.05 to 30.90 ± 0.90 µM when compared with standard thiourea having IC50 value 21.86 ± 0.90 µM. Among the synthesized analogues, the compounds 1, 2, 3, 5, 6, 8, 12, 14, 18, 20 and 22 having IC50 value 3.10 ± 0.10, 1.20 ± 0.10, 4.60 ± 0.10, 0.60 ± 0.05, 5.30 ± 0.20, 2.50 ± 0.10, 7.50 ± 0.20, 3.90 ± 0.10, 3.90 ± 0.10, 2.30 ± 0.05 and 0.90 ± 0.05 µM respectively were found many fold better than the standard thiourea. All other analogues showed better urease interaction inhibition. Structure activity relationship (SAR) has been established for all analogues containing different substituents on the phenyl ring. To understand the binding interaction of most active analogues with enzyme active site docking study were performed.Communicated by Ramaswamy H. Sarma.


Subject(s)
Enzyme Inhibitors , Urease , Enzyme Inhibitors/chemistry , Indoles , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiourea/chemistry , Thiourea/metabolism
7.
Chem Res Toxicol ; 34(12): 2534-2539, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34788025

ABSTRACT

Methimazole (MMI) is a widely used antithyroid drug, but it can cause hepatotoxicity by unknown mechanisms. Previous studies showed that the hepatic metabolism of MMI produces N-methylthiourea, leading to liver damage. However, the specific enzyme responsible for the production of the toxic metabolite N-methylthiourea is still unclear. In this study, we screened cytochromes P450 (CYPs) in N-methylthiourea production from MMI. CYP2A6 was identified as the key enzyme in catalyzing MMI metabolism to produce N-methylthiourea. When mice were pretreated with a CYP2A6 inhibitor, formation of N-methylthiourea from MMI was remarkably reduced. Consistently, the CYP2A6 inhibitor prevented MMI-induced hepatotoxicity. These results demonstrated that CYP2A6 is essential in MMI bioactivation and hepatotoxicity.


Subject(s)
Cytochrome P-450 CYP2A6/metabolism , Liver/drug effects , Methimazole/adverse effects , Thiourea/analogs & derivatives , Animals , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Humans , Liver/metabolism , Liver/pathology , Male , Methimazole/chemistry , Methimazole/metabolism , Mice , Molecular Structure , Recombinant Proteins/metabolism , Thiourea/chemistry , Thiourea/metabolism , Tranylcypromine/chemistry , Tranylcypromine/pharmacology
8.
Molecules ; 26(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361659

ABSTRACT

In this study six unsymmetrical thiourea derivatives, 1-isobutyl-3-cyclohexylthiourea (1), 1-tert-butyl-3-cyclohexylthiourea (2), 1-(3-chlorophenyl)-3-cyclohexylthiourea (3), 1-(1,1-dibutyl)-3-phenylthiourea (4), 1-(2-chlorophenyl)-3-phenylthiourea (5) and 1-(4-chlorophenyl)-3-phenylthiourea (6) were obtained in the laboratory under aerobic conditions. Compounds 3 and 4 are crystalline and their structure was determined for their single crystal. Compounds 3 is monoclinic system with space group P21/n while compound 4 is trigonal, space group R3:H. Compounds (1-6) were tested for their anti-cholinesterase activity against acetylcholinesterase and butyrylcholinesterase (hereafter abbreviated as, AChE and BChE, respectively). Potentials (all compounds) as sensing probes for determination of deadly toxic metal (mercury) using spectrofluorimetric technique were also investigated. Compound 3 exhibited better enzyme inhibition IC50 values of 50, and 60 µg/mL against AChE and BChE with docking score of -10.01, and -8.04 kJ/mol, respectively. The compound also showed moderate sensitivity during fluorescence studies.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/metabolism , Mercury/analysis , Signal Transduction/drug effects , Smart Materials/chemistry , Thiourea/analogs & derivatives , Thiourea/metabolism , Cholinesterase Inhibitors/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Molecular Docking Simulation/methods , Molecular Structure , Protein Binding , Spectrometry, Fluorescence/methods , Structure-Activity Relationship , Thiourea/chemistry , X-Ray Diffraction/methods
9.
J Med Chem ; 64(11): 7371-7389, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34029463

ABSTRACT

The previous virtual screening of ten million compounds yielded two novel nonlipopeptide-like chemotypes as TLR2 agonists. Herein, we present the chemical optimization of our initial hit, 1-phenyl-3-(thiophen-2-yl)urea, which resulted in the identification of SMU-C80 (EC50 = 31.02 ± 1.01 nM) as a TLR2-specific agonist with a 370-fold improvement in bioactivity. Mechanistic studies revealed that SMU-C80, through TLR1/2, recruits the adaptor protein MyD88 and triggers the NF-κB pathway to release cytokines such as TNF-α and IL-1ß from human, but not murine, cells. To the best of our knowledge, it is the first species-specific TLR1/2 agonist reported until now. Moreover, SMU-C80 increased the percentage of T, B, and NK cells ex vivo and activated the immune cells, which suppressed cancer cell growth in vitro. In summary, we obtained a highly efficient and specific human TLR1/2 agonist that acts through the MyD88 and NF-κB pathway, facilitating cytokine release and the simultaneous activation of immune cells that in turn affects the apoptosis of cancer cells.


Subject(s)
Drug Design , Thiourea/analogs & derivatives , Toll-Like Receptor 1/agonists , Toll-Like Receptor 2/agonists , Animals , Apoptosis/drug effects , Cytokines/metabolism , Humans , Immunotherapy , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Neoplasms/therapy , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Thiourea/metabolism , Thiourea/therapeutic use , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism
10.
Bioorg Chem ; 107: 104640, 2021 02.
Article in English | MEDLINE | ID: mdl-33485105

ABSTRACT

Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as a vital tool for cancer treatment. In this study, a new series of biphenylurea/thiourea derivatives tagged with heteroarylsulfonamide motifs (3a-l) was designed and synthesized as novel VEGFR2 inhibitors. The biochemical profiles of the target compounds were investigated using viability of human umbilical vascular endothelial cells (HUVECs), migration assay and Western blot using sorafenib as reference antiangiogenic drug. Most of the tested compounds exhibited significant antiproliferative activity against HUVECs, where compounds 3a, 3e, 3g, 3h and 3l exhibited better antiproliferative activity than sorafenib. All compounds significantly inhibited VEGF stimulated migration of HUVECs at 10 µM dose with (3a, 3e, 3g, 3h and 3l) showing better or comparable inhibitory activities to that of sorafenib. Moreover, Western blotting analysis confirmed antiangiogenic effect of those compounds with significant reduction in the level of VEGFR-2 compared to sorafenib. Finally, cytotoxicity screening of these derivatives against four cancer cells and RPE1 as normal cell line was performed. The mechanistic effectiveness in cell cycle progression and apoptotic induction were evaluated for the promising compound 3e due to its remarkable cytotoxic activity against tested cancer cell lines and significant VEGFR-2 inhibition. Flow cytometric analysis showed that compound 3e induced cell growth arrest at G2/M phase and stimulated the apoptotic death of HepG2 cells.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Sulfonamides/chemistry , Thiourea/analogs & derivatives , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Sorafenib/pharmacology , Structure-Activity Relationship , Thiourea/metabolism , Thiourea/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
11.
Autophagy ; 17(5): 1222-1231, 2021 05.
Article in English | MEDLINE | ID: mdl-32286915

ABSTRACT

1-phenyl 2-thiourea (PTU) is a Tyr (tyrosinase) inhibitor that is extensively used to block pigmentation and improve optical transparency in zebrafish (Danio rerio) embryo. Here, we reported a previously undescribed effect of PTU on macroautophagy/autophagy in zebrafish embryos. Upon 0.003% PTU treatment, aberrant autophagosome and autolysosome formation, accumulation of lysosomes, and elevated autophagic flux were observed in various tissues and organs of zebrafish embryos, such as skin, brain, and muscle. Similar to PTU treatment, autophagic activation and lysosomal accumulation were also observed in the somatic tyr mutant zebrafish embryos, which suggest that Tyr inhibition may contribute to PTU-induced autophagic activation. Furthermore, we demonstrated that autophagy contributes to pigmentation inhibition, but is not essential to the PTU-induced pigmentation inhibition. With the involvement of autophagy in a wide range of physiological and pathological processes and the routine use of PTU in zebrafish research of autophagy-related processes, these observations raise a novel concern in autophagy-related studies using PTU-treated zebrafish embryos.Abbreviations: 3-MA: 3-methyladenine; Atg: autophagy-related; BSA: bovine serum albumin; CHT: caudal hematopoietic tissue; CQ: chloroquine; GFP: green fluorescent protein; hpf: hour-post-fertilization; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NGS: normal goat serum; PtdIns3K: class III phosphatidylinositol 3-kinase; PTU: 1-phenyl 2-thiourea; RFP: red fluorescent protein; Sqstm1: sequestosome 1; tyr: tyrosinase.


Subject(s)
Autophagosomes/metabolism , Autophagy/drug effects , Thiourea/pharmacology , Animals , Autophagosomes/drug effects , Chloroquine/pharmacology , Class III Phosphatidylinositol 3-Kinases/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Thiourea/metabolism , Zebrafish/metabolism
12.
Med Chem ; 17(4): 352-368, 2021.
Article in English | MEDLINE | ID: mdl-32807063

ABSTRACT

BACKGROUND: Although exhaustive efforts to prevent and treat tuberculosis (TB) have been made, the problem still continues due to multi-drug-resistant (MDR) and extensively drugresistant TB (XDR-TB). It clearly highlights the urgent need to develop novel "druggable" molecules for the co-infection treatment and strains of MDR-TB and XDR-TB. OBJECTIVE: In this approach, a hybrid molecule was created by merging two or more pharmacophores. The active site of targets may be addressed by each of the pharmacophores and proffers the opportunity for selectivity. In addition, it also reduces undesirable side effects and drug-resistance. METHODS: In this study, a novel quinazolinone analog was designed and synthesized by substituting thiourea nucleus and phenyl ring at N-3 and C-2 position of quinazoline ring, respectively. All title compounds were tested for antitubercular activity by in vitro M. tuberculosis and anti-human immunodeficiency virus (HIV) activity by MT-4 cell assay method. The agar dilution method was used to test the antibacterial potency of entire prepared derivatives against various strains of grampositive and gram-negative microorganisms. RESULTS: The title compounds, 1-(substituted)-2-methyl-3-(4-oxo-2-phenyl quinazolin-3(4H)-yl) isothioureas (QTS1 - QTS15) were synthesized by the reaction between key intermediate 3-amino- 2-phenylquinazolin-4(3H)-one with various alkyl/aryl isothiocyanates followed by methylation with dimethyl sulphate. Among the series, compound 1-(3-chlorophenyl)-2-methyl-3-(4-oxo-2-phenyl quinazolin- 3(4H)-yl) isothioureas (QTS14) showed the highest potency against B. subtilis, K. pneumonia and S. aureus at 1.6 µg/mL. The compound QTS14 exhibited the most potent antitubercular activity at the MIC of 0.78 µg/mL and anti-HIV activity at 0.97 µg/mL against HIV1 and HIV2. CONCLUSION: The results obtained from this study confirm that the synthesized and biologically evaluated quinazolines showed promising antimicrobial, antitubercular and anti-HIV activities. The new scaffolds proffer a plausible lead for further development and optimization of novel antitubercular and anti-HIV drugs.


Subject(s)
Antitubercular Agents/pharmacology , Antiviral Agents/pharmacology , Quinazolines/pharmacology , Thiourea/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Bacteria/drug effects , Bacterial Proteins/metabolism , Drug Design , HIV-1/drug effects , HIV-2/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Binding , Quinazolines/chemical synthesis , Quinazolines/metabolism , Thiourea/chemical synthesis , Thiourea/metabolism
13.
Bioorg Chem ; 106: 104180, 2021 01.
Article in English | MEDLINE | ID: mdl-33276979

ABSTRACT

In the present work synthesis and characterization of five new bisferrocenyl bisthiourea analogues (G2M, S2M, G3F, G4F and T2M) is reported. UV-Visible and electrochemical studies were performed in order to have optical (absorption maximum, Molar absorption coefficient and optical band gap) and electrochemical parameters (Oxidation/reduction potentials and nature of the electrochemical process) of the compounds. In vitro various biological studies such as antibacterial, antifungal, anti-oxidant and antidiabetic activities were carried out to have comparative overview of the phermacochemical strength of the newly synthesized compounds. Similarly, theoretical analysis was accomplished utilizing density functional theory calculations. DFT/B3LYP (6-31G d, p) technique was used. With a view to explore the structure activity relationship (SAR) of the compounds theoretical docking analysis (against α-amylase, α-glucosidase) was also performed to have pictorial view and understanding of the actual interactions responsible for the activity. S2M displayed best antibacterial activity. Similarly, Antifungal and antidiabetic activities showed G3F as a best candidate, whereas T2M proved to be the best antioxidant agent.


Subject(s)
Anti-Infective Agents/pharmacology , Ferrous Compounds/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Metallocenes/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/metabolism , Bacteria/drug effects , Catalytic Domain , Density Functional Theory , Drug Design , Ferrous Compounds/chemical synthesis , Ferrous Compounds/metabolism , Fungi/drug effects , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/metabolism , Metallocenes/chemical synthesis , Metallocenes/metabolism , Microbial Sensitivity Tests , Models, Chemical , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Thiourea/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
14.
Bioorg Med Chem ; 28(23): 115759, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32992246

ABSTRACT

Urease enzyme is a virulence factor that helps in colonization and maintenance of highly pathogenic bacteria in human. Hence, the inhibition of urease enzymes is well-established to be a promising approach for preventing deleterious effects of ureolytic bacterial infections. In this work, novel thiobarbiturate derivatives were synthesized and evaluated for their urease inhibitory activity. All tested compounds effectively inhibited the activity of urease enzyme. Compounds 1, 2a, 2b, 4 and 9 displayed remarkable anti-urease activity (IC50 = 8.21-16.95 µM) superior to that of thiourea reference standard (IC50 = 20.04 µM). Moreover, compounds 3a, 3g, 5 and 8 were equipotent to thiourea. Among the tested compounds, morpholine derivative 4 (IC50 = 8.21 µM) was the most potent one, showing 2.5 folds the activity of thiourea. In addition, the antibacterial activity of the synthesized compounds was estimated against both standard strains and clinical isolates of urease producing bacteria. Compound 4 explored the highest potency exceeding that of cephalexin reference drug. Moreover, biodistribution study using radiolabeling approach revealed a remarked uptake of 99mTc-compound 4 into infection induced in mice. Furthermore, a molecular docking analysis revealed proper orientation of title compounds into the urease active site rationalizing their potent anti-urease activity.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Drug Design , Enzyme Inhibitors/chemistry , Thiobarbiturates/chemistry , Urease/antagonists & inhibitors , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites , Catalytic Domain , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Isotope Labeling , Klebsiella pneumoniae/drug effects , Male , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Organotechnetium Compounds/chemistry , Proteus vulgaris/drug effects , Structure-Activity Relationship , Thiobarbiturates/metabolism , Thiobarbiturates/pharmacology , Thiourea/analogs & derivatives , Thiourea/metabolism , Thiourea/pharmacology , Tissue Distribution , Urease/metabolism
15.
Mol Hum Reprod ; 26(8): 567-575, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32514562

ABSTRACT

Endoplasmic reticulum (ER) stress is associated with several aging-related diseases; however, the mechanism underlying age-related deterioration of oocyte quality is unclear. Here, we used post-ovulatory, in vivo aged mouse oocytes as a model. Super-ovulated oocytes harvested from the oviduct at 14 h and 20 h post-hCG injection were designated as 'fresh' and 'aged', respectively. Embryo development following IVF was compared between fresh, aged and ER stress-induced oocytes. Expression of the ER stress marker GRP78 was examined at each stage. To evaluate the effect of salubrinal, an ER stress suppressor, on embryo development following IVF, expression levels of GRP78 and phospho-eukaryotic initiation factor 2 alpha were compared between aged and salubrinal-treated aged oocytes. Embryo transfer of salubrinal-treated aged oocytes was performed to examine the safety of salubrinal. Similar to aged oocytes, ER stress-induced oocytes showed lower fertilization rates and poor embryo development. Following IVF, expression of GRP78 decreased with embryo development. GRP78 expression was significantly higher in aged oocytes than in fresh oocytes. Salubrinal lowered GRP78 levels and improved embryo development. No adverse effect of salubrinal treatment was found on the birth weight of pups or on organogenesis in mice. The limitation of this study was that protein kinase-like ER kinase was the only ER stress pathway examined; the role of IRE1 and ATF6 pathways was not considered. Nevertheless, salubrinal can significantly improve embryo development in in vivo aged oocytes undergoing ER stress. Hence, regulation of ER stress might represent a promising therapeutic strategy to overcome poor oocyte quality.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Oocytes/metabolism , Animals , Apoptosis/physiology , Cinnamates/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Female , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Thiourea/analogs & derivatives , Thiourea/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
16.
FEBS Open Bio ; 10(5): 767-779, 2020 05.
Article in English | MEDLINE | ID: mdl-32128992

ABSTRACT

Osteosarcoma is the most common malignant bone tumor in adolescence and childhood. Metastatic osteosarcoma has a poor prognosis with an overall 5-year survival rate of approximately 20%. TAS-115 is a novel multiple receptor tyrosine kinase inhibitor that is currently undergoing clinical trials. Using the mouse highly lung-metastatic osteosarcoma cell line, LM8, we showed that TAS-115 suppressed the growth of subcutaneous grafted tumor and lung metastasis of osteosarcoma at least partially through the inhibition of platelet-derived growth factor receptor alpha, AXL, and Fms-like tyrosine kinase 3 phosphorylation. We also show that these signaling pathways are activated in various human osteosarcoma cell lines and are involved in proliferation. Our results suggest that TAS-115 may have potential for development into a novel treatment for metastatic osteosarcoma.


Subject(s)
Osteosarcoma/metabolism , Quinolines/pharmacology , Thiourea/analogs & derivatives , Animals , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Lung Neoplasms , Mice , Mice, Inbred C3H , Osteosarcoma/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Quinolines/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/physiology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/physiology , Signal Transduction/drug effects , Thiourea/metabolism , Thiourea/pharmacology , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/physiology , Axl Receptor Tyrosine Kinase
17.
Inorg Chem ; 59(7): 5072-5085, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32208661

ABSTRACT

In this study, half-sandwich Ru(II) complexes containing acylthiourea ligands of the general type [Ru(η6-p-cymene)(PPh3)(S)Cl]PF6 (1m-6m) and [Ru(η6-p-cymene)(PPh3)(S-O)]PF6 (1b-6b) where S/S-O = N',N'-disubstituted acylthiourea were synthesized and characterized (via elemental analyses, IR spectroscopy, 1H NMR spectroscopy, 13C{1H} NMR spectroscopy, and X-ray diffractometry), and their cytotoxic activity was evaluated. The different coordination modes of the acylthiourea ligands, monodentately via S (1m-6m) and bidentately via S,O (1b-6b), to ruthenium were modulated from different synthetic routes. The cytotoxicity of the complexes was evaluated in five human cell lines (DU-145, A549, MDA-MB-231, MRC-5, and MCF-10A) by MTT assay. The IC50 values for prostate cancer cells (2.89-7.47 µM) indicated that the complexes inhibited cell growth, but that they were less cytotoxic than cisplatin (2.00 µM). Unlike for breast cancer cells (IC50 = 0.28-0.74 µM) and lung cancer cells (IC50 = 0.51-1.83 µM), the complexes were notably more active than the reference drug, and a remarkable selectivity index (SI 4.66-19.34) was observed for breast cancer cells. Based on both the activity and selectivity, complexes 5b and 6b, as well as their respective analogous complexes in the monodentate coordination 5m and 6m, were chosen for further investigation in the MDA-MB-231 cell line. These complexes not only induced morphology changes but also were able to inhibit colony formation and migration. In addition, the complexes promoted cell cycle arrest at the sub-G1 phase inducing apoptosis. Interaction studies by viscosity measurements, gel electrophoresis, and fluorescence spectroscopy indicated that the complexes interact with the DNA minor groove and exhibit an HSA binding affinity.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , DNA/metabolism , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Ligands , Molecular Structure , Ruthenium/chemistry , Serum Albumin, Human/metabolism , Thiourea/metabolism
18.
Nat Prod Res ; 34(11): 1505-1514, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30507306

ABSTRACT

In searching for drugs from natural product scaffolds has gained interest among researchers. In this study, a series of twelve halogenated thiourea (ATX 1-12) via chemical modification of aspirin (a natural product derivative) and evaluated for cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines, HK-1 via MTS-based colorimetric assay. The cytotoxicity studies demonstrated that halogens at meta position of ATX showed promising activity against HK-1 cells (IC50 value ≤15 µM) in comparison to cisplatin, a positive cytotoxic drug (IC50 value =8.9 ± 1.9 µM). ATX 11, bearing iodine at meta position, showed robust cytotoxicity against HK-1 cells with an IC50 value of 4.7 ± 0.7 µM. Molecular docking interactions between ATX 11 and cyclooxygenase-2 demonstrated a robust binding affinity value of -8.1 kcal/mol as compared to aspirin's binding affinity value of -6.4 kcal/mol. The findings represent a promising lead molecule from natural product with excellent cytotoxic activity against NPC cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Thiourea/toxicity , Aspirin/analogs & derivatives , Aspirin/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Halogens/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Salix/chemistry , Structure-Activity Relationship , Thiourea/analogs & derivatives , Thiourea/metabolism
19.
Bioorg Chem ; 94: 103443, 2020 01.
Article in English | MEDLINE | ID: mdl-31812259

ABSTRACT

Proteinase K is a stable serine protease, crystallized and extensively used in the study of molecular interactions at the atomic level. During the current study, crystal structure of proteinase K with thiourea (TU) was solved at 1.45 Å (angstrom) resolution. Proteinase K showed its binding affinity with thiourea after soaking with 200 mM (millimolar) concentration of thiourea solution for 6 h. The binding affinity of proteinase K was evaluated with three different molecules i.e., thiourea, acetamide, and thiosemicarbazide. Interestingly, only the thiourea went into the calcium-binding region, and showed interactions with those amino acids which have also displayed interactions with calcium previously. Pro175 (proline 175), Ser197 (Serine 197), Val198 (valine 198), and Asp200 (aspartic acid 200) were the key amino acids involved in the binding of thiourea with proteinase K. Thiourea showed strong hydrogen bondings with Pro175 (2.85 Å), Ser197 (2.88 Å), and Asp200 (2.90 Å, and 3.30 Å), as the key interactions involved in the binding of thiourea with proteinase K. This study provides an insight into the binding mechanism of thiourea with calcium-binding pocket of proteinase K, and thus can be extrapolated to other calcium-binding proteins.


Subject(s)
Calcium/chemistry , Endopeptidase K/chemistry , Thiourea/chemistry , Binding Sites , Calcium/metabolism , Crystallography, X-Ray , Endopeptidase K/metabolism , Hydrogen Bonding , Models, Molecular , Molecular Structure , Thiourea/metabolism
20.
Proteins ; 88(2): 366-384, 2020 02.
Article in English | MEDLINE | ID: mdl-31512287

ABSTRACT

This work explores how phosphorylation of an unstructured protein region in inhibitor-2 (I2) regulates protein phosphatase-1 (PP1) enzyme activity using molecular dynamics (MD). Free I2 is largely unstructured; however, when bound to PP1, three segments adopt a stable structure. In particular, an I2 helix (i-helix) blocks the PP1 active site and inhibits phosphatase activity. I2 phosphorylation in the PP1-I2 complex activates phosphatase activity without I2 dissociation. The I2 Thr74 regulatory phosphorylation site is in an unstructured domain in PP1-I2. PP1-I2 MD demonstrated that I2 phosphorylation promotes early steps of PP1-I2 activation in explicit solvent models. Moreover, phosphorylation-dependent activation occurred in PP1-I2 complexes derived from I2 orthologs with diverse sequences from human, yeast, worm, and protozoa. This system allowed exploration of features of the 73-residue unstructured human I2 domain critical for phosphorylation-dependent activation. These studies revealed that components of I2 unstructured domain are strategically positioned for phosphorylation responsiveness including a transient α-helix. There was no evidence that electrostatic interactions of I2 phosphothreonine74 influenced PP1-I2 activation. Instead, phosphorylation altered the conformation of residues around Thr74. Phosphorylation uncurled the distance between I2 residues Glu71 to Tyr76 to promote PP1-I2 activation, whereas reduced distances reduced activation. This I2 residue Glu71 to Tyr76 distance distribution, independently from Thr74 phosphorylation, controls I2 i-helix displacement from the PP1 active site leading to PP1-I2 activation.


Subject(s)
Acrylamides/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Phosphatase 1/metabolism , Thiourea/analogs & derivatives , Threonine/metabolism , Acrylamides/metabolism , Acrylamides/pharmacology , Amino Acid Sequence , Animals , Binding Sites/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Molecular Dynamics Simulation , Phosphorylation/drug effects , Protein Binding , Protein Domains , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/chemistry , Sequence Homology, Amino Acid , Thiourea/chemistry , Thiourea/metabolism , Thiourea/pharmacology , Threonine/chemistry , Threonine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...