Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.983
Filter
1.
Anat Histol Embryol ; 53(5): e13106, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39282744

ABSTRACT

Thyroid hormone (TH) is essential for growth and development, yet its specific role during embryogenesis remains incompletely understood. This study investigates the impact of TH deficiency, induced by thiourea, a known inhibitor of thyroid peroxidase (TPO), on the development of domestic chicks. Thiourea was administered before thyroid gland formation, and its presence in treated embryos was confirmed through liquid chromatography-mass spectrometry. In silico docking revealed a strong interaction between thiourea and the CCP-like domain of TPO, which was corroborated by TPO activity assays showing reduced enzyme function. This reduction in enzyme activity led to lower embryonic TH levels and increased thyroid-stimulating hormone (TSH) secretion. Morphological analysis of newly hatched chicks revealed significant structural anomalies, particularly in lateral plate mesoderm-derived structures, including omphalocele, limb deformities, anophthalmia and craniofacial defects. Alcian blue and Alizarin red staining demonstrated reduced ossification in ribs and forelimbs, while histological analysis showed incomplete abdominal wall closure and abnormal vertebral column development. Haematological profiling of TH-deficient newly hatched chicks revealed significantly lower blood cell counts, highlighting TH's critical role in haematopoiesis. These findings emphasise the multifaceted role of TH in embryonic development, with potential implications for understanding congenital hypothyroidism and its developmental impacts, especially in regions with limited healthcare access.


Subject(s)
Chickens , Iodide Peroxidase , Thyroid Hormones , Animals , Chick Embryo , Iodide Peroxidase/metabolism , Thiourea/analogs & derivatives , Thiourea/pharmacology , Thyrotropin/blood , Embryonic Development/physiology , Molecular Docking Simulation , Congenital Hypothyroidism/veterinary , Congenital Hypothyroidism/pathology , Congenital Hypothyroidism/embryology
2.
Curr Microbiol ; 81(11): 355, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278982

ABSTRACT

Chlorine and its derivatives have been used as an antibacterial agent to reduce Salmonella contamination in poultry meat during processing. We evaluated the survival of 4 different Salmonella serotypes (Typhimurium, Enteritidis, Heidelberg, and Gaminara) in the presence of 50 ppm sodium hypochlorite (NaOCl) alone or with the addition of thiourea (radical scavenger) or Dip (iron chelator) to determine the contribution of reactive oxygen species (ROS) in the bactericidal activity of NaOCl. The result showed that for all four serotypes the addition of thiourea or Dip significantly increased the % survival as compared to the respective NaOCl treatment groups, while it was significantly higher with thiourea as compared to Dip (P < 0.05). We also evaluated the survival of 11 deletion mutants of S. Typhimurium, which were demonstrated to increase (∆atpC, ∆cyoA, ∆gnd, ∆nuoG, ∆pta, ∆sdhC, and ∆zwf) or decrease the production of ROS (∆edd, ∆fumB, ∆pykA, and ∆tktB) in Escherichia coli (E. coli), in the presence of 50 ppm. The results showed that only two (∆sdhC and ∆zwf) out of 7 ROS-increasing mutants showed reduced % survival as compared to the wild-type (P < 0.05), while all four deletion ROS-decreasing mutants showed significantly higher % survival as compared to the wild-type (P < 0.05). This work suggests that the production of ROS is a major component of the bactericidal activity of NaOCl against Salmonella serotypes and there might be a significant difference in the metabolic pathways involved in ROS production between Salmonella and E. coli.


Subject(s)
Anti-Bacterial Agents , Reactive Oxygen Species , Salmonella , Reactive Oxygen Species/metabolism , Salmonella/drug effects , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Sodium Hypochlorite/pharmacology , Chlorine/pharmacology , Disinfectants/pharmacology , Microbial Viability/drug effects , Thiourea/pharmacology , Thiourea/analogs & derivatives , Animals , Escherichia coli/drug effects , Escherichia coli/genetics
3.
Sci Rep ; 14(1): 21375, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271951

ABSTRACT

Plant growth regulators are cost-effective and efficient methods for enhancing plant defenses under stress conditions. This study investigates the ability of two plant growth-regulating substances, thiourea (TU) and arginine (Arg), to mitigate salinity stress in wheat. The results show that both TU and Arg, particularly when used together, modify plant growth under salinity stress. Their application significantly increases the activities of antioxidant enzymes while decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and relative electrolyte leakage (REL) in wheat seedlings. Additionally, these treatments significantly reduce the concentrations of Na+ and Ca2+ and the Na+/K+ ratio, while significantly increasing K+ levels, thereby preserving ionic osmotic balance. Importantly, TU and Arg markedly enhance the chlorophyll content, net photosynthetic rate, and gas exchange rate in wheat seedlings under salinity stress. The use of TU and Arg, either individually or in combination, results in a 9.03-47.45% increase in dry matter accumulation, with the maximum increase observed when both are used together. Overall, this study highlights that maintaining redox homeostasis and ionic balance are crucial for enhancing plant tolerance to salinity stress. Furthermore, TU and Arg are recommended as potential plant growth regulators to boost wheat productivity under such conditions, especially when applied together.


Subject(s)
Arginine , Homeostasis , Oxidation-Reduction , Salt Stress , Seedlings , Thiourea , Triticum , Triticum/metabolism , Triticum/drug effects , Triticum/growth & development , Thiourea/pharmacology , Thiourea/analogs & derivatives , Arginine/metabolism , Seedlings/metabolism , Seedlings/drug effects , Seedlings/growth & development , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Photosynthesis/drug effects , Chlorophyll/metabolism , Plant Growth Regulators/metabolism
4.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273583

ABSTRACT

Tyrosinase, a key enzyme in melanin synthesis, represents a crucial therapeutic target for hyperpigmentation disorders due to excessive melanin production. This study aimed to design and evaluate a series of indole-thiourea derivatives by conjugating thiosemicarbazones with strong tyrosinase inhibitory activity to indole. Among these derivatives, compound 4b demonstrated tyrosinase inhibitory activity with an IC50 of 5.9 ± 2.47 µM, outperforming kojic acid (IC50 = 16.4 ± 3.53 µM). Kinetic studies using Lineweaver-Burk plots confirmed competitive inhibition by compound 4b. Its favorable ADMET and drug-likeness properties make compound 4b a promising therapeutic candidate with a reduced risk of toxicity. Molecular docking revealed that the compounds bind strongly to mushroom tyrosinase (mTYR) and human tyrosinase-related protein 1 (TYRP1), with compound 4b showing superior binding energies of -7.0 kcal/mol (mTYR) and -6.5 kcal/mol (TYRP1), surpassing both kojic acid and tropolone. Molecular dynamics simulations demonstrated the stability of the mTYR-4b complex with low RMSD and RMSF and consistent Rg and SASA values. Persistent strong hydrogen bonds with mTYR, along with favorable Gibbs free energy and MM/PBSA calculations (-19.37 kcal/mol), further support stable protein-ligand interactions. Overall, compound 4b demonstrated strong tyrosinase inhibition and favorable pharmacokinetics, highlighting its potential for treating pigmentary disorders.


Subject(s)
Enzyme Inhibitors , Indoles , Molecular Docking Simulation , Monophenol Monooxygenase , Thiourea , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Kinetics , Humans , Molecular Dynamics Simulation , Agaricales/enzymology , Structure-Activity Relationship
5.
Int J Mol Sci ; 25(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39273658

ABSTRACT

Previously, we showed the antitumor activity of the new NOS/PDK inhibitor T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). The present study included an assessment of in vitro cytotoxicity against human malignant and normal cells according to the MTT-test and in vivo antitumor effects in solid tumor models in comparison with precursor compounds T1023 (NOS inhibitor; 1-isobutanoyl-2-isopropylisothiourea hydrobromide) and Na-DCA (PDK inhibitor; sodium dichloroacetate), using morphological, histological, and immunohistochemical methods. The effects of T1084 and T1023 on the in vitro survival of normal (MRC-5) and most malignant cells (A375, MFC-7, K562, OAW42, and PC-3) were similar and quantitatively equal. At the same time, melanoma A375 cells showed 2-2.5 times higher sensitivity (IC50: 0.39-0.41 mM) to the cytotoxicity of T1023 and T1084 than other cells. And only HeLa cells showed significantly higher sensitivity to the cytotoxicity of T1084 compared to T1023 (IC50: 0.54 ± 0.03 and 0.81 ± 0.02 mM). Comparative studies of the in vivo antitumor effects of Na-DCA, T1023, and T1084 on CC-5 cervical cancer and B-16 melanoma in mice were conducted with subchronic daily i.p. administration of these agents at an equimolar dose of 0.22 mmol/kg (33.6, 60.0, and 70.7 mg/kg, respectively). Cervical cancer CC-5 fairly quickly evaded the effects of both Na-DCA and T1023. So, from the end of the first week of Na-DCA or T1023 treatment, the tumor growth inhibition (TGI) began to decrease from 40% to an insignificant level by the end of the observation. In contrast, in two independent experiments, CC-5 showed consistently high sensitivity to the action of T1084: a significant antitumor effect with high TGI (43-58%) was registered throughout the observation, without any signs of neoplasia adaptation. The effect of precursor compounds on melanoma B-16 was either minimal (for Na-DCA) or moderate (for T1023) with TGI only 33%, which subsequently decreased by the end of the experiment. In contrast, the effect of T1084 on B-16 was qualitatively more pronounced and steadily increasing; it was accompanied by a 3-fold expansion of necrosis and dystrophy areas, a decrease in proliferation, and increased apoptosis of tumor cells. Morphologically, the T1084 effect was 2-fold superior to the effects of T1023-the TGI index reached 59-62%. This study suggests that the antitumor effects of T1084 develop through the interaction of NOS-dependent and PDK-dependent pathophysiological effects of this NOS/PDK inhibitor. The NOS inhibitory activity of T1084 exerts an anti-angiogenic effect on neoplasia. At the same time, the PDK inhibitory activity of T1084 enhances the cytotoxicity of induced intratumoral hypoxia and suppresses the development of neoplasia adaptation to anti-angiogenic stress. Such properties allow T1084 to overcome tumor resistance and realize a stable synergistic antitumor effect.


Subject(s)
Antineoplastic Agents , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Cell Line, Tumor , Thiourea/analogs & derivatives , Thiourea/pharmacology , Thiourea/therapeutic use , Xenograft Model Antitumor Assays , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Female , Enzyme Inhibitors/pharmacology , Cell Survival/drug effects , HeLa Cells
6.
Bioorg Chem ; 152: 107723, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39182258

ABSTRACT

Colorectal cancer (CRC) remains one of the most prevalent malignant tumors of the digestive system, yet the availability of safe and effective chemotherapeutic agents for clinical use remains limited. Camptothecin (CPT) and its derivatives, though approved for cancer treatment, have encountered significant challenges in clinical application due to their low bioavailability and high systemic toxicity. Strategic modification at the 7-position of CPT enables the development of novel CPT derivatives with high activity. In the present study, a series of compounds incorporating aminoureas, amino thioureas, and acylamino thioureas as substituents at the 7-position were screened. These compounds were subsequently evaluated for their cytotoxicity against the human gastric cancer (GC) cell line AGS and the CRC cell line HCT116. Two derivatives, XSJ05 (IC50 = 0.006 ± 0.003 µM) and XSJ07 (IC50 = 0.013 ± 0.003 µM), exhibited remarkably effective anti-CRC activity, being better than TPT. In addition, they have a better safety profile. In vitro mechanistic studies revealed that XSJ05 and XSJ07 exerted their inhibitory effects on CRC cell proliferation by suppressing the activity of topoisomerase I (Topo I). This suppression triggers DNA double-strand breaks, leads to DNA damage and subsequently causes CRC cells to arrest in the G2/M phase. Ultimately, the cells undergo apoptosis. Collectively, these findings indicate that XSJ05 and XSJ07 possess superior activity coupled with favorable safety profiles, suggesting their potential as lead compounds for the development of CRC therapeutics.


Subject(s)
Antineoplastic Agents , Apoptosis , Camptothecin , Cell Proliferation , Colorectal Neoplasms , DNA Topoisomerases, Type I , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type I/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Molecular Structure , Apoptosis/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Cell Line, Tumor
7.
Int J Biol Macromol ; 278(Pt 3): 134870, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173802

ABSTRACT

This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, 1H/13C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.


Subject(s)
Density Functional Theory , Molecular Docking Simulation , Molecular Dynamics Simulation , Thiourea , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Humans , SARS-CoV-2/drug effects , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Hydrogen Bonding , Influenza A Virus, H5N1 Subtype/drug effects
8.
Eur J Pharmacol ; 982: 176885, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39128803

ABSTRACT

The distinct chemical structure of thiourea derivatives provides them with an advantage in selectively targeting cancer cells. In our previous study, we selected the most potent compounds, 2 and 8, with 3,4-dichloro- and 3-trifluoromethylphenyl substituents, respectively, across colorectal (SW480 and SW620), prostate (PC3), and leukemia (K-562) cancer cell lines, as well as non-tumor HaCaT cells. Our research has demonstrated their anticancer potential by targeting key molecular pathways involved in cancer progression, including caspase 3/7 activation, NF-κB (Nuclear Factor Kappa-light-chain-enhancer of activated B cells) activation decrease, VEGF (Vascular Endothelial Growth Factor) secretion, ROS (Reactive Oxygen Species) production, and metabolite profile alterations. Notably, these processes exhibited no significant alterations in HaCaT cells. The effectiveness of the studied compounds was also tested on spheroids (3D culture). Both derivatives 2 and 8 increased caspase activity, decreased ROS production and NF-κB activation, and suppressed the release of VEGF in cancer cells. Metabolomic analysis revealed intriguing shifts in cancer cell metabolic profiles, particularly in lipids and pyrimidines metabolism. Assessment of cell viability in 3D spheroids showed that SW620 cells exhibited better sensitivity to compound 2 than 8. In summary, structural modifications of the thiourea terminal components, particularly dihalogenophenyl derivative 2 and para-substituted analog 8, demonstrate their potential as anticancer agents while preserving safety for normal cells.


Subject(s)
Antineoplastic Agents , NF-kappa B , Reactive Oxygen Species , Thiourea , Vascular Endothelial Growth Factor A , Humans , Thiourea/pharmacology , Thiourea/analogs & derivatives , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Cell Line, Tumor , Vascular Endothelial Growth Factor A/metabolism , Cell Survival/drug effects , Apoptosis/drug effects , Caspase 7/metabolism , Caspase 3/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Structure-Activity Relationship
9.
Chem Biol Interact ; 402: 111190, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39121899

ABSTRACT

The isothiourea derivative NT-1505 is known as a neuroprotector and cognition enhancer in animal models of neurodegenerative diseases. Bearing in mind possible relation of the NT-1505-mediated neuroprotection to mitochondrial uncoupling activity, here, we examine NT-1505 effects on mitochondria functioning. At concentrations starting from 10 µM, NT-1505 prevented Ca2+-induced mitochondrial swelling, similar to common uncouplers. Alongside the inhibition of the mitochondrial permeability transition, NT-1505 caused a decrease in mitochondrial membrane potential and an increase in respiration rate in both isolated mammalian mitochondria and cell cultures, which resulted in the reduction of energy-dependent Ca2+ uptake by mitochondria. Based on the oppositely directed effects of bovine serum albumin and palmitate, we suggest the involvement of fatty acids in the NT-1505-mediated mitochondrial uncoupling. In addition, we measured the induction of electrical current across planar bilayer lipid membrane upon the addition of NT-1505 to the bathing solution. Importantly, introduction of the palmitic acid into the lipid bilayer composition led to weak proton selectivity of the NT-1505-mediated BLM current. Thus, the present study revealed an ability of NT-1505 to cause moderate protonophoric uncoupling of mitochondria, which could contribute to the neuroprotective effect of this compound.


Subject(s)
Membrane Potential, Mitochondrial , Neuroprotective Agents , Thiourea , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Thiourea/analogs & derivatives , Thiourea/pharmacology , Thiourea/chemistry , Membrane Potential, Mitochondrial/drug effects , Calcium/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Uncoupling Agents/pharmacology , Rats , Mitochondrial Swelling/drug effects , Protons , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism
10.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125032

ABSTRACT

Reactions with allyl-, acetyl-, and phenylisothiocyanate have been studied on the basis of 3-amino-4,6-dimethylpyridine-2(1H)-one, 3-amino-4-phenylpyridine-2-one, and 3-amino-4-(thiophene-2-yl)pyridine-2(1H)-one (benzoyl-)isothiocyanates, and the corresponding thioureide derivatives 8-11a-c were obtained. Twelve thiourea derivatives were obtained and studied for their anti-diabetic activity against the enzyme α-glucosidase in comparison with the standard drug acarbose. The comparison drug acarbose inhibits the activity of α-glucosidase at a concentration of 15 mM by 46.1% (IC50 for acarbose is 11.96 mM). According to the results of the conducted studies, it was shown that alkyl and phenyl thiourea derivatives 8,9a-c, in contrast to their acetyl-(benzoyl) derivatives and 10,11a-c, show high antidiabetic activity. Thus, 1-(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9a has the highest inhibitory activity against the enzyme α-glucosidase, exceeding the activity of the comparison drug acarbose, which inhibits the activity of α-glucosidase by 56.6% at a concentration of 15 mm (IC50 = 9,77 mM). 1-(6-methyl-2-oxo 4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9c has inhibitory activity against the enzyme α-glucosidase, comparable to the comparison drug acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mm per 41.2% (IC50 = 12,94 mM). Compounds 8a, 8b, and 9b showed inhibitory activity against the enzyme α-glucosidase, with a lower activity compared to acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, respectively. The IC50 against α-glucosidase for compounds 8a, 8b, and 9b was found to be 16.64 mM, 19.79 mM, and 21.79 mM, respectively. The other compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c did not show inhibitory activity against α-glucosidase. Thus, the newly synthesized derivatives of thiourea based on 3-aminopyridine-2(1H)-ones are promising candidates for the further modification and study of their potential anti-diabetic activity. These positive bioanalytical results will stimulate further in-depth studies, including in vivo models.


Subject(s)
Glycoside Hydrolase Inhibitors , Thiourea , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Thiourea/chemical synthesis , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Aminopyridines/chemistry , Aminopyridines/pharmacology , Aminopyridines/chemical synthesis
11.
Eur J Pharmacol ; 982: 176949, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39209094

ABSTRACT

Chorioamnionitis is closely associated with preterm labor and poses a significant public health concern. In this pathological process where inflammation plays a key role, intracellular mechanisms such as endoplasmic reticulum stress are crucial. In this study, we aimed to explore the potential positive outcomes of the combined use of salubrinal (SLB) with magnesium (Mg) treatment in chorioamnionitis. Thirty pregnant rats were divided into 5 groups as: Control, LPS (1 mg/kg), LPS + SLB (1 mg/kg), LPS + Mg (Dhaka protocol), LPS + SLB + Mg. Rats were sacrificed 4 h after LPS administration, then placental and fetal brain tissues were collected. LPS administration enhanced the levels of tumor necrosis factor-alpha, vascular endothelial growth factor, caspase-3 immunoexpressions, BAX, eukaryotic initiation factor 2-alpha, s100, and glial fibrillary acidic protein expressions and lowered BCL2 expressions in the placenta or fetal brains. SLB and Mg treatments were observed to reverse all these findings, and the most significant positive effect was in the LPS + SLB + Mg group. The known anti-inflammatory activity of Mg, when used with SLB, preventing the transition to apoptosis and increasing antioxidant enzyme activity, as identified in this study, can contribute significantly to the literature. However, these results need to be supported by additional molecular studies.


Subject(s)
Chorioamnionitis , Cinnamates , Lipopolysaccharides , Magnesium Sulfate , Placenta , Thiourea , Animals , Female , Pregnancy , Cinnamates/pharmacology , Rats , Placenta/drug effects , Placenta/metabolism , Thiourea/analogs & derivatives , Thiourea/pharmacology , Thiourea/therapeutic use , Chorioamnionitis/drug therapy , Chorioamnionitis/chemically induced , Chorioamnionitis/pathology , Chorioamnionitis/metabolism , Magnesium Sulfate/pharmacology , Disease Models, Animal , Brain/drug effects , Brain/metabolism , Brain/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley
12.
J Enzyme Inhib Med Chem ; 39(1): 2387415, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39140677

ABSTRACT

EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that E-9 (IC50 = 2.68 µM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC50 = 45.8 µM). Additionally, the inhibitory kinetic study indicated that E-9 (Ki = 1.64 µM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the para-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that E-9 has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that E-9 could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.


Subject(s)
Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors , Escherichia coli , Glucuronidase , Structure-Activity Relationship , Molecular Structure , Escherichia coli/drug effects , Escherichia coli/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Molecular Docking Simulation , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Glycoproteins
13.
Comput Biol Chem ; 112: 108131, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38968781

ABSTRACT

Human glutaminyl cyclase (hQC) inhibitors have great potential to be used as anti- Alzheimer's disease (AD) agents by reducing the toxic pyroform of ß-amyloid in the brains of AD patients. The four-dimensional quantitative structure activity relationship (4D-QSAR) model of N-substituted urea/thioureas was established with satisfying predictive ability and statistical reliability (Q2 = 0.521, R2 = 0.933, R2prep = 0.619). By utilizing the developed 4D-QSAR model, a set of new N-substituted urea/thioureas was designed and evaluated for their Absorption Distribution Metabolism Excretion and Toxicity (ADMET) properties. The results of molecular dynamics (MD) simulations, Principal component analysis (PCA), free energy landscape (FEL), dynamic cross-correlation matrix (DCCM) and molecular mechanics generalized Born Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, revealed that the designed compounds were remained stable in protein binding pocket and compounds b ∼ f (-35.1 to -44.55 kcal/mol) showed higher binding free energy than that of compound 14 (-33.51 kcal/mol). The findings of this work will be a theoretical foundation for further research and experimental validation of urea/thiourea derivatives as hQC inhibitors.


Subject(s)
Aminoacyltransferases , Enzyme Inhibitors , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Thiourea , Urea , Humans , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Urea/chemistry , Urea/analogs & derivatives , Urea/pharmacology , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Drug Design
14.
Sci Rep ; 14(1): 15985, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987560

ABSTRACT

Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at  the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought.  Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.


Subject(s)
Droughts , Oxidative Stress , Plant Leaves , Thiourea , Triticum , Triticum/drug effects , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Thiourea/pharmacology , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Chlorophyll/metabolism , Water/metabolism , Stress, Physiological/drug effects
15.
Int J Biol Macromol ; 275(Pt 1): 133571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960243

ABSTRACT

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors. The current study seeks to contribute to the identification of efficacious POP inhibitors through the design, synthesis, and comprehensive evaluation (both in vitro and in silico) of thiazolyl thiourea derivatives (5a-r). In vitro experimentation exhibited that the compounds displayed significant higher potency as POP inhibitors. Compound 5e demonstrated an IC50 value of 16.47 ± 0.54 µM, representing a remarkable potency. A meticulous examination of the structure-activity relationship indicated that halogen and methoxy substituents were the most efficacious. In silico investigations delved into induced fit docking, pharmacokinetics, and molecular dynamics simulations to elucidate the intricate interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, our pharmacokinetic assessments confirmed that the majority of the synthesized compounds possess attributes conducive to potential drug development.


Subject(s)
Molecular Docking Simulation , Prolyl Oligopeptidases , Serine Endopeptidases , Thiourea , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/chemical synthesis , Thiourea/analogs & derivatives , Structure-Activity Relationship , Humans , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Molecular Dynamics Simulation , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemical synthesis , Models, Molecular , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Catalytic Domain , Chemistry Techniques, Synthetic
16.
Future Med Chem ; 16(15): 1485-1497, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38953461

ABSTRACT

Aim: We aim to develop new anti-leishmanial agents against Leishmania major and Leishmania tropica.Materials & methods: A total of 23 thiourea derivatives of (±)-aminoglutethimide were synthesized and evaluated for in vitro activity against promastigotes of L. major and L. tropica.Results & conclusion: The N-benzoyl analogue 7p was found potent (IC50 = 12.7 µM) against L. major and non toxic to normal cells. The docking studies, indicates that these inhibitors may target folate and glycolytic pathways of the parasite. The N-hexyl compound 7v was found strongly active against both species, and lacked cytotoxicity against normal cells, whereas compound 7r, with a 3,5-bis-(tri-fluoro-methyl)phenyl unit, was active against Leishmania, but was cytotoxic in nature. Compound 7v was thus identified as a hit for further studies.


[Box: see text].


Subject(s)
Antiprotozoal Agents , Leishmania major , Leishmania tropica , Thiourea , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/analogs & derivatives , Thiourea/chemical synthesis , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Leishmania major/drug effects , Leishmania tropica/drug effects , Structure-Activity Relationship , Molecular Docking Simulation , Humans , Parasitic Sensitivity Tests , Molecular Structure , Animals
17.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930915

ABSTRACT

Organic arsenic compounds such as p-aminophenylarsine oxide (p-APAO) are easier for structural optimization to improve drug-like properties such as pharmacokinetic properties, therapeutic efficacy, and target selectivity. In order to strengthen the selectivity of 4-(1,3,2-dithiarsinan-2-yl) aniline 7 to tumor cell, a thiourea moiety was used to strengthen the anticancer activity. To avoid forming a mixture of α/ß anomers, the strategy of 2-acetyl's neighboring group participation was used to lock the configuration of 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide. 1-(4-(1,3,2-dithiarsinan-2-yl) aniline)-2-N-(2,3,4,6-tetra-O-acetyl-ß-d-glucopyranos-1-yl)-thiourea 2 can increase the selectivity of human colon cancer cells HCT-116 (0.82 ± 0.06 µM vs. 1.82 ± 0.07 µM) to human embryonic kidney 293T cells (1.38 ± 0.01 µM vs. 1.22 ± 0.06 µM) from 0.67 to 1.68, suggesting a feasible approach to improve the therapeutic index of arsenic-containing compounds as chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Drug Design , Thiourea , Humans , Thiourea/chemistry , Thiourea/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Glucose/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Molecular Structure , Arsenicals/chemistry , Arsenicals/pharmacology , Arsenicals/chemical synthesis , Structure-Activity Relationship
18.
Dalton Trans ; 53(31): 12951-12961, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38842058

ABSTRACT

Four new copper(II) complexes were synthesized and characterized with the general formula [Cu(N-N)(Th)(NO3)], where N-N corresponds to the N-heterocyclic ligands 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy), 4,7-diphenyl-1,10-phenanthroline (dpp), and 4,4-dimethyl-2,2'-bipyridine (dmbp) and Th represents the N,N-dibenzyl-N'-benzoylthiourea. Cytotoxic activities of the complexes against HCT116 (human colon carcinoma), HepG2 (human hepatocellular carcinoma), and non-tumor MRC-5 (human lung fibroblast) cells were investigated. The copper(II) complexes 1-4 were characterized by spectroscopic techniques while complexes 1 and 2 were studied using single-crystal X-ray diffraction as well. The complexes possessed a five-coordinated structure with one nitrate ligand as a monodentate at the axial position and two bidentate ligands N-heterocyclic and N,N-dibenzyl-N'-benzoylthiourea. The complexes showed promising IC50 values, ranging from 0.3 to 9.0 µM. Furthermore, interaction studies with biomolecules such as calf thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA), which can act as possible biological targets of the complexes, were carried out. The studies suggested that the compounds interact moderately with ct-DNA and BSA. Complexes 1, 2, and 4 did not lead to cell accumulation at any stage of the cell cycle but caused a significant increase in internucleosomal DNA fragmentation. Whereas, compound 3 caused cell cycle arrest in the S phase while doxorubicin caused cell cycle arrest in the G2/M phase. The effect of structural modifications on the metal compounds was correlated with their biological properties and it was concluded that an increase in biological activity occurred with increasing the extension of the diimine ligands. Thus, complex 3 was the most promising one.


Subject(s)
Antineoplastic Agents , Cell Cycle , Coordination Complexes , Copper , DNA , Serum Albumin, Bovine , Thiourea , Copper/chemistry , Copper/pharmacology , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , DNA/metabolism , DNA/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cattle , Thiourea/chemistry , Thiourea/pharmacology , Cell Cycle/drug effects , Animals , Imines/chemistry , Imines/pharmacology , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure
19.
Mol Microbiol ; 122(1): 113-128, 2024 07.
Article in English | MEDLINE | ID: mdl-38889382

ABSTRACT

A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.


Subject(s)
Antioxidants , Escherichia coli , Hydrogen Peroxide , Oxidative Stress , Reactive Oxygen Species , Antioxidants/metabolism , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Escherichia coli/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Superoxides/metabolism , Glutathione/metabolism , DNA Damage , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Acetylcysteine/pharmacology , Acetylcysteine/metabolism
20.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L126-L139, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38771153

ABSTRACT

Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-ß-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-ß-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.


Subject(s)
Cellular Senescence , Endoplasmic Reticulum Stress , Fibroblasts , Lung , Humans , Cellular Senescence/drug effects , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Middle Aged , Lung/metabolism , Lung/pathology , Lung/drug effects , Adult , Aged , Male , Female , Extracellular Matrix/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Cells, Cultured , Cinnamates/pharmacology , Activating Transcription Factor 6/metabolism , Cell Proliferation/drug effects , Etoposide/pharmacology , Collagen Type I/metabolism , Aging/metabolism , Aging/pathology , Collagen Type I, alpha 1 Chain/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL