Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32740897

ABSTRACT

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Biofuels , Biosynthetic Pathways , Brassicaceae/metabolism , Thlaspi/enzymology , Thlaspi/metabolism , Triglycerides/biosynthesis , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Acyltransferases/metabolism , Amino Acid Sequence , Arabidopsis Proteins/metabolism , Biosynthetic Pathways/genetics , Diacylglycerol O-Acyltransferase/metabolism , Erucic Acids/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Oils/metabolism , Plants, Genetically Modified , Seeds/genetics , Sequence Analysis , Thlaspi/genetics , Transcriptome
2.
J Exp Bot ; 63(11): 4179-89, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22581842

ABSTRACT

There is huge variability among populations of the hyperaccumulator Noccaea caerulescens (formerly Thlaspi caerulescens) in their capacity to tolerate and accumulate cadmium. To gain new insights into the mechanisms underlying this variability, we estimated cadmium fluxes and further characterized the N. caerulescens heavy metal ATPase 4 (NcHMA4) gene in three populations (two calamine, Saint-Félix-de-Pallières, France and Prayon, Belgium; one serpentine, Puente Basadre, Spain) presenting contrasting levels of tolerance and accumulation. Cadmium uptake and translocation varied among populations in the same way as accumulation; the population with the highest cadmium concentration in shoots (Saint Félix-de-Pallières) presented the highest capacity for uptake and translocation. We demonstrated that the four NcHMA4 copies identified in a previous study are not fixed at the species level, and that the copy truncated in the C-terminal part encodes a functional protein. NcHMA4 expression and gene copy number was lower in the serpentine population, which was the least efficient in cadmium translocation compared to the calamine populations. NcHMA4 expression was associated with the vascular tissue in all organs, with a maximum at the crown. Overall, our results indicate that differences in cadmium translocation ability of the studied populations appear to be controlled, at least partially, by NcHMA4, while the overexpression of NcHMA4 in the two calamine populations may result from convergent evolution.


Subject(s)
Adenosine Triphosphatases/genetics , Cadmium/metabolism , Gene Dosage , Gene Expression Regulation, Plant , Plant Proteins/genetics , Thlaspi/enzymology , Adenosine Triphosphatases/metabolism , Plant Proteins/metabolism , Thlaspi/genetics , Thlaspi/metabolism
3.
J Biol Chem ; 286(47): 40423-32, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-21930704

ABSTRACT

When growing in its native habitat, Thlaspi goesingense can hyperaccumulate 1.2% of its shoot dry weight as nickel. We reported previously that both constitutively elevated activity of serine acetyltransferase (SAT) and concentration of glutathione (GSH) are involved in the ability of T. goesingense to tolerate nickel. A feature of SAT is its feedback inhibition by L-cysteine. To understand the role of this regulation of SAT by Cys on GSH-mediated nickel tolerance in T. goesingense, we characterized the enzymatic properties of SATs from T. goesingense. We demonstrate that all three isoforms of SAT in T. goesingense are insensitive to inhibition by Cys. Further, two amino acids (proline and alanine) in the C-terminal region of the cytosolic SAT (SAT-c) from T. goesingense are responsible for converting the enzyme from a Cys-sensitive to a Cys-insensitive form. Furthermore, the Cys-insensitive isoform of SAT-c confers elevated resistance to nickel when expressed in Escherichia coli and Arabidopsis thaliana, supporting a role for altered regulation of SAT by Cys in nickel tolerance in T. goesingense.


Subject(s)
Nickel/metabolism , Serine O-Acetyltransferase/metabolism , Thlaspi/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Cysteine/pharmacology , Cytosol/enzymology , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mitochondria/enzymology , Molecular Sequence Data , Nickel/toxicity , Plastids/enzymology , Polymorphism, Genetic , Protein Structure, Tertiary , Serine O-Acetyltransferase/antagonists & inhibitors , Serine O-Acetyltransferase/chemistry , Serine O-Acetyltransferase/genetics , Thlaspi/cytology , Thlaspi/drug effects , Thlaspi/enzymology
4.
Phytochemistry ; 72(14-15): 1699-709, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21783213

ABSTRACT

Glucosinolates, amino acid-derived thioglycosides found in plants of the Brassicales order, are one of the best studied classes of plant secondary metabolites. Together with myrosinases and supplementary proteins known as specifier proteins, they form the glucosinolate-myrosinase system that upon tissue damage gives rise to a number of biologically active glucosinolate breakdown products such as isothiocyanates, epithionitriles and organic thiocyanates involved in plant defense. While isothiocyanates are products of the spontaneous rearrangement of the glucosinolate aglycones released by myrosinase, the formation of epithionitriles and organic thiocyanates depends on both myrosinases and specifier proteins. Hydrolysis product profiles of many glucosinolate-containing plant species indicate the presence of specifier proteins, but only few have been identified and characterized biochemically. Here, we report on cDNA cloning, heterologous expression and characterization of TaTFP, a thiocyanate-forming protein (TFP) from Thlaspi arvense L. (Brassicaceae), that is expressed in all plant organs and can be purified in active form after heterologous expression in Escherichia coli. As a special feature, this protein promotes the formation of allylthiocyanate as well as the corresponding epithionitrile upon myrosinase-catalyzed hydrolysis of allylglucosinolate, the major glucosinolate of T. arvense. All other glucosinolates tested are converted to their simple nitriles when hydrolyzed in the presence of TaTFP. Despite its ability to promote allylthiocyanate formation, TaTFP has a higher amino acid sequence similarity to known epithiospecifier proteins (ESPs) than to Lepidium sativum TFP. However, unlike Arabidopsis thaliana ESP, its activity in vitro is not strictly dependent on Fe²âº addition to the assay mixtures. The availability of TaTFP in purified form enables future studies to be aimed at elucidating the structural bases of specifier protein specificities and mechanisms. Furthermore, identification of TaTFP shows that product specificities of specifier proteins can not be predicted based on amino acid sequence similarity and raises interesting questions about specifier protein evolution.


Subject(s)
Allyl Compounds/metabolism , Glucosinolates/metabolism , Plant Proteins/metabolism , Thiocyanates/metabolism , Thlaspi/metabolism , Allyl Compounds/chemistry , Amino Acid Sequence , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ferrous Compounds , Gene Expression , Glucosinolates/chemistry , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Nitriles/chemistry , Nitriles/metabolism , Phylogeny , Plant Components, Aerial/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Roots/chemistry , Quaternary Ammonium Compounds , RNA, Plant/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity , Thiocyanates/chemistry , Thlaspi/chemistry , Thlaspi/enzymology , Thlaspi/genetics
5.
Plant J ; 66(5): 852-62, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21457363

ABSTRACT

Cadmium (Cd) is a highly toxic heavy metal for plants, but several unique Cd-hyperaccumulating plant species are able to accumulate this metal to extraordinary concentrations in the aboveground tissues without showing any toxic symptoms. However, the molecular mechanisms underlying this hypertolerance to Cd are poorly understood. Here we have isolated and functionally characterized an allelic gene, TcHMA3 (heavy metal ATPase 3) from two ecotypes (Ganges and Prayon) of Thlaspi caerulescens contrasting in Cd accumulation and tolerance. The TcHMA3 alleles from the higher (Ganges) and lower Cd-accumulating ecotype (Prayon) share 97.8% identity, and encode a P(1B)-type ATPase. There were no differences in the expression pattern, cell-specificity of protein localization and transport substrate-specificity of TcHMA3 between the two ecotypes. Both alleles were characterized by constitutive expression in the shoot and root, a tonoplast localization of the protein in all leaf cells and specific transport activity for Cd. The only difference between the two ecotypes was the expression level of TcHMA3: Ganges showed a sevenfold higher expression than Prayon, partly caused by a higher copy number. Furthermore, the expression level and localization of TcHMA3 were different from AtHMA3 expression in Arabidopsis. Overexpression of TcHMA3 in Arabidopsis significantly enhanced tolerance to Cd and slightly increased tolerance to Zn, but did not change Co or Pb tolerance. These results indicate that TcHMA3 is a tonoplast-localized transporter highly specific for Cd, which is responsible for sequestration of Cd into the leaf vacuoles, and that a higher expression of this gene is required for Cd hypertolerance in the Cd-hyperaccumulating ecotype of T. caerulescens.


Subject(s)
Adenosine Triphosphatases/metabolism , Cadmium/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Thlaspi/genetics , Adenosine Triphosphatases/genetics , Alleles , Arabidopsis/genetics , Cloning, Molecular , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Thlaspi/enzymology , Thlaspi/growth & development , Transfection , Yeasts/genetics
6.
Planta ; 234(1): 83-95, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21369921

ABSTRACT

The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd²âº ions.


Subject(s)
Aminoacyltransferases/metabolism , Arabidopsis/enzymology , Phytochelatins/biosynthesis , Thlaspi/enzymology , Amino Acid Sequence , Aminoacyltransferases/chemistry , Aminoacyltransferases/isolation & purification , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/isolation & purification , Arabidopsis Proteins/metabolism , Base Sequence , Cadmium/metabolism , Chelating Agents/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Molecular Sequence Data , Plant Leaves/metabolism , Plant Roots/metabolism , Thlaspi/genetics , Thlaspi/metabolism , Zinc/metabolism
7.
Plant Cell Rep ; 30(6): 1067-76, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21327392

ABSTRACT

Phytochelatin synthase (PCS) is key enzyme for heavy metal detoxification and accumulation in plant. In this study, we isolated the PCS gene TcPCS1 from the hyperaccumulator Thlaspi caerulescens. Overexpression of TcPCS1 enhanced PC production in tobacco. Cd accumulation in the roots and shoots of TcPCS1 transgenic seedlings was increased compared to the wild type (WT), while Cd translocation from roots to shoots was not affected under Cd treatment. The root length of the TcPCS1 transgenic tobacco seedlings was significantly longer than that of the WT under Cd stress. These data indicate that TcPCS1 expression might increase Cd accumulation and tolerance in transgenic tobacco. In addition, the malondialdehyde content in TcPCS1 plants was below that of the wild type. However, the antioxidant enzyme activities of superoxide dismutase, peroxidase and catalase were found to be significantly higher than those of the WT when the transgenic plant was exposed to Cd stress. This suggests that the increase in PC production might enhance the Cd accumulation and thus increase the oxidative stress induced by the cadmium. The production of PCs could cause a transient decrease in the cytosolic glutathione (GSH) pool, and Cd and lower GSH concentration caused an increase in the oxidative response. We also determined TcPCS1 in Thlaspi caerulescens was regulated after exposure to various concentrations of CdCl(2) over different treatment times. Expression of TcPCS1 leading to increased Cd accumulation and enhanced metal tolerance, but the Cd contents were restrained by adding zinc in Saccharomyces cerevisiae transformants.


Subject(s)
Adaptation, Physiological , Aminoacyltransferases/metabolism , Metals, Heavy/metabolism , Nicotiana/metabolism , Saccharomyces cerevisiae/metabolism , Thlaspi/enzymology , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Aminoacyltransferases/genetics , Cadmium/metabolism , Cadmium/toxicity , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism , Malondialdehyde/metabolism , Metals, Heavy/toxicity , Organ Specificity/drug effects , Organ Specificity/genetics , Phytochelatins/metabolism , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Plants, Genetically Modified , RNA, Plant/genetics , RNA, Plant/metabolism , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stress, Physiological/drug effects , Stress, Physiological/genetics , Thlaspi/drug effects , Thlaspi/genetics , Nicotiana/drug effects , Nicotiana/genetics , Transformation, Genetic/drug effects
8.
Planta ; 233(6): 1173-84, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21327818

ABSTRACT

Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed.


Subject(s)
Lactoylglutathione Lyase/genetics , Metals, Heavy/metabolism , Plant Proteins/genetics , Thlaspi/enzymology , Thlaspi/genetics , Adaptation, Physiological/genetics , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Lactoylglutathione Lyase/metabolism , Molecular Sequence Data , Plant Proteins/biosynthesis , Plant Proteins/metabolism , Promoter Regions, Genetic , Sequence Analysis, Protein , Stress, Physiological/genetics , Thlaspi/metabolism , Zinc/metabolism
9.
Int J Phytoremediation ; 12(8): 733-44, 2010.
Article in English | MEDLINE | ID: mdl-21166344

ABSTRACT

A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions.


Subject(s)
Cadmium/toxicity , Glutathione Reductase/metabolism , Raphanus/enzymology , Superoxide Dismutase/metabolism , Thlaspi/enzymology , Cadmium/metabolism , Chlorophyll/metabolism , Droughts , Glutathione Reductase/drug effects , Glutathione Reductase/genetics , Hydroponics , Plant Leaves/enzymology , Raphanus/drug effects , Raphanus/growth & development , Superoxide Dismutase/drug effects , Superoxide Dismutase/genetics , Thlaspi/drug effects , Thlaspi/growth & development
10.
Int J Phytoremediation ; 12(8): 805-19, 2010.
Article in English | MEDLINE | ID: mdl-21166350

ABSTRACT

In this work we analysed the protein variations which occurred in two Thlaspi caerulescens populations when subjected to 0 and 10 microM nickel (Ni) treatments: the Ni hyperaccumulator T. caerulescensfrom a metalliferous soil in Italy and T. caerulescens from Czech Republic, adapted to grow on a non-metalliferous soil. Ni accumulation in roots and shoots and the effect on growth and morphology were examined. Leaves proteins profiles of Ni treated and untreated samples were analysed by two dimensional liquid chromatography technique. From the comparison of more than 500 proteins, few differences were observed between treated and untreated plants of the same population. Differences were found between the two Thlaspi populations, instead. Proteins involved in transport, metal chelation, and signal transduction increased in abundance in the 10 microM Ni treated samples while, in condition of absence of Ni, proteins involved in sulphur metabolism, protection against reactive oxygen species and stress response showed to increase in abundance in the two populations. These proteins can be used as biomarkers both for monitoring biodiversity in indigenous plants and for selection of Ni phytoremediation plants.


Subject(s)
Plant Proteins/genetics , Soil/analysis , Thlaspi/genetics , Czech Republic , Enzymes/genetics , Gene Expression Regulation, Plant , Genetic Variation , Italy , Metals/analysis , Nickel/analysis , Nickel/pharmacology , Plant Leaves/anatomy & histology , Plant Leaves/enzymology , Plant Leaves/metabolism , Plant Roots/enzymology , Plant Roots/growth & development , Thioredoxins/genetics , Thlaspi/drug effects , Thlaspi/enzymology , Thlaspi/growth & development
11.
Chemosphere ; 71(7): 1276-83, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18262587

ABSTRACT

The southern French (Ganges) ecotype of Thlaspi caerulescens J & C Presl is able to hyperaccumulate several thousand mg Cd kg(-1) shoot dry weight without suffering from phytotoxicity. We investigated the effect of Cd on growth and the activity of carbonic anhydrase (CA), a typical Zn-requiring enzyme, of T. caerulescens in soil and hydroponic experiments. In one of the hydroponic experiments, T. caerulescens was compared to the non-accumulator Thlaspi ferganense N. Busch. In the soil experiment, additions of Cd at 5-500 mg kg(-1) soil increased the growth of T. caerulescens significantly. In the hydroponic experiments, exposure to Cd at 1-50 microM for three weeks had no significant effect on the growth of T. caerulescens, but decreased the growth of T. ferganense markedly even at the lowest concentration of Cd (1muM). Cadmium exposure significantly increased the CA activity in T. caerulescens, but decreased it in T. ferganense. The CA activity in T. caerulescens correlated positively with the Cd concentration in the shoots up to 6000 mg kg(-1), even though shoot Zn concentration was decreased by the Cd treatments. For comparison, Cd treatments had no consistent effect on the activity of superoxide dismutase in T. caerulescens. The results suggest that Cd may play a physiological role in the Cd-hyperaccumulating ecotype of T. caerulescens by enhancing the activities of some enzymes such as CA. Further research is needed to establish whether a Cd-requiring CA exists in T. caerulescens.


Subject(s)
Cadmium/pharmacology , Plant Physiological Phenomena/drug effects , Thlaspi/enzymology , Thlaspi/growth & development , Carbonic Anhydrases/metabolism , Dose-Response Relationship, Drug , Plant Shoots/enzymology , Plant Shoots/growth & development , Superoxide Dismutase/metabolism
12.
Biochem Biophys Res Commun ; 363(1): 51-6, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-17826738

ABSTRACT

We report here the first purification of a P(1B) type ATPase, a group of transporters that occurs in bacteria, plants and animals incl. humans, from a eukaryotic organism in native state. TcHMA4 is a P(1B) type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn-activated ATPase activity after reconstitution into lipid vesicles, showing that it was in its native state. Gels of crude root extract and of the purified protein revealed TcHMA4-specific bands of about 50 and 60kDa, respectively, while the TcHMA4 mRNA predicts a single protein with a size of 128kDa. This indicates the occurrence of post-translational processing; the properties of the two bands were characterised by their activity and binding properties.


Subject(s)
Adenosine Triphosphatases/chemistry , Cadmium/chemistry , Plant Extracts/chemistry , Plant Proteins/chemistry , Proton Pumps/chemistry , Thlaspi/enzymology , Zinc/chemistry , Enzyme Activation , Substrate Specificity , Up-Regulation
13.
Planta ; 225(4): 977-89, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17013613

ABSTRACT

Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.


Subject(s)
Thlaspi/genetics , Zinc/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Metallothionein/genetics , Metallothionein/metabolism , Molecular Sequence Data , Plant Shoots/metabolism , Thlaspi/enzymology , Thlaspi/metabolism
14.
Appl Environ Microbiol ; 71(12): 8627-33, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332856

ABSTRACT

The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel.


Subject(s)
Cobalt/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Nickel/pharmacology , Serine O-Acetyltransferase/genetics , Thlaspi/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Drug Resistance, Bacterial , Escherichia coli/enzymology , Escherichia coli/metabolism , Gene Expression Regulation, Enzymologic , Genetic Engineering , Glutathione/metabolism , Kinetics , Nickel/metabolism , Sulfur/metabolism , Thlaspi/drug effects , Thlaspi/enzymology , Thlaspi/microbiology
15.
Transgenic Res ; 14(5): 739-48, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16245165

ABSTRACT

Nicotianamine is a methionine derivative involved in iron homeostasis, able to bind various other metals in vitro. To investigate its role in vivo, we expressed a nicotianamine synthase cDNA (TcNAS1) isolated from the polymetallic hyperaccumulator Thlaspi caerulescens in Arabidopsis thaliana. Transgenic plants expressing TcNAS1 over-accumulated NA, up to 100-fold more than wild type plants. Furthermore, increased NA levels in different transgenic lines were quantitatively correlated with increased nickel tolerance. The tolerance to nickel is expressed at the cellular level in protoplast experiments and is associated with an increased NA content. We have also shown that the most NA-over accumulating line showed a high tolerance to nickel and a significant Ni accumulation in the leaves when grown on nickel-contaminated soil. Our results highlight a new potential role for nicotianamine in heavy metal tolerance at the cellular but also at the whole plant level, easily transposable to a non-tolerant non-hyperaccumulator species. These results open new perspectives for the modulation of nicotianamine content in plants for phytoremediation.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/metabolism , Azetidinecarboxylic Acid/analogs & derivatives , Nickel/toxicity , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Arabidopsis/genetics , Azetidinecarboxylic Acid/metabolism , Base Sequence , Biodegradation, Environmental , DNA, Recombinant/genetics , Drug Resistance , Genes, Plant , Phenotype , Plant Leaves/drug effects , Plant Leaves/metabolism , Plants, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Soil Pollutants/toxicity , Thlaspi/enzymology , Thlaspi/genetics , Transformation, Genetic
16.
FEBS Lett ; 569(1-3): 140-8, 2004 Jul 02.
Article in English | MEDLINE | ID: mdl-15225623

ABSTRACT

Thlaspi caerulescens exhibits a unique capacity for cadmium tolerance and accumulation. We investigated the molecular basis of this exceptional Cd(2+) tolerance by screening for T. caerulescens genes, which alleviate Cd(2+) toxicity upon expression in Saccharomyces cerevisiae. This allowed for the isolation of a cDNA encoding a peptide with homology to the C-terminal part of a heavy metal ATPase. The corresponding TcHMA4 full-length sequence was isolated from T. caerulescens and compared to its homolog from Arabidopsis thaliana (AtHMA4). Expression of TcHMA4 and AtHMA4 cDNAs conferred Cd sensitivity in yeast, while expression of TcHMA4-C and AtHMA4-C cDNAs encoding the C-termini of, respectively, TcHMA4 and AtHMA4 conferred Cd tolerance. Moreover, heterologous expression in yeast suggested a higher Cd binding capacity of TcHMA4-C compared to AtHMA4-C. In planta, both HMA4 genes were expressed at a higher level in roots than in shoots. However, TcHMA4 shows a much higher constitutive expression than AtHMA4. Our data indicate that HMA4 could be involved in Cd(2+) transport and possibly in the Cd hyperaccumulation character.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cadmium/metabolism , Thlaspi/enzymology , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Primers , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
17.
Biotechnol Bioeng ; 83(2): 158-67, 2003 Jul 20.
Article in English | MEDLINE | ID: mdl-12768621

ABSTRACT

Plant species capable of hyperaccumulating heavy metals are of considerable interest for phytoremediation and phytomining. This work aims to identify the role of antioxidative metabolism in heavy metal tolerance in the Cd hyperaccumulator, Thlaspi caerulescens. Hairy roots of T. caerulescens and the non-hyperaccumulator, Nicotiana tabacum (tobacco), were used to test the effects of high Cd environments. In the absence of Cd, endogenous activities of catalase were two to three orders of magnitude higher in T. caerulescens than in N. tabacum. T. caerulescens roots also contained significantly higher endogenous superoxide dismutase activity and glutathione concentrations. Exposure to 20 ppm (178 microM) Cd prevented growth of N. tabacum roots and increased hydrogen peroxide (H(2)O(2)) levels by a factor of five relative to cultures without Cd. In contrast, growth was maintained in T. caerulescens, and H(2)O(2) concentrations were controlled to low, nontoxic levels in association with a strong catalase induction response. Treatment of roots with the glutathione synthesis inhibitor, buthionine sulfoximine (BSO), exacerbated H(2)O(2) accumulation in Cd-treated N. tabacum, but had a relatively minor effect on H(2)O(2) levels and did not reduce Cd tolerance in T. caerulescens. Lipid peroxidation was increased by Cd treatment in both the hyperaccumulator and non-hyperaccumulator roots. This work demonstrates that metal-induced oxidative stress occurs in hyperaccumulator tissues even though growth is unaffected by the presence of heavy metals. It also suggests that superior antioxidative defenses, particularly catalase activity, may play an important role in the hyperaccumulator phenotype of T. caerulescens.


Subject(s)
Antioxidants/metabolism , Cadmium/metabolism , Plant Roots/metabolism , Thlaspi/metabolism , Ascorbate Peroxidases , Biological Transport , Cadmium/pharmacology , Catalase/metabolism , Glutathione/metabolism , Kinetics , Peroxidases/metabolism , Plant Roots/enzymology , Superoxide Dismutase/metabolism , Thlaspi/enzymology , Time Factors , Nicotiana/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...