Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.814
Filter
1.
Sci Rep ; 14(1): 13123, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849447

ABSTRACT

Blood clot formation, a crucial process in hemostasis and thrombosis, has garnered substantial attention for its implications in various medical conditions. Microscopic examination of blood clots provides vital insights into their composition and structure, aiding in the understanding of clot pathophysiology and the development of targeted therapeutic strategies. This study explores the use of topological data analysis (TDA) to assess plasma clot characteristics microscopically, focusing on the identification of the elements components, holes and Wasserstein distances. This approach should enable researchers to objectively classify fibrin networks based on their topologic architecture. We tested this mathematical characterization approach on plasma clots formed in static conditions from porcine and human citrated plasma samples, where the effect of dilution and direct thrombin inhibition was explored. Confocal microscopy images showing fluorescence labeled fibrin networks were analyzed. Both treatments resulted in visual differences in plasma clot architecture, which could be quantified using TDA. Significant differences between baseline and diluted samples, as well as blood anticoagulated with argatroban, were detected mathematically. Therefore, TDA could be indicative of clots with compromised stability, providing a valuable tool for thrombosis risk assessment. In conclusion, microscopic examination of plasma clots, coupled with Topological Data Analysis, offers a promising avenue for comprehensive characterization of clot microstructure. This method could contribute to a deeper understanding of clot pathophysiology and thereby refine our ability to assess clot characteristics.


Subject(s)
Blood Coagulation , Feasibility Studies , Fibrin , Thrombosis , Fibrin/metabolism , Humans , Swine , Animals , Thrombosis/blood , Thrombosis/pathology , Data Analysis , Microscopy, Confocal/methods , Thrombin/metabolism
2.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856226

ABSTRACT

Hemostasis, the process of normal physiological control of vascular damage, is fundamental to human life. We all suffer minor cuts and puncture wounds from time to time. In hemostasis, self-limiting platelet aggregation leads to the formation of a structured thrombus in which bleeding cessation comes from capping the hole from the outside. Detailed characterization of this structure could lead to distinctions between hemostasis and thrombosis, a case of excessive platelet aggregation leading to occlusive clotting. An imaging-based approach to puncture wound thrombus structure is presented here that draws upon the ability of thin-section electron microscopy to visualize the interior of hemostatic thrombi. The most basic step in any imaging-based experimental protocol is good sample preparation. The protocol provides detailed procedures for preparing puncture wounds and platelet-rich thrombi in mice for subsequent electron microscopy. A detailed procedure is given for in situ fixation of the forming puncture wound thrombus and its subsequent processing for staining and embedding for electron microscopy. Electron microscopy is presented as the end imaging technique because of its ability, when combined with sequential sectioning, to visualize the details of the thrombus interior at high resolution. As an imaging method, electron microscopy gives unbiased sampling and an experimental output that scales from nanometer to millimeters in 2 or 3 dimensions. Appropriate freeware electron microscopy software is cited that will support wide-area electron microscopy in which hundreds of frames can be blended to give nanometer-scale imaging of entire puncture wound thrombi cross-sections. Hence, any subregion of the image file can be placed easily into the context of the full cross-section.


Subject(s)
Microscopy, Electron , Thrombosis , Animals , Mice , Microscopy, Electron/methods , Thrombosis/pathology , Hemostasis , Punctures/methods
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732160

ABSTRACT

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Lung/blood supply , Lung/pathology , Lung/virology , Pulmonary Embolism/virology , Pulmonary Embolism/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/virology , Hypertension, Pulmonary/pathology , Post-Acute COVID-19 Syndrome , Thrombosis/virology , Thrombosis/etiology , Thrombosis/pathology
4.
Sci Rep ; 14(1): 11460, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769378

ABSTRACT

Arterial occlusion by thrombosis is the immediate cause of some strokes, heart attacks, and peripheral artery disease. Most prior studies assume that coagulation creates the thrombus. However, a contradiction arises as whole blood (WB) clots from coagulation are too weak to stop arterial blood pressures (> 150 mmHg). We measure the material mechanical properties of elasticity and ultimate strength for Shear-Induced Platelet Aggregation (SIPA) type clots, that form under stenotic arterial hemodynamics in comparison with coagulation clots. The ultimate strength of SIPA clots averaged 4.6 ± 1.3 kPa, while WB coagulation clots had a strength of 0.63 ± 0.3 kPa (p < 0.05). The elastic modulus of SIPA clots was 3.8 ± 1.5 kPa at 1 Hz and 0.5 mm displacement, or 2.8 times higher than WB coagulation clots (1.3 ± 1.2 kPa, p < 0.0001). This study shows that the SIPA thrombi, formed quickly under high shear hemodynamics, is seven-fold stronger and three-fold stiffer compared to WB coagulation clots. A force balance calculation shows a SIPA clot has the strength to resist arterial pressure with a short length of less than 2 mm, consistent with coronary pathology.


Subject(s)
Blood Coagulation , Platelet Aggregation , Thrombosis , Humans , Thrombosis/pathology , Shear Strength , Hemodynamics , Elastic Modulus , Blood Platelets/metabolism , Stress, Mechanical
5.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786077

ABSTRACT

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Subject(s)
COVID-19 , Lung , Megakaryocytes , SARS-CoV-2 , Thrombosis , Toll-Like Receptor 2 , Up-Regulation , Humans , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , Male , Female , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/virology , Aged , Middle Aged , Aged, 80 and over , Lung/pathology , Lung/virology , Lung/metabolism , Up-Regulation/genetics , Thrombosis/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Immunity, Innate , Pandemics
6.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791267

ABSTRACT

Cardiovascular diseases, among which includes coronary artery disease, represent one of the most important causes of mortality and morbidity worldwide. Research aimed at determining the risk factors involved recognizes a group of "traditional" risk factors, but also more recent studies identified over 100 "novel" ones which may have a role in the disease. Among the latter is the thrombophilia profile of a patient, a pathology well-established for its involvement in venous thromboembolism, but with less studied implications in arterial thrombosis. This paper reviews the literature, explaining the pathophysiology of the thrombophilia causes associated most with coronary thrombosis events. Results of several studies on the subject, including a meta-analysis with over 60,000 subjects, determined the significant involvement of factor V Leiden, prothrombin G20210A mutation, plasminogen activator inhibitor-1 and antiphospholipid syndrome in the development of coronary artery disease. The mechanisms involved are currently at different stages of research, with some already established and used as therapeutic targets.


Subject(s)
Coronary Artery Disease , Factor V , Thrombophilia , Thrombosis , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/etiology , Coronary Artery Disease/pathology , Thrombophilia/genetics , Thrombophilia/etiology , Thrombosis/genetics , Thrombosis/etiology , Thrombosis/pathology , Factor V/genetics , Prothrombin/genetics , Prothrombin/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Risk Factors , Genetic Predisposition to Disease , Mutation
7.
Thromb Res ; 238: 117-128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703585

ABSTRACT

Previous research has identified intravascular platelet thrombi in regions affected by myocardial ischemia-reperfusion (MI/R) injury and neighbouring areas. However, the occurrence of arterial thrombosis in the context of MI/R injury remains unexplored. This study utilizes intravital microscopy to investigate carotid artery thrombosis during MI/R injury in rats, establishing a connection with the presence of prothrombotic cellular fibronectin containing extra domain A (CFN-EDA) protein. Additionally, the study examines samples from patients with coronary artery disease (CAD) both before and after coronary artery bypass grafting (CABG). Levels of CFN-EDA significantly increase following MI with further elevation observed following reperfusion of the ischemic myocardium. Thrombotic events, such as thrombus formation and growth, show a significant increase, while the time to complete cessation of blood flow in the carotid artery significantly decreases following MI/R injury induced by ferric chloride. The acute infusion of purified CFN-EDA protein accelerates in-vivo thrombotic events in healthy rats and significantly enhances in-vitro adenosine diphosphate and collagen-induced platelet aggregation. Treatment with anti-CFN-EDA antibodies protected the rat against MI/R injury and significantly improved cardiac function as evidenced by increased end-systolic pressure-volume relationship slope and preload recruitable stroke work compared to control. Similarly, in a human study, plasma CFN-EDA levels were notably elevated in CAD patients undergoing CABG. Post-surgery, these levels continued to rise over time, alongside cardiac injury biomarkers such as cardiac troponin and B-type natriuretic peptide. The study highlights that increased CFN-EDA due to CAD or MI initiates a destructive positive feedback loop by amplifying arterial thrombus formation, potentially exacerbating MI/R injury.


Subject(s)
Fibronectins , Myocardial Reperfusion Injury , Thrombosis , Animals , Myocardial Reperfusion Injury/pathology , Rats , Humans , Male , Thrombosis/etiology , Thrombosis/blood , Thrombosis/pathology , Fibronectins/metabolism , Rats, Sprague-Dawley , Female , Middle Aged , Coronary Artery Disease/complications , Coronary Artery Disease/blood , Aged
8.
Thromb Res ; 238: 185-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729030

ABSTRACT

BACKGROUND: Plaque erosion, a type of coronary atherothrombosis, involves superficial injury to smooth muscle cell (SMC)-rich plaques. Elevated levels of coagulation factor VIII (FVIII) correlate with an increased ischemic heart disease risk. FVIII may contribute to thrombus formation on eroded plaques. AIMS: We aimed to elucidate the role of elevated FVIII in arterial thrombus formation within SMC-rich neointima in rabbits. METHODS AND RESULTS: We assessed the effect of recombinant human FVIII (rFVIII) on blood coagulation in vitro and platelet aggregation ex vivo. An SMC-rich neointima was induced through balloon injury to the unilateral femoral artery. Three weeks after the first balloon injury, superficial erosive injury and thrombus formation were initiated with a second balloon injury of the bilateral femoral arteries 45 min after the administration of rFVIII (100 IU/kg) or saline. The thrombus area and contents were histologically measured 15 min after the second balloon injury. rFVIII administration reduced the activated partial thromboplastin time and augmented botrocetin-induced, but not collagen- or adenosine 5'-diphosphate-induced, platelet aggregation. While rFVIII did not influence platelet-thrombus formation in normal intima, it increased thrombus formation on SMC-rich neointima post-superficial erosive injury. Enhanced immunopositivity for glycoprotein IIb/IIIa and fibrin was observed in rFVIII-administered SMC-rich neointima. Neutrophil count in the arterial thrombus on the SMC-rich neointima correlated positively with thrombus size in the control group, unlike the rFVIII group. CONCLUSIONS: Increased FVIII contributes to thrombus propagation within erosive SMC-rich neointima, highlighting FVIII's potential role in plaque erosion-related atherothrombosis.


Subject(s)
Factor VIII , Myocytes, Smooth Muscle , Neointima , Thrombosis , Rabbits , Animals , Neointima/pathology , Neointima/blood , Thrombosis/blood , Thrombosis/pathology , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Tunica Intima/pathology , Tunica Intima/drug effects , Humans , Platelet Aggregation/drug effects , Femoral Artery/pathology , Femoral Artery/injuries
9.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749423

ABSTRACT

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Subject(s)
Aging , Blood Platelets , Cell Differentiation , Hematopoietic Stem Cells , Thrombosis , Animals , Hematopoietic Stem Cells/metabolism , Blood Platelets/metabolism , Thrombosis/pathology , Thrombosis/metabolism , Mice , Humans , Megakaryocytes/metabolism , Mice, Inbred C57BL , Megakaryocyte Progenitor Cells/metabolism , Male
10.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703204

ABSTRACT

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Subject(s)
Apoptosis , Cathepsin K , Chlorides , Disease Models, Animal , Ferric Compounds , Thrombosis , Animals , Humans , Male , Mice , ADAMTS13 Protein/metabolism , ADAMTS13 Protein/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Chlorides/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Stress, Psychological/complications , Stress, Psychological/metabolism , Thrombosis/metabolism , Thrombosis/pathology , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics
11.
J Nanobiotechnology ; 22(1): 187, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632623

ABSTRACT

Pathological conditions linked to shear stress have been identified in hematological diseases, cardiovascular diseases, and cancer. These conditions often exhibit significantly elevated shear stress levels, surpassing 1000 dyn/cm2 in severely stenotic arteries. Heightened shear stress can induce mechanical harm to endothelial cells, potentially leading to bleeding and fatal consequences. However, current technology still grapples with limitations, including inadequate flexibility in simulating bodily shear stress environments, limited range of shear stress generation, and spatial and temporal adaptability. Consequently, a comprehensive understanding of the mechanisms underlying the impact of shear stress on physiological and pathological conditions, like thrombosis, remains inadequate. To address these limitations, this study presents a microfluidic-based shear stress generation chip as a proposed solution. The chip achieves a substantial 929-fold variation in shear stress solely by adjusting the degree of constriction in branch channels after PDMS fabrication. Experiments demonstrated that a rapid increase in shear stress up to 1000 dyn/cm2 significantly detached 88.2% cells from the substrate. Long-term exposure (24 h) to shear stress levels below 8.3 dyn/cm2 did not significantly impact cell growth. Furthermore, cells exposed to shear stress levels equal to or greater than 8.3 dyn/cm2 exhibited significant alterations in aspect ratio and orientation, following a normal distribution. This microfluidic chip provides a reliable tool for investigating cellular responses to the wide-ranging shear stress existing in both physiological and pathological flow conditions.


Subject(s)
Microfluidics , Thrombosis , Humans , Endothelial Cells , Cell Line , Thrombosis/pathology , Stress, Mechanical
12.
J Transl Med ; 22(1): 371, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637802

ABSTRACT

Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.


Subject(s)
Colorectal Neoplasms , Thrombosis , Humans , Blood Platelets/metabolism , Hemostasis , Thrombosis/pathology , Colorectal Neoplasms/pathology , Neoplasm Metastasis , Tumor Microenvironment
13.
Eur Radiol Exp ; 8(1): 52, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575701

ABSTRACT

BACKGROUND: Nowadays, there is no method to quantitatively characterize the material composition of acute ischemic stroke thrombi prior to intervention, but dual-energy CT (DE-CT) offers imaging-based multimaterial decomposition. We retrospectively investigated the material composition of thrombi ex vivo using DE-CT with histological analysis as a reference. METHODS: Clots of 70 patients with acute ischemic stroke were extracted by mechanical thrombectomy and scanned ex vivo in formalin-filled tubes with DE-CT. Multimaterial decomposition in the three components, i.e., red blood cells (RBC), white blood cells (WBC), and fibrin/platelets (F/P), was performed and compared to histology (hematoxylin/eosin staining) as reference. Attenuation and effective Z values were assessed, and histological composition was compared to stroke etiology according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria. RESULTS: Histological and imaging analysis showed the following correlation coefficients for RBC (r = 0.527, p < 0.001), WBC (r = 0.305, p = 0.020), and F/P (r = 0.525, p < 0.001). RBC-rich thrombi presented higher clot attenuation in Hounsfield units than F/P-rich thrombi (51 HU versus 42 HU, p < 0.01). In histological analysis, cardioembolic clots showed less RBC (40% versus 56%, p = 0.053) and more F/P (53% versus 36%, p = 0.024), similar to cryptogenic clots containing less RBC (34% versus 56%, p = 0.006) and more F/P (58% versus 36%, p = 0.003) than non-cardioembolic strokes. No difference was assessed for the mean WBC portions in all TOAST groups. CONCLUSIONS: DE-CT has the potential to quantitatively characterize the material composition of ischemic stroke thrombi. RELEVANCE STATEMENT: Using DE-CT, the composition of ischemic stroke thrombi can be determined. Knowledge of histological composition prior to intervention offers the opportunity to define personalized treatment strategies for each patient to accomplish faster recanalization and better clinical outcomes. KEY POINTS: • Acute ischemic stroke clots present different recanalization success according to histological composition. • Currently, no method can determine clot composition prior to intervention. • DE-CT allows quantitative material decomposition of thrombi ex vivo in red blood cells, white blood cells, and fibrin/platelets. • Histological clot composition differs between stroke etiology. • Insights into the histological composition in situ offer personalized treatment strategies.


Subject(s)
Ischemic Stroke , Stroke , Thrombosis , Humans , Retrospective Studies , Thrombosis/diagnostic imaging , Thrombosis/pathology , Thrombosis/therapy , Stroke/diagnostic imaging , Stroke/pathology , Stroke/therapy , Fibrin/analysis , Tomography, X-Ray Computed/methods
14.
EBioMedicine ; 103: 105118, 2024 May.
Article in English | MEDLINE | ID: mdl-38614011

ABSTRACT

BACKGROUND: Microplastic (MP) pollution has emerged as a significant environmental concern worldwide. While extensive research has focused on their presence in marine organisms and ecosystems, their potential impact on human health, particularly on the circulatory system, remains understudied. This project aimed to identify and quantify the mass concentrations, polymer types, and physical properties of MPs in human thrombi surgically retrieved from both arterial and venous systems at three anatomically distinct sites, namely, cerebral arteries in the brain, coronary arteries in the heart, and deep veins in the lower extremities. Furthermore, this study aimed to investigate the potential association between the levels of MPs and disease severity. METHODS: Thrombus samples were collected from 30 patients who underwent thrombectomy procedures due to ischaemic stroke (IS), myocardial infarction (MI), or deep vein thrombosis (DVT). Pyrolysis-gas chromatography mass spectrometry (Py-GC/MS) was employed to identify and quantify the mass concentrations of the MPs. Laser direct infrared (LDIR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the physical properties of the MPs. Demographic and clinical information were also examined. A rigorous quality control system was used to eliminate potential environmental contamination. FINDINGS: MPs were detected by Py-GC/MS in 80% (24/30) of the thrombi obtained from patients with IS, MI, or DVT, with median concentrations of 61.75 µg/g, 141.80 µg/g, and 69.62 µg/g, respectively. Among the 10 target types of MP polymers, polyamide 66 (PA66), polyvinyl chloride (PVC), and polyethylene (PE) were identified. Further analyses suggested that higher concentrations of MPs may be associated with greater disease severity (adjusted ß = 7.72, 95% CI: 2.01-13.43, p < 0.05). The level of D-dimer in the MP-detected group was significantly higher than that in the MP-undetected group (8.3 ± 1.5 µg/L vs 6.6 ± 0.5 µg/L, p < 0.001). Additionally, LDIR analysis showed that PE was dominant among the 15 types of identified MPs, accounting for 53.6% of all MPs, with a mean diameter of 35.6 µm. The shapes of the polymers detected using LDIR and SEM were found to be heterogeneous. INTERPRETATION: This study presents both qualitative and quantitative evidence of the presence of MPs, and their mass concentrations, polymer types, and physical properties in thrombotic diseases through the use of multimodal detection methods. Higher concentrations of MPs may be associated with increased disease severity. Future research with a larger sample size is urgently needed to identify the sources of exposure and validate the observed trends in the study. FUNDING: This study was funded by the SUMC Scientific Research Initiation Grant (SRIG, No. 009-510858038), Postdoctoral Research Initiation Grant (No. 202205230031-3), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG02C).


Subject(s)
Microplastics , Thrombosis , Humans , Female , Male , Middle Aged , Aged , Thrombosis/metabolism , Thrombosis/pathology , Adult , Gas Chromatography-Mass Spectrometry , Aged, 80 and over
16.
Am J Physiol Heart Circ Physiol ; 326(6): H1446-H1461, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38578237

ABSTRACT

Clinical failure of arteriovenous neointimal hyperplasia (NIH) fistulae (AVF) is frequently due to juxta-anastomotic NIH (JANIH). Although the mouse AVF model recapitulates human AVF maturation, previous studies focused on the outflow vein distal to the anastomosis. We hypothesized that the juxta-anastomotic area (JAA) has increased NIH compared with the outflow vein. AVF was created in C57BL/6 mice without or with chronic kidney disease (CKD). Temporal and spatial changes of the JAA were examined using histology and immunofluorescence. Computational techniques were used to model the AVF. RNA-seq and bioinformatic analyses were performed to compare the JAA with the outflow vein. The jugular vein to carotid artery AVF model was created in Wistar rats. The neointima in the JAA shows increased volume compared with the outflow vein. Computational modeling shows an increased volume of disturbed flow at the JAA compared with the outflow vein. Endothelial cells are immediately lost from the wall contralateral to the fistula exit, followed by thrombus formation and JANIH. Gene Ontology (GO) enrichment analysis of the 1,862 differentially expressed genes (DEG) between the JANIH and the outflow vein identified 525 overexpressed genes. The rat jugular vein to carotid artery AVF showed changes similar to the mouse AVF. Disturbed flow through the JAA correlates with rapid endothelial cell loss, thrombus formation, and JANIH; late endothelialization of the JAA channel correlates with late AVF patency. Early thrombus formation in the JAA may influence the later development of JANIH.NEW & NOTEWORTHY Disturbed flow and focal endothelial cell loss in the juxta-anastomotic area of the mouse AVF colocalizes with acute thrombus formation followed by late neointimal hyperplasia. Differential flow patterns between the juxta-anastomotic area and the outflow vein correlate with differential expression of genes regulating coagulation, proliferation, collagen metabolism, and the immune response. The rat jugular vein to carotid artery AVF model shows changes similar to the mouse AVF model.


Subject(s)
Arteriovenous Shunt, Surgical , Hyperplasia , Jugular Veins , Mice, Inbred C57BL , Neointima , Rats, Wistar , Thrombosis , Animals , Thrombosis/physiopathology , Thrombosis/pathology , Thrombosis/genetics , Thrombosis/etiology , Thrombosis/metabolism , Male , Jugular Veins/metabolism , Jugular Veins/pathology , Jugular Veins/physiopathology , Disease Models, Animal , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Carotid Arteries/metabolism , Carotid Arteries/surgery , Mice , Rats , Regional Blood Flow , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/pathology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology
17.
J Clin Neurosci ; 124: 54-59, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643652

ABSTRACT

BACKGROUND: There is conflicting data on whether clot retrieved from mechanical thrombectomy can predict stroke etiology or the success of recanalization. We aimed to analyse the relation between thrombus histology and stroke aetiology as well as recanalization. METHODOLOGY: Histopathological analysis of clots retrieved from patients with acute ischemic stroke and large vessel occlusion was done. Quantification of the amount of fibrin, red blood cells(RBC), platelets and white blood cells (WBC) in the clots were done. The clinical, imaging data and recanalization parameters were collected. The correlation between clot composition and stroke etiology as well as recanalization were analysed. RESULTS: Of the 77 patients, the mean age was 58. 67 ± 12.96 years. The stroke etiology were cardioembolism 44(57.1 %), large artery atherosclerosis 13(16.8 %), other determined aetiology 4(5.1 %) and undetermined in 16(20.7 %) patients. There was no significant correlation between the proportions of RBC-rich, platelet-rich and fibrin-rich thrombi and the stroke etiology. The susceptibility vessel sign was associated with RBC-rich clot(92.3 % vs 7.7 %, p = .03). All RBC-rich clots(100 %) had good recanalization(p = .05). Platelet-rich clots needed less number of passes(64.7 % vs 35.3 %, p = .006) and reduced groin puncture to recanalization time(87.9 % vs 12.1 %, p = .033). WBC-rich clots required lesser number of passes(57.5 % vs 42.5 %, P = .044). In multivariate analysis, WBC-rich clots (OR 0.230, CI 0.07-0.78, p = .018) showed an independent association with reduced recanalization attempts, while platelet-rich clots showed reduced recanalization time(OR 0.09, CI 0.01-0.63, p = .016). CONCLUSION: There was no correlation between thrombus histology and the etiological stroke subtype. However, clot composition predicted the degree of recanalization and number of passes.


Subject(s)
Ischemic Stroke , Humans , Middle Aged , Female , Male , Aged , Ischemic Stroke/etiology , Ischemic Stroke/pathology , Thrombectomy/methods , Adult , Stroke/etiology , Stroke/pathology , Thrombosis/etiology , Thrombosis/pathology , Treatment Outcome , Fibrin/metabolism , Blood Platelets/pathology
18.
Acta Biomater ; 180: 372-382, 2024 May.
Article in English | MEDLINE | ID: mdl-38614415

ABSTRACT

Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. Herein, a dualfunction submicron textured nitric oxide (NO)-releasing catheter was developed. The hemocompatibility and antithrombotic activity of vascular catheters were evaluated in both 20 h in vitro blood loop and 7 d in vivo rabbit model. Surface characterization assessments via atomic force microscopy show the durability of the submicron pattern after incorporation of NO donor S-nitroso-N-acetylpenicillamine (SNAP). The SNAP-doped catheters exhibited prolonged and controlled NO release mimicking the levels released by endothelium. Fabricated catheters showed cytocompatibility when evaluated against BJ human fibroblast cell lines. After 20h in vitro evaluation of catheters in a blood loop, textured-NO catheters exhibited a 13-times reduction in surface thrombus formation compared to the control catheters, which had 83% of the total area covered by clots. After the 7 d in vivo rabbit model, analysis on the catheter surface was examined via scanning electron microscopy, where significant reduction of platelet adhesion, fibrin mesh, and thrombi can be observed on the NO-releasing textured surfaces. Moreover, compared to relative controls, a 63% reduction in the degree of thrombus formation within the jugular vein was observed. Decreased levels of fibrotic tissue decomposition on the jugular vein and reduced platelet adhesion and thrombus formation on the texture of the NO-releasing catheter surface are indications of mitigated foreign body response. This study demonstrated a biocompatible and robust dual-functioning textured NO PU catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. STATEMENT OF SIGNIFICANCE: Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. This study demonstrated a robust, biocompatible, dual-functioning textured nitric oxide (NO) polyurethane catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. The fabricated catheters exhibited prolonged and controlled NO release that mimics endothelium levels. After the 7 d in vivo model, a significant reduction in platelet adhesion, fibrin mesh, and thrombi was observed on the NO-releasing textured catheters, along with decreased levels of fibrotic tissue decomposition on the jugular vein. Results illustrate that NO-textured catheter surface mitigates foreign body response.


Subject(s)
Catheters , Nitric Oxide , S-Nitroso-N-Acetylpenicillamine , Animals , Rabbits , Nitric Oxide/metabolism , Humans , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitroso-N-Acetylpenicillamine/chemistry , Thrombosis/pathology , Materials Testing , Cell Line , Platelet Adhesiveness/drug effects , Disease Models, Animal
19.
Eur J Immunol ; 54(6): e2350670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593342

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) is a debilitating disease characterized by thrombotic occlusion of pulmonary arteries and vasculopathy, leading to increased pulmonary vascular resistance and progressive right-sided heart failure. Thrombotic lesions in CTEPH contain CD68+ macrophages, and increasing evidence supports their role in disease pathogenesis. Macrophages are classically divided into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages, which are involved in wound healing and tissue repair. Currently, the phenotype of macrophages and their localization within thrombotic lesions of CTEPH are largely unknown. In our study, we subclassified thrombotic lesions of CTEPH patients into developing fresh thrombi (FT) and organized thrombi (OT), based on the degree of fibrosis and remodeling. We used multiplex immunofluorescence histology to identify immune cell infiltrates in thrombotic lesions of CPTEH patients. Utilizing software-assisted cell detection and quantification, increased proportions of macrophages were observed in immune cell infiltrates of OT lesions, compared with FT. Strikingly, the proportions with a CD206+INOS- M2 phenotype were significantly higher in OT than in FT, which mainly contained unpolarized macrophages. Taken together, we observed a shift from unpolarized macrophages in FT toward an expanded population of M2 macrophages in OT, indicating a dynamic role of macrophages during CTEPH pathogenesis.


Subject(s)
Hypertension, Pulmonary , Macrophages , Pulmonary Embolism , Thrombosis , Humans , Macrophages/immunology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Female , Male , Middle Aged , Pulmonary Embolism/immunology , Pulmonary Embolism/pathology , Chronic Disease , Thrombosis/immunology , Thrombosis/pathology , Aged , Antigens, CD/metabolism
20.
Medicine (Baltimore) ; 103(13): e37639, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552083

ABSTRACT

RATIONALE: Renal cell carcinoma (RCC) is the most common renal neoplasm, accounting for 2.4% of all cancers in Korea. Although the usual clinical manifestations of RCC include flank pain, hematuria, and palpable mass, RCC is generally characterized by a lack of early warning signs and is mostly discovered incidentally in advanced stage. This case report describes a 42-year-old Korean man diagnosed with giant RCC who presented with simple back pain. PATIENT CONCERNS: The clinical manifestation of a 42-year-old Korean man was chronic back pain. DIAGNOSES: Contrast-enhanced computed tomography showed a 19.1-cm sized heterogeneous enhancing mass on the right kidney and tumor thrombosis extending into inferior vena cava. INTERVENTION: Due to the large size of the tumor and extensive tumor thrombosis, the multidisciplinary team decided to administer neoadjuvant chemotherapy and an anticoagulant. Following 12 cycles of treatment with nivolumab and cabozantinib, he underwent a right radical nephrectomy with an adrenalectomy and tumor thrombectomy. OUTCOMES: Treatment was successful and posttreatment he started a cancer rehabilitation program. He was followed-up as an outpatient and no longer complains of back pain. LESSONS: RCC can manifest clinically as back pain, with diagnosis being difficult without appropriate imaging modalities. RCC should be included in the differential diagnosis of patients with low back pain, even at a young age.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Low Back Pain , Thrombosis , Male , Humans , Adult , Carcinoma, Renal Cell/complications , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/surgery , Low Back Pain/etiology , Low Back Pain/pathology , Kidney Neoplasms/complications , Kidney Neoplasms/diagnosis , Kidney Neoplasms/surgery , Kidney/pathology , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/pathology , Thrombosis/pathology , Nephrectomy/methods , Thrombectomy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...