Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 853
Filter
1.
J Vis Exp ; (210)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39283128

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) and myocardial infarction (MI) are two major health burdens with significant prevalence and mortality. This study aimed to explore the co-expressed genes to understand the relationship between NAFLD and MI and identify potential crucial biomarkers of NAFLD-related MI using bioinformatics and machine learning. Functional enrichment analysis was conducted, a co-protein-protein interaction (PPI) network diagram was constructed, and support vector machine-recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) techniques were employed to identify one differentially expressed gene (DEG), Thrombospondin 1 (THBS1). THBS1 demonstrated strong performance in distinguishing NAFLD patients (AUC = 0.981) and MI patients (AUC = 0.900). Immuno-infiltration analysis revealed significantly lower CD8+ T cells and higher neutrophil levels in patients with NAFLD and MI. CD8+ T cells and neutrophils were effective in distinguishing NAFLD/MI from healthy controls. Correlation analysis showed that THBS1 was positively correlated with CCR (chemokine receptor), MHC class (major histocompatibility complex class), neutrophils, parainflammation, and Tfh (follicular helper T cells), and negatively correlated with CD8+ T cells, cytolytic activity, and TIL (tumor-infiltrating lymphocytes) in NAFLD and MI patients. THBS1 emerged as a novel biomarker for diagnosing NAFLD/MI in comparison to healthy controls. The results indicate that CD8+ T cells and neutrophils could serve as inflammatory immune features for differentiating patients with NAFLD/MI from healthy individuals.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thrombospondin 1 , Humans , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Support Vector Machine , Biomarkers/metabolism , Biomarkers/analysis
2.
Neurobiol Dis ; 200: 106634, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39122122

ABSTRACT

Thrombospondins (TSPs) are astrocyte-secreted extracellular matrix proteins that play key roles as regulators of synaptogenesis in the central nervous system. We previously showed that TSP1/2 are upregulated in the partial neocortical isolation model ("undercut" or "UC" below) of posttraumatic epileptogenesis and may contribute to abnormal axonal sprouting, aberrant synaptogenesis and epileptiform discharges in the UC cortex. These results led to the hypothesis that posttraumatic epileptogeneis would be reduced in TSP1/2 knockout (TSP1/2 KO) mice. To test the hypothesis, we made UC lesions at P21, and subsequent experiments were conducted 14d later at P35. Ex vivo extracellular single or multi-electrode field potential recordings were obtained from layer V in cortical slices at P35 and in vivo video-EEGs of spontaneous epileptiform bursts were recorded to examine the effect of TSP1/2 deletion on epileptogenesis following cortical injury. Immunohistochemical experiments were performed to assess the effect of TSP1/2 KO + UC on the number of putative excitatory synapses and the expression of TSP4 and HEVIN, other astrocytic proteins known to up-regulate excitatory synapse formation. Unexpectedly, our results showed that, compared with WT + UC mice, TSP1/2 KO + UC mice displayed increased epileptiform activity, as indicated by 1) increased incidence and more rapid propagation of evoked and spontaneous epileptiform discharges in UC neocortical slices; 2) increased occurrence of spontaneous epileptiform discharges in vivo. There was an associated increase in the density of VLUT1/PSD95-IR colocalizations (putative excitatory synapses) and significantly upregulated TSP4- and HEVIN-IR in TSP1/2 KO + UC versus WT + UC mice. Results suggest that TSP1/2 deletion plays a potential epileptogenic role following neocortical injury, associated with compensatory upregulation of TSP4 and HEVIN, which may contribute to the increase in the density of excitatory synapses and resulting neural network hyperexcitability.


Subject(s)
Mice, Knockout , Thrombospondin 1 , Thrombospondins , Animals , Thrombospondins/genetics , Thrombospondins/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Mice , Male , Mice, Inbred C57BL , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Epilepsy/genetics , Epilepsy/physiopathology , Epilepsy/metabolism , Synapses/metabolism , Electroencephalography , Neocortex/metabolism , Neocortex/physiopathology
3.
Int J Cardiol ; 416: 132486, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39187069

ABSTRACT

BACKGROUND: Atrial fibrosis is associated with the pathogenesis of atrial fibrillation (AF). This study aims to discuss the function of circ_0079480 in atrial fibrosis and its underlying mechanism. METHODS: In vitro and in vivo models of atrial fibrosis were established by using angiotensin II (Ang II) to treat human atrial fibroblasts (HAFs) and C57/B6J mice. qRT-PCR and western blot were used to examine the mRNA and protein expression levels. CCK-8, EdU, cell strach, and transwell assays were performed to determine the proliferation and migration of HAFs. Dual-luciferase reporter and RIP/RNA pull-down assays were explored to identify the interaction of miR-338-3p and circ_0079480/THBS1. HE and Masson's trichrome staining experiments were performed to analyze the histopathological change in mice atrial tissues. RESULTS: Circ_0079480 expression was increased in AF patients' atrial tissues and Ang II-treated HAFs. Silencing circ_0079480 inhibited cell proliferation and migration and reduced fibrosis-associated gene expression in Ang II-treated HAFs. Circ_0079480 could target miR-338-3p to repress its expression. MiR-338-3p inhibitor blocked the inhibitory effects of circ_0079480 knockdown on HAFs proliferation, migration, and fibrosis. Thrombospondin-1 (THBS1) was confirmed as a downstream target of miR-338-3p, and circ_0079480 could sponge miR-338-3p to upregulate THBS1 expression. Moreover, silencing THBS1 suppressed Ang II-induced proliferation, migration, and fibrosis in HAFs. More importantly, depletion of circ_0079480 inactivated the THBS1/TGF-ß1/Smad3 signaling by upregulating miR-338-3p. Mice experiments also confirmed the suppression of circ_0079480 knockdown on atrial fibrosis. CONCLUSION: Circ_0079480 acts as a sponge of miR-338-3p to upregulate THBS1 expression and activate the TGF-ß1/Smad3 signaling, finally promoting Ang II-induced atrial fibrosis.


Subject(s)
Atrial Fibrillation , Cell Movement , Cell Proliferation , Fibroblasts , Fibrosis , Heart Atria , Mice, Inbred C57BL , MicroRNAs , RNA, Circular , Signal Transduction , Smad3 Protein , Thrombospondin 1 , Transforming Growth Factor beta1 , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Smad3 Protein/metabolism , Smad3 Protein/genetics , Mice , Cell Proliferation/physiology , Humans , Transforming Growth Factor beta1/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/biosynthesis , Cell Movement/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Heart Atria/pathology , Heart Atria/metabolism , Signal Transduction/physiology , Male , Cells, Cultured
4.
J Biol Chem ; 300(8): 107516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960036

ABSTRACT

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Integrin beta3 , Thrombospondin 1 , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/genetics , Animals , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Humans , Mice , Integrin beta3/metabolism , Integrin beta3/genetics , Male , Mice, Knockout , Kidney Tubules/metabolism , Kidney Tubules/pathology , Female , Adult , Signal Transduction , Cell Line , Doxorubicin/pharmacology , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics
5.
Oncol Res ; 32(7): 1173-1184, 2024.
Article in English | MEDLINE | ID: mdl-38948026

ABSTRACT

Background: Inhibitor of NF-κB kinase-interacting protein (IKIP) is known to promote proliferation of glioblastoma (GBM) cells, but how it affects migration and invasion by those cells is unclear. Methods: We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases. We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays, and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved. Results: Based on data from our clinical samples and from public databases, IKIP was overexpressed in GBM tumors, and its expression level correlated inversely with survival. IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays, whereas IKIP knockdown exerted the opposite effects. IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue. The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling. Conclusions: IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.


Subject(s)
Brain Neoplasms , Cell Movement , Focal Adhesion Kinase 1 , Glioblastoma , Neoplasm Invasiveness , Signal Transduction , Thrombospondin 1 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Animals , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Proliferation
6.
Sci Rep ; 14(1): 15847, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982274

ABSTRACT

Atherosclerosis is rare in internal thoracic arteries (ITA) even in patients with severe atherosclerotic coronary artery (ACA) disease. To explore cellular differences, ITA SMC from 3 distinct donors and ACA SMC from 3 distinct donors were grown to sub-confluence and growth arrested for 48 h. Proliferation and thrombospondin-1 (TSP1) production were determined using standard techniques. ITA SMC were larger, grew more slowly and survived more passages than ACA SMC. ACA SMC had a more pronounced proliferative response to 10% serum than ITA SMC. Both ACA SMC and ITA SMC proliferated in response to exogenous TSP1 (12.5 µg/ml and 25 µg/ml) and platelet derived growth factor-BB (PDGF-BB; 20 ng/ml) but TSP1- and PDGF-BB-induced proliferation were partially inhibited by anti-TSP1 antibody A4.1, microRNA-21(miR-21)-3p inhibitors and miR-21-5p inhibitors in each of the 3 ACA SMC lines, but not in any of the ITA SMC lines. PDGF-BB stimulated TSP1 production in ACA SMC but not in ITA SMC but there was no increase in TSP1 levels in conditioned media in either SMC type. In summary, there are significant differences in morphology, proliferative capacity and in responses to TSP1 and PDGF-BB in SMC derived from ITA compared to SMC derived from ACA.


Subject(s)
Becaplermin , Cell Proliferation , Coronary Vessels , Myocytes, Smooth Muscle , Thrombospondin 1 , Becaplermin/metabolism , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Humans , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Coronary Vessels/metabolism , Coronary Vessels/pathology , Coronary Vessels/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Mammary Arteries/metabolism , Mammary Arteries/drug effects , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Male
7.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979889

ABSTRACT

Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47-/- mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47-/- spleens but significantly depleted in Thbs1-/- spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119-CD34+ progenitors and Ter119+CD34- committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1-/- spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.


Subject(s)
CD47 Antigen , Erythropoiesis , Spleen , Thrombospondin 1 , Animals , CD47 Antigen/metabolism , CD47 Antigen/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Spleen/metabolism , Mice , Mice, Knockout , Gene Expression Regulation , Mice, Inbred C57BL , Erythroid Precursor Cells/metabolism
8.
JCI Insight ; 9(16)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954467

ABSTRACT

Pulmonary disorders affect 40%-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragm muscle weakness. Increased intradiaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) - mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1-knockout (Thbs1-/-) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF-ß-related expression signatures and augmentation of a Thy1-expressing subpopulation previously linked to type 2 diabetes. Despite similar weight gain, Thbs1-/- mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1-/- diaphragms maintained normal contractile force and motion after DIO challenge. THBS1 is therefore a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.


Subject(s)
Diaphragm , Mice, Knockout , Obesity , Thrombospondin 1 , Animals , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Diaphragm/physiopathology , Diaphragm/metabolism , Diaphragm/pathology , Obesity/metabolism , Mice , Muscle Contraction/physiology , Male , Adipogenesis , Adipocytes/metabolism , Adipocytes/pathology , Diet, High-Fat/adverse effects , Fibroblasts/metabolism , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Cell Differentiation
9.
JCI Insight ; 9(17)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078701

ABSTRACT

Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium-specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-ß1-dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-ß1, coordinate integrin-containing cell-matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.


Subject(s)
CD47 Antigen , Cell Movement , Intestinal Mucosa , Thrombospondin 1 , Transforming Growth Factor beta1 , Wound Healing , Animals , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Wound Healing/physiology , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Transforming Growth Factor beta1/metabolism , rhoA GTP-Binding Protein/metabolism , Mice, Knockout , rac1 GTP-Binding Protein/metabolism , Epithelial Cells/metabolism , Humans , Colon/metabolism , Colon/pathology , Male , Neuropeptides
10.
Cancer Sci ; 115(8): 2718-2728, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941131

ABSTRACT

Osimertinib induces a marked response in non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) gene mutations. However, acquired resistance to osimertinib remains an inevitable problem. In this study, we aimed to investigate osimertinib-resistant mechanisms and evaluate the combination therapy of afatinib and chemotherapy. We established osimertinib-resistant cell lines (PC-9-OR and H1975-OR) from EGFR-mutant lung adenocarcinoma cell lines PC-9 and H1975 by high exposure and stepwise method. Combination therapy of afatinib plus carboplatin (CBDCA) and pemetrexed (PEM) was effective in both parental and osimertinib-resistant cells. We found that expression of thrombospondin-1 (TSP-1) was upregulated in resistant cells using cDNA microarray analysis. We demonstrated that TSP-1 increases the expression of matrix metalloproteinases through integrin signaling and promotes tumor invasion in both PC-9-OR and H1975-OR, and that epithelial-to-mesenchymal transition (EMT) was involved in H1975-OR. Afatinib plus CBDCA and PEM reversed TSP-1-induced invasion ability and EMT changes in resistant cells. In PC-9-OR xenograft mouse models (five female Balb/c-Nude mice in each group), combination therapy strongly inhibited tumor growth compared with afatinib monotherapy (5 mg/kg, orally, five times per week) or CBDCA (75 mg/kg, intraperitoneally, one time per week) + PEM (100 mg/kg, intraperitoneally, one time per week) over a 28-day period. These results suggest that the combination of afatinib plus CBDCA and PEM, which effectively suppresses TSP-1 expression, may be a promising option in EGFR-mutated NSCLC patients after the acquisition of osimertinib resistance.


Subject(s)
Acrylamides , Afatinib , Aniline Compounds , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Mutation , Thrombospondin 1 , Humans , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Afatinib/pharmacology , Afatinib/therapeutic use , ErbB Receptors/genetics , Mice , Cell Line, Tumor , Acrylamides/pharmacology , Acrylamides/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Xenograft Model Antitumor Assays , Carboplatin/pharmacology , Carboplatin/therapeutic use , Female , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Indoles , Pyrimidines
11.
J Diabetes Investig ; 15(9): 1248-1258, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38932465

ABSTRACT

AIMS/INTRODUCTION: We investigated the relationship of circulating TSP-1 mRNA and miR-194 with diabetic kidney disease's degree. MATERIALS AND METHODS: We enrolled 167 hospitalized type 2 diabetes patients in the endocrinology department. Patients were split into three groups according to urinary microalbumin: A, B and C. The control group comprised healthy outpatients (n = 163). The quantities of microribonucleic acid (miR)-194 and thrombospondin-1 (TSP-1) messenger ribonucleic acid (mRNA) in the participants' circulation were measured using a quantitative real-time polymerase chain reaction. RESULTS: Circulating TSP-1 mRNA (P = 0.024) and miR-194 (P = 0.029) expressions significantly increased in type 2 diabetes patients. Circulating TSP-1 mRNA (P = 0.040) and miR-194 (P = 0.007) expression levels differed significantly among the three groups; circulating TSP-1 mRNA expression increased with urinary microalbumin. However, miR-194 declined in group B and increased in group C. Circulating TSP-1 mRNA was positively correlated with cystatin-c (r = 0.281; P = 0.021) and microalbumin/creatinine ratio (UmALB/Cr; r = 0.317; P = 0.009); miR-194 was positively correlated with UmALB/Cr (r = 0.405; P = 0.003). Stepwise multivariate linear regression analysis showed cystatin-c (ß = 0.578; P = 0.021) and UmALB/Cr (ß = 0.001; P = 0.009) as independent factors for TSP-1 mRNA; UmALB/Cr (ß = 0.005; P = 0.028) as an independent factor for miR194. Areas under the curve for circulating TSP-1 mRNA and miR194 were 0.756 (95% confidence interval 0.620-0.893; sensitivity 0.69 and specificity 0.71, P < 0.01) and 0.584 (95% confidence interval 0.421-0.748; sensitivity 0.54 and specificity 0.52, P < 0.01), respectively. CONCLUSIONS: Circulating TSP-1 mRNA and miR-194 expressions significantly increased in type 2 diabetes patients. The microalbumin group had lower levels of miR-194 (a risk factor that is valuable for type 2 diabetes kidney disease evaluation).


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , MicroRNAs , RNA, Messenger , Thrombospondin 1 , Humans , Male , Female , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Middle Aged , MicroRNAs/blood , MicroRNAs/genetics , Thrombospondin 1/blood , Thrombospondin 1/genetics , Diabetic Nephropathies/blood , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , RNA, Messenger/blood , RNA, Messenger/genetics , Aged , China/epidemiology , Biomarkers/blood , Biomarkers/analysis , Asian People/genetics , East Asian People
12.
Biol Direct ; 19(1): 43, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840223

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. The intercellular communication in post-infarction angiogenesis remains unclear. METHODS: In this study, we explored the role and mechanism of action of M2 macrophage-derived exosomes (M2-exos) in angiogenesis after MI. M2-exos were harvested and injected intramyocardially at the onset of MI. Two distinct endothelial cells (ECs) were cultured with M2-exos to explore the direct effects on angiogenesis. RESULTS: We showed that M2-exos improved cardiac function, reduced infarct size, and enhanced angiogenesis after MI. Moreover, M2-exos promoted angiogenesis in vitro; the molecules loaded in the vesicles were responsible for its proangiogenic effects. We further validated that higher abundance of miR-132-3p in M2-exos, which recapitulate their functions, was required for the cardioprotective effects exerted by M2-exos. Mechanistically, miR-132-3p carried by M2-exos down-regulate the expression of THBS1 through direct binding to its 3´UTR and the proangiogenic effects of miR-132-3p were largely reversed by THBS1 overexpression. CONCLUSION: Our findings demonstrate that M2-exos promote angiogenesis after MI by transporting miR-132-3p to ECs, and by binding to THBS1 mRNA directly and negatively regulating its expression. These findings highlight the role of M2-exos in cardiac repair and provide novel mechanistic understanding of intercellular communication in post-infarction angiogenesis.


Subject(s)
Exosomes , Macrophages , MicroRNAs , Myocardial Infarction , Neovascularization, Physiologic , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocardial Infarction/genetics , Exosomes/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Mice , Male , Humans , Endothelial Cells/metabolism , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Mice, Inbred C57BL , Angiogenesis
13.
Biol Reprod ; 111(2): 448-462, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38780057

ABSTRACT

Inappropriate endometrial stromal decidualization has been implied as an important reason of many pregnancy-related complications, such as unexplained recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. Here, we observed that thrombospondin-1, an adhesive glycoprotein, was significantly downregulated in endometrial decidual cells from patients with unexplained recurrent spontaneous abortion. The immortalized human endometrial stromal cell line was used to investigate the possible THBS1-mediated regulation of decidualization. In vitro experiments found that the expression level of THBS1 increased with the normal decidualization process. Knockdown of THBS1 could decrease the expression levels of prolactin and insulin-like growth factor binding protein-1, two acknowledged human decidualization markers, whereas THBS1 overexpression could reverse these effects. The RNA sequencing results demonstrated that the extracellular regulated protein kinases signaling pathway was potentially affected by the knockdown of THBS1. We further confirmed that the regulation of THBS1 on decidualization was achieved through the ERK signaling pathway by the treatment of inhibitors. Moreover, knockdown of THBS1 in pregnant mice could impair decidualization and result in an increased fetus resorption rate. Altogether, our study demonstrated a crucial role of THBS1 in the pathophysiological process of unexplained recurrent spontaneous abortion and provided some new insights into the research of pregnancy-related complications.


Subject(s)
Abortion, Habitual , Decidua , Endometrium , Stromal Cells , Thrombospondin 1 , Adult , Animals , Female , Humans , Mice , Pregnancy , Abortion, Habitual/genetics , Abortion, Habitual/metabolism , Decidua/metabolism , Endometrium/metabolism , Endometrium/pathology , Stromal Cells/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Male
14.
Front Immunol ; 15: 1372957, 2024.
Article in English | MEDLINE | ID: mdl-38779688

ABSTRACT

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Subject(s)
Hypertension, Pulmonary , Macrophages , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/parasitology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Mice , Macrophages/immunology , Macrophages/parasitology , Phenotype , Schistosoma mansoni/immunology , Mice, Inbred C57BL , Schistosomiasis/immunology , Schistosomiasis/complications , Schistosomiasis/parasitology , Disease Models, Animal , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/pathology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Monocytes/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Female , Schistosoma/immunology , Schistosoma/physiology , Lung/immunology , Lung/parasitology , Lung/pathology
15.
Nat Immunol ; 25(7): 1296-1305, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806708

ABSTRACT

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


Subject(s)
Nociceptors , Pain , Animals , Mice , Pain/immunology , Pain/metabolism , Nociceptors/metabolism , Transcriptome , Mice, Inbred C57BL , Inflammation/immunology , Male , Macrophages/immunology , Macrophages/metabolism , Disease Models, Animal , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Skin/immunology , Skin/metabolism , Skin/pathology , Zymosan , Single-Cell Analysis , Neuroimmunomodulation , Gene Expression Profiling , Neutrophils/immunology , Neutrophils/metabolism
17.
Arab J Gastroenterol ; 25(2): 194-204, 2024 May.
Article in English | MEDLINE | ID: mdl-38705811

ABSTRACT

BACKGROUND AND STUDY AIMS: Immunotherapy has emerged as a hot topic in cancer treatment in recent years and has also shown potential in the treatment of Helicobacter pylori-associated gastric cancer. However, there is still a need to identify potential immunotherapy targets. MATERIAL AND METHODS: We used the GSE116312 dataset of Helicobacter pylori-associated gastric cancer to identify differentially expressed genes, which were then overlapped with immune genes from the ImmPort database. The identified immune genes were used to classify gastric cancer samples and evaluate the relationship between classification and tumor mutations, as well as immune infiltration. An immune gene-based prognostic model was constructed, and the expression levels of the genes involved in constructing the model were explored in the tumor immune microenvironment. RESULTS: We successfully identified 60 immune genes and classified gastric cancer samples into two subtypes, which showed differences in prognosis, tumor mutations, immune checkpoint expression, and immune cell infiltration. Subsequently, we constructed an immune prognostic model consisting of THBS1 and PDGFD, which showed significant associations with macrophages and fibroblasts. CONCLUSION: We identified abnormal expression of THBS1 and PDGFD in cancer-associated fibroblasts (CAFs) within the tumor immune microenvironment, suggesting their potential as therapeutic targets.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Platelet-Derived Growth Factor , Stomach Neoplasms , Thrombospondin 1 , Tumor Microenvironment , Stomach Neoplasms/microbiology , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Helicobacter pylori/immunology , Helicobacter pylori/genetics , Helicobacter Infections/immunology , Helicobacter Infections/complications , Thrombospondin 1/genetics , Prognosis , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Mutation , Lymphokines
18.
Cell Rep ; 43(5): 114149, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38678560

ABSTRACT

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.


Subject(s)
Activating Transcription Factor 4 , Muscle, Skeletal , Muscular Atrophy , Signal Transduction , Smad2 Protein , Smad3 Protein , Thrombospondin 1 , Transforming Growth Factor beta , Animals , Male , Mice , Activating Transcription Factor 4/metabolism , Autophagy , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Transforming Growth Factor beta/metabolism
20.
Adv Sci (Weinh) ; 11(21): e2309002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569496

ABSTRACT

Preeclampsia (PE) is considered as a disease of placental origin. However, the specific mechanism of placental abnormalities remains elusive. This study identified thrombospondin-1 (THBS1) is downregulated in preeclamptic placentae and negatively correlated with blood pressure. Functional studies show that THBS1 knockdown inhibits proliferation, migration, and invasion and increases the cycle arrest and apoptosis rate of HTR8/SVneo cells. Importantly, THBS1 silencing induces necroptosis in HTR8/SVneo cells, accompanied by the release of damage-associated molecular patterns (DAMPs). Necroptosis inhibitors necrostatin-1 and GSK'872 restore the trophoblast survival while pan-caspase inhibitor Z-VAD-FMK has no effect. Mechanistically, the results show that THBS1 interacts with transforming growth factor B-activated kinase 1 (TAK1), which is a central modulator of necroptosis quiescence and affects its stability. Moreover, THBS1 silencing up-regulates the expression of neuronal precursor cell-expressed developmentally down-regulated 4 (NEDD4), which acts as an E3 ligase of TAK1 and catalyzes K48-linked ubiquitination of TAK1 in HTR8/SVneo cells. Besides, THBS1 attenuates PE phenotypes and improves the placental necroptosis in vivo. Taken together, the down-regulation of THBS1 destabilizes TAK1 by activating NEDD4-mediated, K48-linked TAK1 ubiquitination and promotes necroptosis and DAMPs release in trophoblast cells, thus participating in the pathogenesis of PE.


Subject(s)
MAP Kinase Kinase Kinases , Necroptosis , Nedd4 Ubiquitin Protein Ligases , Pre-Eclampsia , Thrombospondin 1 , Trophoblasts , Ubiquitination , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Female , Pregnancy , Trophoblasts/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Adult , Placenta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL