Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.982
Filter
1.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849759

ABSTRACT

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Subject(s)
Light , Phaseolus , Phaseolus/physiology , Phaseolus/metabolism , Phaseolus/enzymology , Phosphorylation , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Cold Temperature , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Starch/metabolism , Pentose Phosphate Pathway/physiology , Enzyme Activation , Photosynthesis/physiology , Stress, Physiological , Protein Serine-Threonine Kinases/metabolism
2.
Nat Commun ; 15(1): 4437, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789432

ABSTRACT

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Subject(s)
Carotenoids , Chlamydomonas reinhardtii , Energy Transfer , Chlamydomonas reinhardtii/metabolism , Carotenoids/metabolism , Carotenoids/chemistry , Thylakoids/metabolism , Photosynthesis , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/genetics , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Light , Kinetics , Chlorophyll/metabolism , Chlamydomonas/metabolism
3.
J Am Chem Soc ; 146(21): 14905-14914, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38759103

ABSTRACT

The ability to harvest light effectively in a changing environment is necessary to ensure efficient photosynthesis and crop growth. One mechanism, known as qE, protects photosystem II (PSII) and regulates electron transfer through the harmless dissipation of excess absorbed photons as heat. This process involves reversible clustering of the major light-harvesting complexes of PSII (LHCII) in the thylakoid membrane and relies upon the ΔpH gradient and the allosteric modulator protein PsbS. To date, the exact role of PsbS in the qE mechanism has remained elusive. Here, we show that PsbS induces hydrophobic mismatch in the thylakoid membrane through dynamic rearrangement of lipids around LHCII leading to observed membrane thinning. We found that upon illumination, the thylakoid membrane reversibly shrinks from around 4.3 to 3.2 nm, without PsbS, this response is eliminated. Furthermore, we show that the lipid digalactosyldiacylglycerol (DGDG) is repelled from the LHCII-PsbS complex due to an increase in both the pKa of lumenal residues and in the dipole moment of LHCII, which allows for further conformational change and clustering in the membrane. Our results suggest a mechanistic role for PsbS as a facilitator of a hydrophobic mismatch-mediated phase transition between LHCII-PsbS and its environment. This could act as the driving force to sort LHCII into photoprotective nanodomains in the thylakoid membrane. This work shows an example of the key role of the hydrophobic mismatch process in regulating membrane protein function in plants.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Light-Harvesting Protein Complexes , Photosynthesis , Photosystem II Protein Complex , Thylakoids , Thylakoids/metabolism , Thylakoids/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Galactolipids/metabolism , Galactolipids/chemistry , Light
4.
Physiol Plant ; 176(2): e14306, 2024.
Article in English | MEDLINE | ID: mdl-38659135

ABSTRACT

Chlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis. Hence, to address this we describe an advanced chlorophyll fluorescence spectrometer - ChloroSpec - allowing three-dimensional simultaneous detection of fluorescence intensities at different wavelengths in a time-resolved manner. We demonstrate for a variety of typical examples that most of the generally used fluorescence parameters are strongly wavelength dependent. This indicates a pronounced heterogeneity and a highly dynamic nature of the thylakoid and the photosynthetic apparatus under actinic illumination. Furthermore, we provide examples of advanced global analysis procedures integrating this three-dimensional signal and relevant information extracted from them that relate to the physiological properties of the organism. This conveniently obtained broad range of data can make ChloroSpec a new standard tool in photosynthesis research.


Subject(s)
Chlorophyll , Photosynthesis , Spectrometry, Fluorescence , Chlorophyll/metabolism , Spectrometry, Fluorescence/methods , Spectrometry, Fluorescence/instrumentation , Photosynthesis/physiology , Plant Leaves/metabolism , Fluorescence , Thylakoids/metabolism
5.
Nat Commun ; 15(1): 3122, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600073

ABSTRACT

In chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68. FPB1 interacts with PAM68 and both proteins coimmunoprecipitate with SecY/E and Alb3 as well as with some ribosomal components. Thus, our data indicate that, in coordination with the SecY/E translocon and the Alb3 integrase, FPB1 synergistically cooperates with PAM68 to facilitate the co-translational integration of the last two CP47 TMDs and the large loop between them into thylakoids and the PSII core complex.


Subject(s)
Photosystem II Protein Complex , Thylakoids , Chloroplasts/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Ribosomes/metabolism , Thylakoids/metabolism
6.
Methods Mol Biol ; 2790: 427-438, 2024.
Article in English | MEDLINE | ID: mdl-38649585

ABSTRACT

The biological role of lipids goes far beyond the formation of a structural membrane bilayer platform for membrane proteins and controlling fluxes across the membranes. For example, in photosynthetic thylakoid membranes, lipids occupy well-defined binding niches within protein complexes and determine the structural organization of membrane proteins and their function by controlling generic physicochemical membrane properties. In this chapter, two-dimensional thin-layer chromatography (2D TLC) and gas chromatography (GC) techniques are presented for quantitative analysis of lipid classes and fatty acids in thylakoid membranes. In addition, lipid extraction methods from isolated thylakoid membranes and leaves are described together with a procedure for the derivatization of fatty acids to fatty acid methyl esters (FAME) that is required for GC analysis.


Subject(s)
Fatty Acids , Photosynthesis , Thylakoids , Thylakoids/metabolism , Chromatography, Thin Layer/methods , Chromatography, Gas/methods , Fatty Acids/metabolism , Fatty Acids/chemistry , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Lipids/chemistry , Lipids/isolation & purification , Lipids/analysis
7.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38679935

ABSTRACT

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Subject(s)
Photosynthesis , Singlet Oxygen , Thylakoids , Electron Spin Resonance Spectroscopy/methods , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Thylakoids/metabolism , Thylakoids/chemistry , Spin Trapping/methods , Chlorophyll/metabolism , Chlorophyll/chemistry , Spinacia oleracea/metabolism , Spinacia oleracea/chemistry , Light
8.
Methods Mol Biol ; 2776: 3-20, 2024.
Article in English | MEDLINE | ID: mdl-38502495

ABSTRACT

The emergence of thylakoid membranes in cyanobacteria is a key event in the evolution of all oxygenic photosynthetic cells, from prokaryotes to eukaryotes. Recent analyses show that they could originate from a unique lipid phase transition rather than from a supposed vesicular budding mechanism. Emergence of thylakoids coincided with the great oxygenation event, more than two billion years ago. The acquisition of semi-autonomous organelles, such as the mitochondrion, the chloroplast, and, more recently, the chromatophore, is a critical step in the evolution of eukaryotes. They resulted from primary endosymbiotic events that seem to share general features, i.e., an acquisition of a bacterium/cyanobacteria likely via a phagocytic membrane, a genome reduction coinciding with an escape of genes from the organelle to the nucleus, and, finally, the appearance of an active system translocating nuclear-encoded proteins back to the organelles. An intense mobilization of foreign genes of bacterial origin, via horizontal gene transfers, plays a critical role. Some third partners, like Chlamydia, might have facilitated the transition from cyanobacteria to the early chloroplast. This chapter further details our current understanding of primary endosymbiosis, focusing on primary chloroplasts, thought to have appeared over a billion years ago, and the chromatophore, which appeared around a hundred years ago.


Subject(s)
Chromatophores , Cyanobacteria , Thylakoids/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Eukaryota , Symbiosis/genetics
9.
Methods Mol Biol ; 2776: 137-149, 2024.
Article in English | MEDLINE | ID: mdl-38502501

ABSTRACT

Plant cell chloroplasts are bounded by a two-membrane envelope. Their photosynthetic function is based on the development of an operational large internal membrane network, called the thylakoids, and on enzymatic processes present in the chloroplast matrix, called the stroma. Thylakoid membranes are distinct from the chloroplast envelope, and their biogenesis is dependent on biosynthetic and transport activities specific of the chloroplast envelope. Starting with the isolation of intact chloroplasts, the method presents the separation by differential centrifugation of the three compartments. A protocol is detailed for leaves of spinach, Arabidopsis or pea.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Magnoliopsida , Thylakoids/metabolism , Chloroplasts/metabolism , Arabidopsis/metabolism , Plant Leaves , Arabidopsis Proteins/metabolism
11.
Plant Cell Physiol ; 65(5): 790-797, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38441322

ABSTRACT

Cyanobacteria inhabit areas with a broad range of light, temperature and nutrient conditions. The robustness of cyanobacterial cells, which can survive under different conditions, may depend on the resilience of photosynthetic activity. Cyanothece sp. PCC 8801 (Cyanothece), a freshwater cyanobacterium isolated from a Taiwanese rice field, had a higher repair activity of photodamaged photosystem II (PSII) under intense light than Synechocystis sp. PCC 6803 (Synechocystis), another freshwater cyanobacterium. Cyanothece contains myristic acid (14:0) as the major fatty acid at the sn-2 position of the glycerolipids. To investigate the role of 14:0 in the repair of photodamaged PSII, we used a Synechocystis transformant expressing a T-1274 encoding a lysophosphatidic acid acyltransferase (LPAAT) from Cyanothece. The wild-type and transformant cells contained 0.2 and 20.1 mol% of 14:0 in glycerolipids, respectively. The higher content of 14:0 in the transformants increased the fluidity of the thylakoid membrane. In the transformants, PSII repair was accelerated due to an enhancement in the de novo synthesis of D1 protein, and the production of singlet oxygen (1O2), which inhibited protein synthesis, was suppressed. The high content of 14:0 increased transfer of light energy received by phycobilisomes to PSI and CP47 in PSII and the content of carotenoids. These results indicated that an increase in 14:0 reduced 1O2 formation and enhanced PSII repair. The higher content of 14:0 in the glycerolipids may be required as a survival strategy for Cyanothece inhabiting a rice field under direct sunlight.


Subject(s)
Light , Myristic Acid , Photosystem II Protein Complex , Synechocystis , Thylakoids , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Synechocystis/genetics , Myristic Acid/metabolism , Thylakoids/metabolism , Photosynthesis , Acyltransferases/metabolism , Acyltransferases/genetics , Singlet Oxygen/metabolism
12.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555362

ABSTRACT

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thylakoids/metabolism , Protons , Antiporters/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Photosynthesis/physiology , Chloroplasts/metabolism , Light
13.
Plant Physiol ; 195(1): 713-727, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38330186

ABSTRACT

Plant tetrapyrrole biosynthesis (TPB) takes place in plastids and provides the chlorophyll and heme required for photosynthesis and many redox processes throughout plant development. TPB is strictly regulated, since accumulation of several intermediates causes photodynamic damage and cell death. Protoporphyrinogen oxidase (PPO) catalyzes the last common step before TPB diverges into chlorophyll and heme branches. Land plants possess two PPO isoforms. PPO1 is encoded as a precursor protein with a transit peptide, but in most dicotyledonous plants PPO2 does not possess a cleavable N-terminal extension. Arabidopsis (Arabidopsis thaliana) PPO1 and PPO2 localize in chloroplast thylakoids and envelope membranes, respectively. Interestingly, PPO2 proteins in Amaranthaceae contain an N-terminal extension that mediates their import into chloroplasts. Here, we present multiple lines of evidence for dual targeting of PPO2 to thylakoid and envelope membranes in this clade and demonstrate that PPO2 is not found in mitochondria. Transcript analyses revealed that dual targeting in chloroplasts involves the use of two transcription start sites and initiation of translation at different AUG codons. Among eudicots, the parallel accumulation of PPO1 and PPO2 in thylakoid membranes is specific for the Amaranthaceae and underlies PPO2-based herbicide resistance in Amaranthus species.


Subject(s)
Herbicides , Plant Proteins , Protoporphyrinogen Oxidase , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plastids/genetics , Plastids/metabolism , Gene Expression Regulation, Plant , Amaranthus/genetics , Amaranthus/drug effects , Chloroplasts/metabolism , Chloroplasts/genetics , Herbicide Resistance/genetics , Arabidopsis/genetics , Thylakoids/metabolism
14.
Plant Physiol ; 195(2): 1521-1535, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38386701

ABSTRACT

Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role in balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and fatty acid desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fatty Acid Desaturases , Peroxiredoxins , Thylakoids , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Thylakoids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Peroxiredoxins/metabolism , Peroxiredoxins/genetics , Oxidation-Reduction , Chloroplasts/metabolism , Lipid Metabolism , Mutation/genetics , Gene Expression Regulation, Plant
15.
Nat Plants ; 10(3): 512-524, 2024 03.
Article in English | MEDLINE | ID: mdl-38396112

ABSTRACT

The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII-LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as 'stacked thylakoid doublets', is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plant's ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.


Subject(s)
Arabidopsis , Thylakoids , Thylakoids/metabolism , Electron Transport , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Electrons , Light-Harvesting Protein Complexes/metabolism , Arabidopsis/metabolism , Light , Photosynthesis
16.
Sci Adv ; 10(8): eadh0911, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394196

ABSTRACT

Photosystem II (PSII) is an integral part of the photosynthesis machinery, in which several light-harvesting complexes rely on inter-complex excitonic energy transfer (EET) processes to channel energy to the reaction center. In this paper, we report on a direct observation of the inter-complex EET in a minimal PSII supercomplex from plants, containing the trimeric light-harvesting complex II (LHCII), the monomeric light-harvesting complex CP26, and the monomeric PSII core complex. Using two-dimensional (2D) electronic spectroscopy, we measure an inter-complex EET timescale of 50 picoseconds for excitations from the LHCII-CP26 peripheral antenna to the PSII core. The 2D electronic spectra also reveal that the transfer timescale is nearly constant over the pump spectrum of 600 to 700 nanometers. Structure-based calculations reveal the contribution of each antenna complex to the measured inter-complex EET time. These results provide a step in elucidating the full inter-complex energy transfer network of the PSII machinery.


Subject(s)
Chlorophyll , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Chlorophyll/metabolism , Photosynthesis , Thylakoids/metabolism , Plants/metabolism , Energy Transfer
17.
New Phytol ; 242(2): 544-557, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379464

ABSTRACT

The phosphorylation of photosystem II (PSII) and its antenna (LHCII) proteins has been studied, and its involvement in state transitions and PSII repair is known. Yet, little is known about the phosphorylation of photosystem I (PSI) and its antenna (LHCI) proteins. Here, we applied proteomics analysis to generate a map of the phosphorylation sites of the PSI-LHCI proteins in Chlorella ohadii cells that were grown under low or extreme high-light intensities (LL and HL). Furthermore, we analyzed the content of oxidized tryptophans and PSI-LHCI protein degradation products in these cells, to estimate the light-induced damage to PSI-LHCI. Our work revealed the phosphorylation of 17 of 22 PSI-LHCI subunits. The analyses detected the extensive phosphorylation of the LHCI subunits Lhca6 and Lhca7, which is modulated by growth light intensity. Other PSI-LHCI subunits were phosphorylated to a lesser extent, including PsaE, where molecular dynamic simulation proposed that a phosphoserine stabilizes ferredoxin binding. Additionally, we show that HL-grown cells accumulate less oxidative damage and degradation products of PSI-LHCI proteins, compared with LL-grown cells. The significant phosphorylation of Lhca6 and Lhca7 at the interface with other LHCI subunits suggests a physiological role during photosynthesis, possibly by altering light-harvesting characteristics and binding of other subunits.


Subject(s)
Chlorella , Photosystem I Protein Complex , Photosystem I Protein Complex/metabolism , Phosphorylation , Light-Harvesting Protein Complexes/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism
18.
Funct Plant Biol ; 512024 01.
Article in English | MEDLINE | ID: mdl-38190657

ABSTRACT

In this study, we investigated the importance of one of the intramembrane proteases, EGY2, for the proper functioning of PSII under short-term high light stress conditions. EGY2 is a chloroplast intramembrane protease of the S2P family, whose absence in Arabidopsis thaliana affects PSII protein composition. The egy2 mutants exhibited a slower degradation of PsbA and decreased content of PsbC and PsbD. During exposure to high light stress, these stoichiometric changes affect the functional state of PSII, leading to its higher sensitivity to photoinhibition of the PSII reaction centre and increased heat dissipation. Furthermore, we explored the relationship between EGY2 and the pTAC16 transcription factor, which is a potential EGY2 substrate. Under light stress, WT plants showed decreased levels of pTAC16, while it remained unchanged in the egy2 mutants. This finding suggests that EGY2 may release pTAC16 from thylakoid membranes through proteolytic cleavage. We also confirmed the physical interaction between EGY2 and pTAC16 using the yeast two-hybrid system, providing evidence of EGY2's involvement in the regulation of PsbA and PsbC/PsbD operons by releasing pTAC16 from the thylakoid membrane.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hydrolases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Light , Thylakoids/metabolism , Arabidopsis/genetics , Endopeptidases/metabolism
19.
Cells ; 13(2)2024 01 05.
Article in English | MEDLINE | ID: mdl-38247801

ABSTRACT

CAH3 is the only carbonic anhydrase (CA) present in the thylakoid lumen of the green algae Chlamydomonas reinhardtii. The monomer of the enzyme has a molecular weight of ~29.5 kDa with high CA activity. Through its dehydration activity, CAH3 can be involved either in the carbon-concentrating mechanism supplying CO2 for RuBisCO in the pyrenoid or in supporting the maximal photosynthetic activity of photosystem II (PSII) by accelerating the removal of protons from the active center of the water-oxidizing complex. Both proposed roles are considered in this review, together with a description of the enzymatic parameters of native and recombinant CAH3, the crystal structure of the protein, and the possible use of lumenal CA as a tool for increasing biomass production in higher plants. The identified involvement of lumenal CAH3 in the function of PSII is still unique among green algae and higher plants and can be used to understand the mechanism(s) of the functional interconnection between PSII and the proposed CA(s) of the thylakoid lumen in other organisms.


Subject(s)
Carbonic Anhydrases , Chlamydomonas reinhardtii , Thylakoids , Biomass , Plastids , Thylakoids/metabolism
20.
Plant Signal Behav ; 19(1): 2300239, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38170666

ABSTRACT

24 h cold exposure (4°C) is sufficient to reduce pathogen susceptibility in Arabidopsis thaliana against the virulent Pseudomonas syringae pv. tomato (Pst) strain even when the infection occurs five days later. This priming effect is independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) and can be observed in the immune-compromised eds1-2 null mutant. In contrast, cold priming-reduced Pst susceptibility is strongly impaired in knock-out lines of the stromal and thylakoid ascorbate peroxidases (sAPX/tAPX) highlighting their relevance for abiotic stress-related increased immune resilience. Here, we extended our analysis by generating an eds1 sapx double mutant. eds1 sapx showed eds1-like resistance and susceptibility phenotypes against Pst strains containing the effectors avrRPM1 and avrRPS4. In comparison to eds1-2, susceptibility against the wildtype Pst strain was constitutively enhanced in eds1 sapx. Although a prior cold priming exposure resulted in reduced Pst titers in eds1-2, it did not alter Pst resistance in eds1 sapx. This demonstrates that the genetic sAPX requirement for cold priming of basal plant immunity applies also to an eds1 null mutant background.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascorbate Peroxidases/metabolism , Gene Expression Regulation, Plant/genetics , Plant Diseases/genetics , Plant Immunity , Pseudomonas syringae , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...