Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100255, 2021.
Article in English | MEDLINE | ID: mdl-33837736

ABSTRACT

T lymphocytes discriminate between healthy and infected or cancerous cells via T-cell receptor-mediated recognition of peptides bound and presented by cell-surface-expressed major histocompatibility complex molecules (MHCs). Pre-T-cell receptors (preTCRs) on thymocytes foster development of αßT lymphocytes through their ß chain interaction with MHC displaying self-peptides on thymic epithelia. The specific binding of a preTCR with a peptide-MHC complex (pMHC) has been identified previously as forming a weak affinity complex with a distinct interface from that of mature αßTCR. However, a lack of appropriate tools has limited prior efforts to investigate this unique interface. Here we designed a small-scale linkage screening protocol using bismaleimide linkers for determining residue-specific distance constraints between transiently interacting protein pairs in solution. Employing linkage distance restraint-guided molecular modeling, we report the oriented solution docking geometry of a preTCRß-pMHC interaction. The linkage model of preTCRß-pMHC complex was independently verified with paramagnetic pseudocontact chemical shift (PCS) NMR of the unlinked protein mixtures. Using linkage screens, we show that the preTCR binds with differing affinities to peptides presented by MHC in solution. Moreover, the C-terminal peptide segment is a key determinant in preTCR-pMHC recognition. We also describe the process for future large-scale production and purification of the linked constructs for NMR, X-ray crystallography, and single-molecule electron microscopy studies.


Subject(s)
Antigens, Surface/ultrastructure , Protein Binding/genetics , Receptors, Antigen, T-Cell/ultrastructure , T-Lymphocytes/ultrastructure , Antigens, Surface/chemistry , Antigens, Surface/genetics , Humans , Major Histocompatibility Complex/genetics , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/genetics , Protein Interaction Domains and Motifs/genetics , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/ultrastructure , T-Lymphocytes/chemistry , T-Lymphocytes/immunology , Thymocytes/chemistry , Thymocytes/ultrastructure
2.
J Vis Exp ; (140)2018 10 02.
Article in English | MEDLINE | ID: mdl-30346412

ABSTRACT

The purpose of the method being presented is to show, for the first time, the transplant of newborn thymi into the anterior eye chamber of isogenic adult mice for in vivo longitudinal real-time monitoring of thymocytes´ dynamics within a vascularized thymus segment. Following the transplantation, laser scanning microscopy (LSM) through the cornea allows in vivo noninvasive repeated imaging at cellular resolution level. Importantly, the approach adds to previous intravital T-cell maturation imaging models the possibility for continuous progenitor cell recruitment and mature T-cell egress recordings in the same animal. Additional advantages of the system are the transparency of the grafted area, permitting macroscopic rapid monitoring of the implanted tissue, and the accessibility to the implant allowing for localized in addition to systemic treatments. The main limitation being the volume of the tissue that fits in the reduced space of the eye chamber which demands for lobe trimming. Organ integrity is maximized by dissecting thymus lobes in patterns previously shown to be functional for mature T-cell production. The technique is potentially suited to interrogate a milieu of medically relevant questions related to thymus function that include autoimmunity, immunodeficiency and central tolerance; processes which remain mechanistically poorly defined. The fine dissection of mechanisms guiding thymocyte migration, differentiation and selection should lead to novel therapeutic strategies targeting developing T cells.


Subject(s)
Microscopy, Confocal/methods , Thymocytes/chemistry , Animals , Cell Differentiation , Mice
3.
J Biol Chem ; 291(49): 25292-25305, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27707880

ABSTRACT

The pre-T cell receptor (pre-TCR) is a pTα-ß heterodimer functioning in early αß T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αßTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cß FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαß and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vß patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of ß chains with self-reactivity but is occluded by α subunit replacement of pTα upon αßTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αßTCR repertoire tuning via the pre-TCR.


Subject(s)
Complementarity Determining Regions , Gene Expression Regulation/physiology , Receptors, Antigen, T-Cell, alpha-beta , Thymocytes , Animals , Complementarity Determining Regions/biosynthesis , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Mice , Mice, Knockout , Protein Structure, Secondary , Receptors, Antigen, T-Cell, alpha-beta/biosynthesis , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Thymocytes/chemistry , Thymocytes/cytology , Thymocytes/metabolism
4.
Virus Res ; 189: 29-33, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-24787009

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease that is characterized by respiratory distress and poor growth in piglets and by severe reproductive failure in sows. PRRS was first recognized in the 1990s in Europe and the United States. In 2006, highly pathogenic (HP)-PRRS caused enormous economic losses in China. Our previous studies demonstrated that the HP-PRRS virus (HP-PRRSV) induced the apoptosis of numerous thymocytes in infected piglets, leading to severe thymus atrophy. To further identify the subset of apoptotic cells in thymus of HP-PRRSV-infected piglets, different cell types, apoptotic cells, and HP-PRRSV were marked with the corresponding markers. Results of the colocalization demonstrated that the apoptotic cells were not infected by HP-PRRSV, and most of them were CD3(+) T cells. No apoptosis was observed in the epithelial cells, and only few CD14(+) cells were apoptotic. HP-PRRSV was only found in CD14(+) cells, and epithelial cells and CD3(+) cells were not infected by HP-PRRSV. This is the first study to report the apoptotic and infected cells in the thymuses of HP-PRRSV-infected piglets.


Subject(s)
Apoptosis , Porcine Reproductive and Respiratory Syndrome/pathology , Thymocytes/physiology , Thymus Gland/pathology , Animals , Atrophy/pathology , CD3 Complex/analysis , Epithelial Cells/physiology , Epithelial Cells/virology , Porcine respiratory and reproductive syndrome virus/isolation & purification , Swine , Thymocytes/chemistry , Thymocytes/virology
5.
J Neuroimmunol ; 261(1-2): 44-52, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23726907

ABSTRACT

Glucocorticoids are involved in the regulation of immune homeostasis and thymopoiesis and the integration of the thymus function with the neuroendocrine system. Their regulatory function is closely related to glucocorticoid receptor (GCR) expression. The aim of this study was to develop a method for the measurement of GCR expression in mouse living thymocytes by flow cytometry. Using dexamethasone binding we have shown differences in GCR expression among thymocyte subsets and their dependence on the circadian rhythm.


Subject(s)
Circadian Rhythm/immunology , Dexamethasone , Fluorescein-5-isothiocyanate , Receptors, Glucocorticoid/biosynthesis , T-Lymphocyte Subsets/metabolism , Thymocytes/metabolism , Animals , Cell Survival/physiology , Cells, Cultured , Dexamethasone/analysis , Fluorescein-5-isothiocyanate/analysis , Fluorescent Dyes/analysis , Gene Expression Regulation/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Glucocorticoid/genetics , T-Lymphocyte Subsets/chemistry , T-Lymphocyte Subsets/cytology , Thymocytes/chemistry , Thymocytes/cytology
6.
Biochim Biophys Acta ; 1828(4): 1259-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23333323

ABSTRACT

Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes.


Subject(s)
Cell Membrane/chemistry , Leukemia/metabolism , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Thymocytes/chemistry , Animals , Diffusion , Leukemia/pathology , Membrane Fluidity , Membrane Lipids/chemistry , Mice , Molecular Conformation , Rotation
7.
Nutrients ; 4(6): 449-66, 2012 06.
Article in English | MEDLINE | ID: mdl-22822446

ABSTRACT

Zinc deficiency is one of the leading risk factors for developing disease and yet we do not have a clear understanding of the mechanisms behind the increased susceptibility to infection. This review will examine the interrelationships among the hypothalamus-pituitary-adrenal stress axis, p56(lck), and T-cell maturation in both zinc deficiency and responses during zinc repletion. We will highlight differences between the adult mouse model (wasting malnutrition) and growing rat model (stunting malnutrition) of dietary zinc deficiency and discuss the use of various controls to separate out the effects of zinc deficiency from the associated malnutrition. Elevated serum corticosterone in both zinc deficient and pair-fed rats does not support the hypothesis that zinc deficiency per se leads to corticosterone-induced apoptosis and lymphopenia. In fact, the zinc deficient rat does not have lymphopenia. Thymocytes from zinc deficient mice and rats have elevated levels of p56(lck), a signalling protein with a zinc clasp structure, but this does not appear to affect thymocyte maturation. However, post-thymic T-cell maturation appears to be altered based on the lower proportion of splenic late thymic emigrants in zinc deficient rats. Fewer new T-cells in the periphery could adversely affect the T-cell repertoire and contribute to immunodeficiency in zinc deficiency.


Subject(s)
Malnutrition/physiopathology , T-Lymphocytes/physiology , Zinc/deficiency , Animals , Corticosterone/blood , Dietary Supplements , Disease Models, Animal , Flow Cytometry , Hypothalamo-Hypophyseal System/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphopenia/metabolism , Malnutrition/metabolism , Mice , Pituitary-Adrenal System/metabolism , Rats , Spleen/metabolism , T-Lymphocytes/metabolism , Thymocytes/chemistry
8.
Micron ; 43(12): 1232-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22613572

ABSTRACT

Atomic force microscopy (AFM) in lateral force mode was applied to assess the microscale thermo-mechanical (frictional) properties of the air-dried cell surface in the wide temperature range (288-363K/15-90°C). AFM-investigated cell surface layer can be represented as a biocomposite composed of several layers including the glycocalyx, the membrane and the intercellular layer containing membrane (cortical) cytoskeleton. The cells with two different cytoskeleton structures, erythrocytes and thymocytes, were studied. Above a certain temperature (T(g)), the significant change in friction force with temperature was revealed for the both cell types whereas there was no similar change in their topography parameters. The experimentally determined value T(g) for erythrocyte samples was lower than that for thymocyte ones. Treating living cells with the cross-linking agent, glutaraldehyde, led to the weakening of the temperature dependence of air-dried cell surface frictional properties in the studied temperature range. Addition of oxidizing agent, peroxynitrite, to living cell suspensions changed the temperature dependence of air-dried cell surface frictional properties depending on cell type and peroxynitrite concentration. The obtained data indicate that the study of thermo-mechanical properties of air-dried cells with AFM in lateral force mode provides expanded information on the structural characteristics of the living cell surface layer, and sets the stage for the development of AFM-based method (with using a lateral force mode) for the cell pathology diagnostics.


Subject(s)
Cytological Techniques/methods , Microscopy, Atomic Force/methods , Surface Properties , Animals , Chemical Phenomena , Erythrocytes/chemistry , Erythrocytes/physiology , Friction , Humans , Mechanical Phenomena , Rats , Suspensions , Temperature , Thymocytes/chemistry , Thymocytes/physiology
9.
Biometals ; 24(5): 903-14, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21455662

ABSTRACT

Although cadmium-induced apoptosis of lymphocytes is one of common features in the immunotoxicity of cadmium, the membrane pathway for intracellular cadmium accumulation is not fully elucidated. To characterize membrane Cd(2+) transport of rat thymocytes, the change in intracellular Cd(2+) concentration under various conditions was examined by the use of Fluo-3, a fluorescent probe for monitoring the change in intracellular concentration of divalent metal cations. The membrane Cd(2+) transport was estimated by the augmentation of Fluo-3 fluorescence induced by bath application of CdCl(2). Lowering temperature strongly suppressed the augmentation of Fluo-3 fluorescence by CdCl(2), suggesting that the metabolic process can be involved in membrane Cd(2+) transport. External acidification (decreasing pH) and membrane depolarization by adding KCl attenuated the augmentation, indicating the requirement of electrochemical driving force for membrane Cd(2+) transport into the cells. Bath application of CaCl(2) and ZnCl(2) equally decreased the augmentation, suggesting their competition with Cd(2+) at the membrane transport. The augmentation by CdCl(2) was lesser in the cells treated with N-ethylmaleimide inducing chemical depletion of cellular thiols. The result suggests the contribution of sulfhydryl groups to membrane Cd(2+) transport. Taken together, it is suggested that the cells possess a temperature-sensitive membrane Cd(2+) pathway, driven by electrochemical gradient of Cd(2+) and transmembrane potential, with competitive binding site. Based on the characteristics described above, it is unlikely that the membrane Cd(2+) transport in rat thymocytes is attributed to a single transport system although it has characteristics that are similar to those of divalent cation transporter 1.


Subject(s)
Aniline Compounds/chemistry , Cadmium/metabolism , Cell Membrane/chemistry , Fluorescent Dyes/chemistry , Thymocytes/metabolism , Xanthenes/chemistry , Animals , Biological Transport , Cadmium/analysis , Cell Membrane/metabolism , Flow Cytometry , Fluorescence , Rats , Rats, Wistar , Spectrometry, Fluorescence , Thymocytes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...