Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.611
Filter
1.
Front Immunol ; 15: 1375508, 2024.
Article in English | MEDLINE | ID: mdl-38895117

ABSTRACT

Introduction: Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods: In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results: Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion: Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.


Subject(s)
Animals, Newborn , Gene Expression Profiling , Thymus Gland , Transcriptome , Viral Tropism , Thymus Gland/virology , Thymus Gland/immunology , Animals , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Mice, Inbred C57BL , Humans
2.
Blood Cancer J ; 14(1): 96, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871704

ABSTRACT

Childhood acute lymphoblastic leukemia (cALL) survivors suffer early-onset chronic diseases classically associated with aging. Normal aging is accompanied by organ dysfunctions, including immunological ones. We hypothesize that thymic immunosenescence occurs in cALL survivors and that its severity may correlate with early-onset chronic diseases. The PETALE study is a cALL survivor cohort with an extensive cardiovascular and metabolic evaluation. The thymic immunosenescence biomarker, signal joint T-cell receptor excision circles (TREC), was evaluated and was highly correlated with age in healthy participants (n = 281) and cALL survivors (n = 248). We observed a systematic thymic immunoage accentuation in each cALL survivor compared to controls ranging from 5.9 to 88.3 years. The immunoage gain was independent of age at diagnosis and treatment modalities and was more severe for females. Thymic aging was associated with several pathophysiological parameters, was greater in survivors suffering from metabolic syndrome, but there was no significant association with global physical condition. The decrease in TREC was independent from blood cell counts, which were normal, suggesting a segmental aging of the thymic compartment. Indeed, increased plasmatic T cell regulatory cytokines IL-6, IL-7 and GM-CSF accompanied high immunoage gain. Our data reveal that cALL or its treatment trigger a rapid immunoage gain followed by further gradual thymic immunosenescence, similar to normal aging. This leads to an enduring shift in accentuated immunoage compared to chronological age. Thus, accentuated thymic immunosenescence is a hallmark of cALL survivorship and TREC levels could be useful immunosenescence biomarkers to help monitoring the health of cancer survivors.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Thymus Gland , Humans , Female , Male , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adolescent , Adult , Thymus Gland/pathology , Thymus Gland/immunology , Child, Preschool , Young Adult , Aged , Middle Aged , Aged, 80 and over , Cancer Survivors , Immunosenescence , Survivorship
3.
Microb Pathog ; 192: 106723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823465

ABSTRACT

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Subject(s)
Enterotoxins , Hedgehog Proteins , Signal Transduction , T-Lymphocytes , Thymus Gland , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Female , Pregnancy , Rats , Thymus Gland/metabolism , Thymus Gland/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Prenatal Exposure Delayed Effects/immunology , Cell Differentiation/drug effects , Rats, Sprague-Dawley , Male
4.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838284

ABSTRACT

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the CNS. It is the leading cause of chronic neurologic disability in young adults. Proinflammatory B cells and autoreactive T cells both play important roles in its pathogenesis. We aimed to study alterations of regulatory T cells (Tregs), which likely also contribute to the disease, but their involvement is less clear. METHODS: By combining multiple experimental approaches, we examined the Treg compartments in 41 patients with relapsing-remitting MS and 17 healthy donors. RESULTS: Patients with MS showed a reduced frequency of CD4+ T cells and Foxp3+ Tregs and age-dependent alterations of Treg subsets. Treg suppressive function was compromised in patients, who were treated with natalizumab, while it was unaffected in untreated and anti-CD20-treated patients. The changes in natalizumab-treated patients included increased proinflammatory cytokines and an altered transcriptome in thymus-derived (t)-Tregs, but not in peripheral (p)-Tregs. DISCUSSION: Treg dysfunction in patients with MS might be related to an altered transcriptome of t-Tregs and a proinflammatory environment. Our findings contribute to a better understanding of Tregs and their subtypes in MS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Natalizumab , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , Adult , Female , Male , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Natalizumab/pharmacology , Middle Aged , Thymus Gland/immunology , Immunologic Factors/pharmacology , Young Adult
5.
Immunol Lett ; 267: 106861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697225

ABSTRACT

Hematopoietic precursors (HPCs) entering into the thymus undergo a sequential process leading to the generation of a variety of T cell subsets. This developmental odyssey unfolds in distinct stages within the thymic cortex and medulla, shaping the landscape of T cell receptor (TCR) expression and guiding thymocytes through positive and negative selection. Initially, early thymic progenitors (ETPs) take residence in the thymic cortex, where thymocytes begin to express their TCR and undergo positive selection. Subsequently, thymocytes transition to the thymic medulla, where they undergo negative selection. Both murine and human thymocyte development can be broadly classified into distinct stages based on the expression of CD4 and CD8 coreceptors, resulting in categorizations as double negative (DN), double positive (DP) or single positive (SP) cells. Thymocyte migration to the appropriate thymic microenvironment at the right differentiation stage is pivotal for the development and the proper functioning of T cells, which is critical for adaptive immune responses. The journey of lymphoid progenitor cells into the T cell developmental pathway hinges on an ongoing dialogue between the differentiating cell and the signals emanating from the thymus niche. Herein, we review the contribution of the key factors mentioned above for the localization, migration and emigration of thymocytes.


Subject(s)
Cell Differentiation , Cell Movement , Thymocytes , Thymus Gland , Thymocytes/immunology , Thymocytes/cytology , Thymocytes/metabolism , Animals , Humans , Thymus Gland/cytology , Thymus Gland/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Receptors, Antigen, T-Cell/metabolism
6.
Fish Shellfish Immunol ; 150: 109652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788913

ABSTRACT

The thymus of fishes is located as a dual organ in a rostrodorsal projection within the gill chamber and is covered by the operculum. The histological organization of the teleost fish thymus displays considerable diversity, particularly in salmonids where a clear distinction between the thymus cortex and medulla is yet to be defined. Recent interest has focused on the role of B cells in thymic function, but the presence of these cells within the salmon thymus remains poorly understood. In this morphological study, we applied in situ hybridization to investigate developing Atlantic salmon thymi for the expression of recombination activating (Rag) genes 1 and 2. We identified the location of the cortex, aligning with the previously described inner zone. Expression of IgM and IgD transcripts was predominantly observed in cells within the outer and subcapsular zones, with lesser expression in the cortex and inner zone. IgT expression was confined to a limited number of cells in the inner zone and capsule. The location of the thymus medulla could not be established. Our results are discussed in the context of the recently identified lymphoid organs, namely the intrabranchial lymphoid tissue (ILT) and the salmon bursa.


Subject(s)
Salmo salar , Thymus Gland , Animals , Salmo salar/genetics , Salmo salar/immunology , Thymus Gland/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Immunoglobulins/genetics , In Situ Hybridization/veterinary
7.
J Med Invest ; 71(1.2): 29-39, 2024.
Article in English | MEDLINE | ID: mdl-38735722

ABSTRACT

The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.


Subject(s)
Aging , Thymus Gland , Thymus Gland/immunology , Thymus Gland/growth & development , Humans , Aging/physiology , Aging/immunology , Animals , Epithelial Cells/physiology , Epithelium/immunology , T-Lymphocytes/immunology
8.
Nat Commun ; 15(1): 4248, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762584

ABSTRACT

The naked mole-rat (Heterocephalus glaber) is a long-lived rodent species showing resistance to the development of cancer. Although naked mole-rats have been reported to lack natural killer (NK) cells, γδ T cell-based immunity has been suggested in this species, which could represent an important arm of the immune system for antitumor responses. Here, we investigate the biology of these unconventional T cells in peripheral tissues (blood, spleen) and thymus of the naked mole-rat at different ages by TCR repertoire profiling and single-cell gene expression analysis. Using our own TCR annotation in the naked mole-rat genome, we report that the γδ TCR repertoire is dominated by a public invariant Vγ4-2/Vδ1-4 TCR, containing the complementary-determining-region-3 (CDR3)γ CTYWDSNYAKKLF / CDR3δ CALWELRTGGITAQLVF that are likely generated by short-homology-repeat-driven DNA rearrangements. This invariant TCR is specifically found in γδ T cells expressing genes associated with NK cytotoxicity and is generated in both the thoracic and cervical thymus of the naked mole-rat until adult life. Our results indicate that invariant Vγ4-2/Vδ1-4 NK-like effector T cells in the naked mole-rat can contribute to tumor immunosurveillance by γδ TCR-mediated recognition of a common molecular signal.


Subject(s)
Mole Rats , Receptors, Antigen, T-Cell, gamma-delta , Thymus Gland , Animals , Mole Rats/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland/immunology , Thymus Gland/cytology , Killer Cells, Natural/immunology , Spleen/immunology , Complementarity Determining Regions/genetics , Natural Killer T-Cells/immunology
9.
Toxicology ; 505: 153836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768702

ABSTRACT

Caramel color is a widely used food pigment, and 2-Acetyl-4-tetrahydroxybutylimidazole (THI) is a by-products of Class III caramel color. Some studies have shown that THI can reduce the number of peripheral blood lymphocytes. However, the comprehensive mechanism of THI immunotoxicity requires further study. In this study, the effects of THI on lymphocyte count, humoral immunity, cellular immunity and nonspecific immunity were determined and the effect of the nutritional status of VB6 on THI immunotoxicity was evaluated. Female BALB/c mice were divided into 3 groups and fed chow containing different doses of VB6: VB6-normal (6 mg/kg VB6), VB6-deprived (0.5 mg/kg VB6) or VB6-enhanced (12 mg/kg VB6) feed. Each group was further divided into 4 subgroups and treated with THI (0.5, 2.5 or 12.5 mg/kg bw) or the solvent control by gavage for 30 days. The thymic cortical thickness was measured with ViewPoint; the proportions of major immune cells and T cells in peripheral blood and tissues were detected via flow cytometry; the transformation and proliferation abilities of T and B cells were detected via T and B lymphocyte proliferation assays; NK cell activity was assessed via lactate dehydrogenase assays; humoral immune function was assessed via plaque-forming cell assays; and the immune function of T lymphocytes was assessed via delayed type hypersensitivity assays. The results showed that compared with those in the corresponding control group, the white blood cell count and lymphocyte count decreased significantly in all the VB6-deprived groups, in the 2.5 and 12.5 mg/kg VB6 groups, and in the 12.5 mg/kg VB6-enhanced group. With increasing THI dose, the thymic cortical layer became thinner. In the thymus, THI increased the proportions of CD3+ T cells and mature CD8+ T cells and decreased the proportions of immature double-positive, double-negative T cells and CD69-expressing lymphocytes. The proportions of naïve T cells and Tcm (central memory T) cells related to homing decreased. The proportion of mature T cells in the spleen decreased significantly. The proliferation of T cells stimulated by ConA decreased after THI exposure. VB6-deficient mice were more sensitive to THI immunotoxicity, and supplementation with VB6 had a certain protective effect on these mice. The results of the PFC and NK cell activity assays indicated that THI exposure might not affect humoral immune or innate immune function.


Subject(s)
Imidazoles , Immunity, Humoral , Mice, Inbred BALB C , Vitamin B 6 , Animals , Female , Mice , Imidazoles/toxicity , Imidazoles/pharmacology , Immunity, Humoral/drug effects , Vitamin B 6/pharmacology , Vitamin B 6/administration & dosage , Lymphocyte Count , Nutritional Status/drug effects , Thymus Gland/drug effects , Thymus Gland/immunology , Immunity, Cellular/drug effects , Spleen/drug effects , Spleen/immunology , Food Coloring Agents/toxicity , Cell Proliferation/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
10.
Biochem Biophys Res Commun ; 721: 150106, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38795634

ABSTRACT

3-phosphoinositide-dependent protein kinase 1 (PDK1) exhibits a substantial influence on immune cell development by establishing a vital connection between PI3K and downstream mTOR signaling cascades. However, it remains unclear whether PDK1 signaling affects the homeostasis and functionality of immune cells. To explore the impact of PDK1 on different immune cells within immune organs, transgenic mouse strains with lymphocyte-specific PDK1 knockout (PDK1fl/fl CD2-Cre) were generated. Unlike wild-type (WT) mice, lymphocyte-specific PDK1 knockout (KO) mice exhibited thymic atrophy, elevated percentages of CD8+ T cells and neutrophils, and reduced proportions of γδ T cells, B cells, and NK cells in the spleen. Functional analysis revealed elevated release of IFN-γ and IL-17A by T cells in PDK1 KO mice, contrasting with diminished levels observed in γδ T cells and Treg cells. Furthermore, the activation, cytotoxicity, and migratory potential of γδ T cells in PDK1 KO mice are heightened, indicating a potential association with the regulation of the mTOR signaling pathway. To conclude, the findings of this research demonstrated that specific knockout of PDK1 in lymphocytes hindered T cell development in the thymus and exhibited a substantial influence on immune cell homeostasis in the spleen and lymph nodes.


Subject(s)
Mice, Knockout , Thymus Gland , Animals , Mice , Thymus Gland/immunology , Spleen/immunology , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , 3-Phosphoinositide-Dependent Protein Kinases/genetics , Signal Transduction , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Interleukin-17/metabolism , Interleukin-17/immunology , CD8-Positive T-Lymphocytes/immunology
11.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709934

ABSTRACT

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Subject(s)
AIRE Protein , Insulin , Receptors, Antigen, T-Cell , Thymus Gland , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Clone Cells , Immune Tolerance , Insulin/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/cytology , Transcription Factors/metabolism , Transcription Factors/genetics
12.
J Immunol ; 213(1): 52-62, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38767415

ABSTRACT

The thymus is an important site for the establishment of an appropriate immune response through positive and negative selection of developing T cells. During selection, developing T cells interact with cortical and medullary thymic epithelial cells (TECs), termed cTECs and mTECs, respectively. Using a Foxn1Cre+/-SKIfl/fl mouse model, we found that TEC-specific deletion of SKI reduced the mTEC compartment in the thymus and that tissue-restricted Ag expression in mTECs was altered. This decrease in the medullary area led to a decrease in CD4 thymocyte cellularity; however, mature CD4 cellularity in the spleen remained normal. Interestingly, naive CD4 T cells purified from SKI-deleted mice showed a defect in proliferation in vitro after global TCR stimulation, and these mice were significantly protected from developing experimental autoimmune encephalomyelitis compared with the control mice. Overall, our findings suggest that SKI signaling in the thymus regulates mTEC differentiation and function as well as downstream peripheral T cell responses and provide evidence for targeting SKI in T cell-driven autoimmune diseases such as multiple sclerosis.


Subject(s)
Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental , Epithelial Cells , Thymus Gland , Animals , Mice , Thymus Gland/immunology , Thymus Gland/cytology , Cell Differentiation/immunology , Epithelial Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Mice, Knockout , DNA-Binding Proteins/genetics , Mice, Inbred C57BL , Signal Transduction/immunology , CD4-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
14.
Immunol Lett ; 267: 106857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604551

ABSTRACT

To control immune responses, regulatory CD4+CD25+Foxp3+ T cells (Treg) maintain their wide and diverse repertoire through continuous arrival of recent thymic emigrants (RTE). However, during puberty, the activity of RTE starts to decline as a natural process of thymic involution, introducing consequences, not completely described, to the repertoire. Type 1 diabetes (T1D) patients show quantitative and qualitative impairments on the Treg cells. Our aim was to evaluate peripheral Treg and RTE cell frequencies, in T1D patients from two distinct age groups (young and adults) and verify if HLA phenotypes are concomitant associated. To this, blood samples from Brazilian twenty established T1D patients (12 young and 8 adults) and twenty-one healthy controls (11 young and 10 adults) were analyzed, by flow cytometry, to verify the percentages of CD4, Treg (CD4+CD25+Foxp3+) and the subsets of CD45RA+ (naive) and CD31+(RTE) within then. Furthermore, the HLA typing was also set. We observed that the young established T1D patients feature decreased frequencies in total Treg cells and naive RTE within Treg cells. Significant prevalence of HLA alleles, associated with risk, in T1D patients, was also identified. Performing a multivariate analysis, we confirmed that the cellular changes described offers significant variables that distinct T1D patients from the controls. Our data collectively highlight relevant aspects about homeostasis imbalances in the Treg cells of T1D patients, especially in young, and disease prognosis; that might contribute for future therapeutic strategies involving Treg cells manipulation.


Subject(s)
Diabetes Mellitus, Type 1 , Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , T-Lymphocytes, Regulatory , Thymus Gland , Humans , Diabetes Mellitus, Type 1/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adult , Brazil , Male , Female , Forkhead Transcription Factors/metabolism , Thymus Gland/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Young Adult , Adolescent , Immunophenotyping , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Child
15.
Cell Rep ; 43(4): 114072, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581680

ABSTRACT

Medullary thymic epithelial cells (mTECs) are essential for the establishment of self-tolerance in T cells. Promiscuous gene expression by a subpopulation of mTECs regulated by the nuclear protein Aire contributes to the display of self-genomic products to newly generated T cells. Recent reports have highlighted additional self-antigen-displaying mTEC subpopulations, namely Fezf2-expressing mTECs and a mosaic of self-mimetic mTECs including thymic tuft cells. In addition, a functionally different subset of mTECs produces chemokine CCL21, which attracts developing thymocytes to the medullary region. Here, we report that CCL21+ mTECs and Aire+ mTECs non-redundantly cooperate to direct self-tolerance to prevent autoimmune pathology by optimizing the deletion of self-reactive T cells and the generation of regulatory T cells. We also detect cooperation for self-tolerance between Aire and Fezf2, the latter of which unexpectedly regulates thymic tuft cells. Our results indicate an indispensable interplay among functionally diverse mTECs for the establishment of central self-tolerance.


Subject(s)
AIRE Protein , Central Tolerance , Epithelial Cells , Nerve Tissue Proteins , Thymus Gland , Transcription Factors , Animals , Epithelial Cells/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Thymus Gland/immunology , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Self Tolerance
16.
Cell Mol Immunol ; 21(6): 546-560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641698

ABSTRACT

γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.


Subject(s)
AMP-Activated Protein Kinases , Hepatitis, Autoimmune , Interleukin-17 , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Receptors, Antigen, T-Cell, gamma-delta , Animals , Interleukin-17/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/pathology , Mice , AMP-Activated Protein Kinases/metabolism , Mice, Knockout , Cell Differentiation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/immunology , Thymus Gland/pathology , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism
17.
J Immunol ; 212(11): 1733-1743, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656392

ABSTRACT

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, Ags. B cells also reside and develop in the thymus, although their functions are less clear. During "thymic involution," a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ∼1% of human neonatal thymocytes but up to ∼10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. In this article, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- versus postinvolution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells postinvolution. We also performed RNA sequencing on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is, to our knowledge, the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution and establishing the highly genetically manipulatable zebrafish model as a template for involution studies.


Subject(s)
B-Lymphocytes , Thymus Gland , Zebrafish , Animals , Zebrafish/immunology , Thymus Gland/immunology , Thymus Gland/cytology , B-Lymphocytes/immunology , Animals, Genetically Modified , T-Lymphocytes/immunology , Humans , Cell Differentiation/immunology , Models, Animal
18.
Front Immunol ; 15: 1364957, 2024.
Article in English | MEDLINE | ID: mdl-38650932

ABSTRACT

Introduction: CARD11 is a lymphoid lineage-specific scaffold protein regulating the NF-κB activation downstream of the antigen receptor signal pathway. Defective CARD11 function results in abnormal development and differentiation of lymphocytes, especially thymic regulatory T cells (Treg). Method: In this study, we used patients' samples together with transgenic mouse models carrying pathogenic CARD11 mutations from patients to explore their effects on Treg development. Immunoblotting and a GFP receptor assay were used to evaluate the activation effect of CARD11 mutants on NF-κB signaling. Then the suppressive function of Tregs carrying distinct CARD11 mutations was measured by in vitro suppression assay. Finally, we applied the retroviral transduced bone marrow chimeras to rescue the Treg development in an NF-κB independent manner. Results and discuss: We found CARD11 mutations causing hyper-activated NF-κB signals also gave rise to compromised Treg development in the thymus, similar to the phenotype in Card11 deficient mice. This observation challenges the previous view that CARD11 regulates Treg lineage dependent on the NF-kB activation. Mechanistic investigations reveal that the noncanonical function CARD11, which negatively regulates the AKT/ FOXO1 signal pathway, is responsible for regulating Treg generation. Moreover, primary immunodeficiency patients carrying CARD11 mutation, which autonomously activates NF-κB, also represented the reduced Treg population in their peripheral blood. Our results propose a new regulatory function of CARD11 and illuminate an NF-κB independent pathway for thymic Treg lineage commitment.


Subject(s)
CARD Signaling Adaptor Proteins , Guanylate Cyclase , Mutation , NF-kappa B , Signal Transduction , T-Lymphocytes, Regulatory , Thymus Gland , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , NF-kappa B/metabolism , Humans , Mice , Thymus Gland/immunology , Thymus Gland/cytology , Thymus Gland/metabolism , Mice, Transgenic , Cell Differentiation/immunology , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/genetics , Male
19.
Immunohorizons ; 8(3): 281-294, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38551395

ABSTRACT

Inhibitory proteins, such as programmed cell death protein 1 (PD-1), have been studied extensively in peripheral T cell responses to foreign Ags, self-Ags, and neoantigens. Notably, these proteins are first expressed during T cell development in the thymus. Reports suggest that PD-1 limits regulatory T cell (Treg) development, but the mechanism by which PD-1 exerts this function remains unknown. The present study expands the evaluation of murine PD-1 and its ligands in the thymus, demonstrating that some of the highest expressers of PD-1 and programmed death-ligand 1 are agonist selected cells. Surprisingly, we reveal a selective role for PD-1 in regulating the developmental niche only for Tregs because other agonist selected cell populations, such as NK T cells, remain unchanged. We also ruled out PD-1 as a regulator of proliferation or cell death of agonist selected Tregs and further demonstrated that PD-1-deficient Tregs have reduced TCR signaling. Unexpectedly, the data suggest that PD-1-deficient thymocytes produce elevated levels of IL-2, a Treg niche-limiting cytokine. Collectively, these data suggest a novel role for PD-1 in regulating IL-2 production and the concurrent agonist selection of murine thymic Tregs. This observation has implications for the use of checkpoint blockade in the context of cancer and infection.


Subject(s)
Interleukin-2 , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , Thymus Gland , Animals , Mice , Cytokines/metabolism , Interleukin-2/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/immunology , Thymus Gland/cytology , Thymus Gland/immunology
20.
Oncologist ; 29(6): 473-483, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38520743

ABSTRACT

Thymic epithelial tumors (TETs) are rare tumors for which treatment options are limited. The ongoing need for improved systemic therapies reflects a limited understanding of tumor biology as well as the normal thymus. The essential role of the thymus in adaptive immunity is largely effected by its epithelial compartment, which directs thymocyte (T-cell) differentiation and immunologic self-tolerance. With aging, the thymus undergoes involution whereby epithelial tissue is replaced by adipose and other connective tissue, decreasing immature T-cell production. Against this natural drive toward involution, a fraction of thymuses will instead undergo oncologic transformation, leading to the formation of TETs, including thymoma and thymic carcinoma. The rarity of these tumors restricts investigation of the mechanisms of tumorigenesis and development of rational treatment options. To this end, the development of technologies which allow deep molecular profiling of individual tumor cells permits a new window through which to view normal thymic development and contrast the malignant changes that result in oncogenic transformation. In this review, we describe the findings of recent illuminating studies on the diversity of cell types within the epithelial compartment through thymic differentiation and aging. We contextualize these findings around important unanswered questions regarding the spectrum of known somatic tumor alterations, cell of origin, and tumor heterogeneity. The perspectives informed by single-cell molecular profiling offer new approaches to clinical and basic investigation of thymic epithelial tumors, with the potential to accelerate development of improved therapeutic strategies to address ongoing unmet needs in these rare tumors.


Subject(s)
Neoplasms, Glandular and Epithelial , Thymus Gland , Thymus Neoplasms , Humans , Thymus Neoplasms/pathology , Thymus Gland/pathology , Thymus Gland/immunology , Neoplasms, Glandular and Epithelial/pathology , Single-Cell Analysis/methods , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...