Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 632
Filter
1.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837439

ABSTRACT

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Subject(s)
Cell Differentiation , Histones , Myoblasts , Pyruvate Kinase , Animals , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mice , Phosphorylation , Histones/metabolism , Histones/genetics , Myoblasts/metabolism , Myoblasts/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Thyroid Hormone-Binding Proteins , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Isoenzymes/metabolism , Isoenzymes/genetics
2.
Neurol Res ; 46(7): 583-592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797679

ABSTRACT

BACKGROUND: Glioma is a common intracranial tumor, exhibiting a high degree of aggressiveness and invasiveness. Pyruvate kinase M2 (PKM2) is overexpressed in glioma tissues. However, the biological role of PKM2 in glioma is unclear. METHODS: The qRT-PCR, CCK-8, Transwell, flow cytometry detection, western blot assays, ELISA assay, and pyruvate kinase activity assays were performed in glioma cells transfected with PKM2 shRNA to explore the function of PKM2 in glioma progression. Then, STRING website was used to predict the proteins that interacted with PKM2, and Co-IP assay was conducted to further validate their interaction. Subsequently, the above experiments were performed again to find the effect of catenin beta 1 (CTNNB1) overexpression on PKM2-deficient glioma cells. The transplanted tumor models were also established to further validate our findings. RESULTS: PKM2 was up-regulated in glioma cells and tissues. After inhibiting PKM2, the proliferation, migration, glycolysis, and EMT of glioma cells were significantly decreased, and the proportion of apoptosis was increased. The prediction results of STRING website showed that CTNNB1 and PKM2 had the highest interaction score. The correlation between CTNNB1 and PKM2 was further confirmed by Co-IP test. PKM2 knockdown suppressed glioma cell proliferation, migration, glycolysis, and EMT, while CTNNB1 overexpression rescued these inhibitory effects. Correspondingly, PKM2 knockdown inhibited glioma growth in vivo. CONCLUSION: In summary, these findings indicated that PKM2 promotes glioma progression by mediating CTNNB1 expression, providing a possible molecular marker for the clinical management of gliomas.


Subject(s)
Brain Neoplasms , Cell Proliferation , Disease Progression , Glioma , Thyroid Hormone-Binding Proteins , Thyroid Hormones , beta Catenin , Glioma/pathology , Glioma/genetics , Glioma/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Animals , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice, Nude , Cell Movement/physiology , Apoptosis/physiology , Gene Expression Regulation, Neoplastic , Male , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics
3.
Sci Rep ; 14(1): 9355, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654093

ABSTRACT

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Subject(s)
Cerebral Cortex , Monocarboxylic Acid Transporters , Neurogenesis , Organoids , RNA, Messenger , Symporters , Thyroid Hormone Receptors alpha , Female , Humans , Pregnancy , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Gene Expression Regulation, Developmental , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics , Neurons/metabolism , Organoids/metabolism , Pregnancy Trimester, First/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Symporters/genetics , Symporters/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/genetics
4.
Commun Biol ; 7(1): 253, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429383

ABSTRACT

Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.


Subject(s)
Flatfishes , Animals , Flatfishes/genetics , Metamorphosis, Biological/genetics , Eye , Thyroid Hormones/genetics , Gene Expression Profiling
5.
PLoS Genet ; 19(11): e1011017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37988371

ABSTRACT

Metastasis of lung adenocarcinoma (LUAD) is a major cause of death in patients. Aryl hydrocarbon receptor (AHR), an important transcription factor, is involved in the initiation and progression of lung cancer. Polo-like kinase 1 (PLK1), a serine/threonine kinase, acts as an oncogene promoting the malignancy of multiple cancer types. However, the interaction between these two factors and their significance in lung cancer remain to be determined. In this study, we demonstrate that PLK1 phosphorylates AHR at S489 in LUAD, leading to epithelial-mesenchymal transition (EMT) and metastatic events. RNA-seq analyses reveal that type 2 deiodinase (DIO2) is responsible for EMT and enhanced metastatic potential. DIO2 converts tetraiodothyronine (T4) to triiodothyronine (T3), activating thyroid hormone (TH) signaling. In vitro and in vivo experiments demonstrate that treatment with T3 or T4 promotes the metastasis of LUAD, whereas depletion of DIO2 or a deiodinase inhibitor disrupts this property. Taking together, our results identify the AHR phosphorylation by PLK1 and subsequent activation of DIO2-TH signaling as mechanisms leading to LUAD metastasis. These findings can inform possible therapeutic interventions for this event.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Phosphorylation , Iodide Peroxidase/metabolism , Receptors, Aryl Hydrocarbon/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Adenocarcinoma of Lung/genetics , Thyroid Hormones/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/physiology , Polo-Like Kinase 1
6.
Neurobiol Dis ; 184: 106195, 2023 08.
Article in English | MEDLINE | ID: mdl-37307933

ABSTRACT

Proper CNS myelination depends on the timed availability of thyroid hormone (TH) that induces differentiation of oligodendrocyte precursor cells (OPCs) to mature, myelinating oligodendrocytes. Abnormal myelination is frequently observed in Allan-Herndon-Dudley syndrome caused by inactivating mutations in the TH transporter MCT8. Likewise, persistent hypomyelination is a key CNS feature of the Mct8/Oatp1c1 double knockout (Dko) mouse model, a well-established mouse model for human MCT8 deficiency that exhibits diminished TH transport across brain barriers and thus a TH deficient CNS. Here, we explored whether decreased myelin content is caused by an impairment in oligodendrocyte maturation. To that end, we studied OPC and oligodendrocyte populations in Dko mice versus wild-type and single TH transporter knockout animals at different developmental time points (at postnatal days P12, P30, and P120) using multi-marker immunostaining and confocal microscopy. Only in Dko mice we observed a reduction in cells expressing the oligodendroglia marker Olig2, encompassing all stages between OPCs and mature oligodendrocytes. Moreover, Dko mice exhibited at all analysed time points an increased portion of OPCs and a reduced number of mature oligodendrocytes both in white and grey matter regions indicating a differentiation blockage in the absence of Mct8/Oatp1c1. We also assessed cortical oligodendrocyte structural parameters by visualizing and counting the number of mature myelin sheaths formed per oligodendrocyte. Again, only Dko mice displayed a reduced number of myelin sheaths that in turn exhibited an increase in length indicating a compensatory response to the reduced number of mature oligodendrocytes. Altogether, our studies underscore an oligodendrocyte differentiation impairment and altered oligodendrocyte structural parameters in the global absence of Mct8 and Oatp1c1. Both mechanisms most likely do not only cause the abnormal myelination state but also contribute to compromised neuronal functionality in Mct8/Oatp1c1 deficient animals.


Subject(s)
Symporters , Animals , Humans , Mice , Animals, Genetically Modified , Monocarboxylic Acid Transporters/genetics , Oligodendroglia , Symporters/genetics , Thyroid Hormones/genetics
7.
Proc Natl Acad Sci U S A ; 120(21): e2219770120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186843

ABSTRACT

Processes that regulate size and patterning along an axis must be highly integrated to generate robust shapes; relative changes in these processes underlie both congenital disease and evolutionary change. Fin length mutants in zebrafish have provided considerable insight into the pathways regulating fin size, yet signals underlying patterning have remained less clear. The bony rays of the fins possess distinct patterning along the proximodistal axis, reflected in the location of ray bifurcations and the lengths of ray segments, which show progressive shortening along the axis. Here, we show that thyroid hormone (TH) regulates aspects of proximodistal patterning of the caudal fin rays, regardless of fin size. TH promotes distal gene expression patterns, coordinating ray bifurcations and segment shortening with skeletal outgrowth along the proximodistal axis. This distalizing role for TH is conserved between development and regeneration, in all fins (paired and medial), and between Danio species as well as distantly related medaka. During regenerative outgrowth, TH acutely induces Shh-mediated skeletal bifurcation. Zebrafish have multiple nuclear TH receptors, and we found that unliganded Thrab-but not Thraa or Thrb-inhibits the formation of distal features. Broadly, these results demonstrate that proximodistal morphology is regulated independently from size-instructive signals. Modulating proximodistal patterning relative to size-either through changes to TH metabolism or other hormone-independent pathways-can shift skeletal patterning in ways that recapitulate aspects of fin ray diversity found in nature.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Zebrafish/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Thyroid Hormones/genetics , Animal Fins/physiology , Regeneration/physiology
8.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047531

ABSTRACT

Noncoding RNAs are emerging as vital players in cardiovascular diseases. Thyroid hormones (THs) are crucial for cardiovascular survival; however, correction of systemic hypothyroidism (low serum THs) may not improve cardiac tissue-level hypothyroidism or cardiac function. Mechanistically, the understanding of noncoding transcriptomic interactions influencing TH-mediated cardiac effects is unclear. Adult C57BL/6J mixed-sex mice were randomized into Control, Hypothyroid (HypoTH), Hyperthyroid (HyperTH), and HypoTH-Triiodothyronine restoration groups. Physiological, morphological, biochemical, molecular, and whole transcriptomic studies and appropriate statistical analyses were performed. HypoTH showed significant atrophy, depressed cardiac function, and decreased serum THs versus controls, and Triiodothyronine supplementation restored them. HyperTH significantly increased serum THs with hypertrophy. Real-time PCR showed significantly altered inflammatory and immune lncRNAs. The transcriptomic sequencing revealed significant differential expressions of lncRNAs, miRNAs, and mRNAs. Eleven novel circRNAs significantly decreased with increased THs. Multiple pathways were GO-/KEGG-enriched, including cardiac, thyroid, cancer, mitochondrial, inflammatory, adrenergic, metabolic, immune-mediated, vesicular, etc. We also uncovered significant novel co-expression and interactions of lncRNA-miRNA, lncRNA-miRNA-mRNA, lncRNA-mRNA, circRNA-miRNA, and miRNA-mRNA, and splicing events. This includes a novel pathway by which the predominant cardiac TH receptor alpha may interact with specific lncRNAs and miRNAs. This is the first study reporting a comprehensive transcriptome-wide interactome in the cardiac-thyroid axis.


Subject(s)
Hypothyroidism , MicroRNAs , RNA, Long Noncoding , Mice , Animals , Transcriptome , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triiodothyronine/genetics , Mice, Inbred C57BL , RNA, Untranslated , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Circular , Thyroid Hormones/genetics , Hypothyroidism/genetics , Gene Regulatory Networks
9.
J Med Genet ; 60(9): 874-884, 2023 09.
Article in English | MEDLINE | ID: mdl-36898841

ABSTRACT

BACKGROUND: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS: To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS: We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS: This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.


Subject(s)
Congenital Hypothyroidism , Animals , Humans , Mice , Congenital Hypothyroidism/genetics , DNA-Binding Proteins/genetics , HEK293 Cells , Mutation , Nuclear Proteins/genetics , Thyroid Hormones/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Zebrafish
10.
Int J Mol Sci ; 25(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38203198

ABSTRACT

The Japanese flounder (Paralichthys olivaceus) is a marine fish that undergoes a dramatic postembryonic metamorphosis, with the right eye shifting to the left and its lifestyle transitioning from planktonic to benthic. As the light environment of the habitat changes from bright to dim, its photoreceptor system also undergoes adaptive change. Growth differentiation factor 6a (Gdf6a) is a member of the BMP family, which plays a key role in regulating the dorsal-ventral pattern of the retina and photoreceptor fate, and the differentiation of different photoreceptors is also modulated by a thyroid hormone (TH) binding its receptor (TR). However, the relationship between gdf6a and TH and its role in the regulation of photoreceptors during flounder metamorphosis is still poorly understood. In this study, bioinformatics analysis showed that Gdf6a had a conserved TGFB structural domain and clusters with fishes. The expression analysis showed that the expression of gdf6a was highest in the eye tissue of adult flounder and tended to increase and then decrease during metamorphosis, reaching its highest levels at the peak of metamorphosis. Moreover, the expression of gdf6a increased in the early stages of metamorphosis after exogenous TH treatment, while it was inhibited after exogenous thiourea (a TH inhibitor, TU) treatment. To further investigate the targeting role of TH and gdf6a in the metamorphosis of flounder, the results of the Dual-Luciferase revealed that triiodothyronine (T3) may regulate the expression of gdf6a through TRß. In conclusion, we speculate that TH influences the development of cone photoreceptors during the metamorphosis of the flounder by regulating the expression of gdf6a.


Subject(s)
Flounder , Animals , Flounder/genetics , Thyroid Hormones/genetics , Thyroid Hormones/pharmacology , Triiodothyronine , Antithyroid Agents , Retina
11.
Clin Transl Med ; 12(10): e1088, 2022 10.
Article in English | MEDLINE | ID: mdl-36229913

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the most common types of cancer worldwide, which leads to more than 10% of cancer-related deaths. Metabolism reprogramming presents as a pivotal event in cancer initiation and progression through enhancing aerobic glycolysis and anabolic metabolism. However, the underlying regulatory mechanisms in GC remain unknown. METHODS: VAL was identified by bioinformatics analyses in GC. Cell-based assays and mouse model illustrate the role of VAL in GC. RNA pull-down, immunoprecipitation assay and Western blot elucidate the interaction between VAL and PKM2. Pyruvate kinase activity, ECAR and OCR were measured to validate aerobic glycolysis of GC cells. RESULTS: Long non-coding RNA (lncRNA) VAL is significantly upregulated in GCs and indicates poor prognosis. Functional assays showed that VAL promotes GC malignant progression. Mechanistically, VAL strengthens the enzymatic activity of PKM2 and aerobic glycolysis of GC cells through directly binding with PKM2 to abrogate the PKM2-Parkin interaction, and to suppress Parkin-induced polyubiquitination of PKM2. In addition, glucose starvation induces VAL expression to enhance this process. CONCLUSIONS: Our study provides an insight into an lncRNA-dependent regulation on the enzymatic activity of PKM2, and suggests a potential of targeting VAL or PKM2 as promising biomarkers in GC diagnosis and treatment.


Subject(s)
Pyruvate Kinase/metabolism , RNA, Long Noncoding , Stomach Neoplasms , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Glucose/metabolism , Glycolysis/genetics , Membrane Proteins/genetics , Mice , Pyruvate Kinase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232747

ABSTRACT

We gathered available RNA-seq and ChIP-seq data in a single database to better characterize the target genes of thyroid hormone receptors in several cell types. This database can serve as a resource to analyze the mode of action of thyroid hormone (T3). Additionally, it is an easy-to-use and convenient tool to obtain information on specific genes regarding T3 regulation or to extract large gene lists of interest according to the users' criteria. Overall, this atlas is a unique compilation of recent sequencing data focusing on T3, its receptors, modes of action, targets and roles, which may benefit researchers within the field. A preliminary analysis indicates extensive variations in the repertoire of target genes where transcription is upregulated by chromatin-bound nuclear receptors. Although it has a major influence, chromatin accessibility is not the only parameter that determines the cellular selectivity of the hormonal response.


Subject(s)
Receptors, Thyroid Hormone , Thyroid Hormones , Animals , Chromatin/genetics , Mice , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Triiodothyronine/metabolism
13.
Cell Death Dis ; 13(9): 763, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057625

ABSTRACT

Genetic abnormalities in histone methyltransferases (HMTs) frequently occur in diffuse large B-cell lymphoma (DLBCL) and are related to its progression. SET and MYND domain containing 3 (SMYD3) is an HMT that is upregulated in various tumors and promotes their malignancy. However, to the best of our knowledge, the function of SMYD3 in DLBCL has not been investigated thus far. In the present study, 22 HMT genes related to cancer development were first selected according to current literature, and it was found that high SMYD3 expression was significantly associated with poor progression-free survival in patients with DLBCL. SMYD3 protein levels were upregulated and positively associated with poor prognosis and poor responsiveness to chemotherapy in patients with DLBCL. Functional examinations demonstrated that SMYD3 increased cell proliferation and the flux of aerobic glycolysis in DLBCL cells in vitro and in vivo and decreased cell sensitivity to doxorubicin in vitro. Moreover, SMYD3 could directly bind to specific sequences of Pyruvate Kinase M2 (PKM2) and promote DLBCL cell proliferation and aerobic glycolysis via H3K4me3-mediated PKM2 transcription. Clinically, SMYD3 expression positively correlated with that of PKM2, and high SMYD3 was significantly associated with high maximum standardized uptake value (SUVmax) detected by [(18)F]-fluorodeoxyglucose ((18)F-FDG) PET/computed tomography (PET/CT) in DLBCL samples. Concomitant expression of SMYD3 and PKM2 positively correlated with poor progression-free and overall survival in patients with DLBCL and may serve as novel biomarkers in DLBCL.


Subject(s)
Carrier Proteins/genetics , Lymphoma, Large B-Cell, Diffuse , Membrane Proteins/genetics , Thyroid Hormones/genetics , Fluorodeoxyglucose F18 , Glycolysis , Histone-Lysine N-Methyltransferase/metabolism , Histones , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Positron Emission Tomography Computed Tomography , Pyruvate Kinase , Thyroid Hormone-Binding Proteins
14.
Front Immunol ; 13: 936967, 2022.
Article in English | MEDLINE | ID: mdl-35967360

ABSTRACT

Pyruvate kinase (PK) is a key enzyme that catalyzes the dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate, and is responsible for the production of ATP during glycolysis. As another important isozyme of PK, pyruvate kinase M2 (PKM2) exists in cells with high levels of nucleic acid synthesis, such as normal proliferating cells (e.g., lymphocytes and intestinal epithelial cells), embryonic cells, adult stem cells, and tumor cells. With further research, PKM2, as an important regulator of cellular pathophysiological activity, has attracted increasing attention in the process of autoimmune response and inflammatory. In this re]view, we examine the contribution of PKM2 to the human immune response. Further studies on the immune mechanisms of PKM2 are expected to provide more new ideas and drug targets for immunotherapy of inflammatory and autoimmune diseases, guiding drug development and disease treatment.


Subject(s)
Carrier Proteins , Glycolysis , Immunity , Membrane Proteins , Pyruvate Kinase , Thyroid Hormones , Autoimmunity/genetics , Autoimmunity/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Glycolysis/genetics , Glycolysis/immunology , Humans , Immunity/genetics , Immunity/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Pyruvate Kinase/genetics , Pyruvate Kinase/immunology , Pyruvic Acid/immunology , Thyroid Hormones/genetics , Thyroid Hormones/immunology , Thyroid Hormone-Binding Proteins
15.
Signal Transduct Target Ther ; 7(1): 275, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35973989

ABSTRACT

Metastasis is a major cause of colorectal cancer (CRC) mortality, but its molecular mechanisms are still not fully understood. Here, we show that upregulated DDX39B correlates with liver metastases and aggressive phenotypes in CRC. DDX39B is an independent prognostic factor associated with poor clinical outcome in CRC patients. We demonstrate that Sp1 potently activates DDX39B transcription by directly binding to the GC box of the DDX39B promoter in CRC cells. DDX39B overexpression augments the proliferation, migration, and invasion of CRC cells, while the opposite results are obtained in DDX39B-deficient CRC cells. Mechanistically, DDX39B interacts directly with and stabilizes PKM2 by competitively suppressing STUB1-mediated PKM2 ubiquitination and degradation. Importantly, DDX39B recruits importin α5 to accelerate the nuclear translocation of PKM2 independent of ERK1/2-mediated phosphorylation of PKM2, leading to the transactivation of oncogenes and glycolysis-related genes. Consequently, DDX39B enhances glucose uptake and lactate production to activate Warburg effect in CRC. We identify that Arg319 of DDX39B is required for PKM2 binding as well as PKM2 nuclear accumulation and for DDX39B to promote CRC growth and metastasis. In addition, blocking PKM2 nuclear translocation or treatment with glycolytic inhibitor 2-deoxy-D-glucose efficiently abolishes DDX39B-triggered malignant development in CRC. Taken together, our findings uncover a key role for DDX39B in modulating glycolytic reprogramming and aggressive progression, and implicate DDX39B as a potential therapeutic target in CRC.


Subject(s)
Carrier Proteins , Colorectal Neoplasms , DEAD-box RNA Helicases , Glycolysis , Membrane Proteins , Thyroid Hormones , Carrier Proteins/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , DEAD-box RNA Helicases/genetics , Humans , Membrane Proteins/genetics , Phosphorylation , Protein Transport , Thyroid Hormones/genetics , Ubiquitin-Protein Ligases , Thyroid Hormone-Binding Proteins
16.
Free Radic Biol Med ; 190: 276-283, 2022 09.
Article in English | MEDLINE | ID: mdl-35988853

ABSTRACT

The signaling pathway centered on the transcription factor nuclear erythroid factor 2-like 2 (Nrf2) has emerged during the last 15 years as a target for the prevention and treatment of diseases broadly related with oxidative stress such as cancer, neurodegenerative and metabolic diseases. The roles of Nrf2 are expanding beyond general cytoprotection, and they encompass its crosstalk with other pathways as well as tissue-specific functions. The thyroid gland relies on reactive oxygen species for its main physiological function, the synthesis and secretion of thyroid hormones. A few years ago, Nrf2 was characterized as a central regulator of the antioxidant response in the thyroid, as well as of the transcription and processing of thyroglobulin, the major thyroidal protein that serves as the substrate for thyroid hormone synthesis. Herein, we summarize the current knowledge about the roles of Nrf2 in thyroid physiology, pathophysiology and disease. We focus specifically on the most recent publications in the field, and we discuss the implications for the preclinical and clinical use of Nrf2 modulators.


Subject(s)
NF-E2-Related Factor 2 , Thyroid Gland , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Thyroid Gland/metabolism , Thyroid Hormones/genetics , Thyroid Hormones/metabolism
17.
Int J Oncol ; 60(4)2022 04.
Article in English | MEDLINE | ID: mdl-35244192

ABSTRACT

Pyruvate kinase M2 (PKM2) plays an important role in the consumption of glucose and the production of lactic acid, the striking feature of cancer metabolism. The association of PKM2 with osteosarcoma (OS) has been reported but its role in OS has yet to be elucidated. To study this, PKM2­bound RNAs in HeLa cells, a type of cancer cells widely used in the study of molecular function and mechanism, were obtained. Peak calling analysis revealed that PKM2 binds to long noncoding RNAs (lncRNAs), which are associated with cancer pathogenesis and development. Validation of the PKM2­lncRNA interaction in the human OS cell line revealed that lncRNA colon cancer associated transcript­1 (lncCCAT1) interacted with PKM2, which upregulated the phosphorylation of sterol regulatory element­binding protein 2 (SREBP2). These factors promoted the Warburg effect, lipogenesis, and OS cell growth. PKM2 appears to be a key regulator in OS by binding to lncCCAT1. This further extends the biological functions of PKM2 in tumorigenesis and makes it a novel potential therapeutic for OS.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Osteosarcoma/genetics , Sterol Regulatory Element Binding Protein 2/drug effects , Thyroid Hormones/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carrier Proteins/drug effects , Carrier Proteins/genetics , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Humans , Lipogenesis/drug effects , Lipogenesis/genetics , Membrane Proteins/drug effects , Membrane Proteins/genetics , Osteosarcoma/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Thyroid Hormones/genetics , Warburg Effect, Oncologic/drug effects , Thyroid Hormone-Binding Proteins
18.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269606

ABSTRACT

Thyroid hormones (THs; T3 and T4) enter cells using specific transporters and regulate development and metabolism. Mutation in the TH transporter monocarboxylate transporter 8 (MCT8, SLC16A2) is associated with brain hypothyroidism and neurological impairment. We established mct8 mutant (mct8-/-) zebrafish as a model for MCT8 deficiency, which causes endocrinological, neurological, and behavioral alterations. Here, we profiled the transcriptome of mct8-/- larvae. Among hundreds of differentially expressed genes, the expression of a cluster of vision-related genes was distinct. Specifically, the expression of the opsin 1 medium wave sensitive 2 (opn1mw2) decreased in two mct8 mutants: mct8-/- and mct8-25bp-/- larvae, and under pharmacological inhibition of TH production. Optokinetic reflex (OKR) assays showed a reduction in the number of conjugated eye movements, and live imaging of genetically encoded Ca2+ indicator revealed altered neuronal activity in the pretectum area of mct8-25bp-/- larvae. These results imply that MCT8 and THs regulate the development of the visual system and suggest a mechanism to the deficiencies observed in the visual system of MCT8-deficiency patients.


Subject(s)
Hypothyroidism , Symporters , Animals , Brain/metabolism , Humans , Hypothyroidism/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Symporters/genetics , Symporters/metabolism , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Zebrafish/genetics , Zebrafish/metabolism
19.
Commun Biol ; 5(1): 112, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132135

ABSTRACT

Thyroid hormone (T3) regulates adult intestine development through T3 receptors (TRs). It is difficult to study TR function during postembryonic intestinal maturation in mammals due to maternal influence. We chose intestinal remodeling during Xenopus tropicalis metamorphosis as a model to study TR function in adult organ development. By using ChIP (chromatin immunoprecipitation)-Seq, we identified over 3000 TR-bound genes in the intestine of premetamorphic wild type or TRα (the major TR expressed during premetamorphosis)-knockout tadpoles. Surprisingly, cell cycle-related GO (gene ontology) terms and biological pathways were highly enriched among TR target genes even though the first major event during intestinal metamorphosis is larval epithelial cell death, and TRα knockout drastically reduced this enrichment. More importantly, treatment of tadpoles with cell cycle inhibitors blocked T3-induced intestinal remodeling, especially larval epithelial cell death, suggesting that TRα-dependent activation of cell cycle is important for T3-induced apoptosis during intestinal remodeling.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Death/physiology , Epithelial Cells/physiology , Intestinal Mucosa/cytology , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormones/metabolism , Animals , CDC2 Protein Kinase/genetics , Cell Death/genetics , Gene Deletion , Gene Expression Regulation/physiology , Intestinal Mucosa/physiology , Larva/physiology , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormones/genetics , Xenopus
20.
Gene ; 822: 146354, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35189247

ABSTRACT

Glandular cancers have a significant share of the total cancer patients all over the world. In the case of adrenocortical carcinomas (ACCs), although the benign form is more frequent and common, the malignant form provides a very less percentage of patients with five or more than five years of survival rate. There are gene alterations that are involved as a crucial factor behind the occurrence of ACCs. Out of these, the most prominent genetic alterations (PRKAR-1A, CTNNB1, ZNRF3, TP53, CCNE1 and TERF2 genes) are linked with a glycolytic enzyme pyruvate kinase M2 (PKM2), which converts phosphoenolpyruvate (PEP) to pyruvate in the glycolytic pathway. The involvementof PKM2 renders a cumulative effect through different pathways that may result in the onset of ACCs. Thus, this review aims to establish a link between ACCs, alterations of specific genes and PKM2.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Carrier Proteins/genetics , Membrane Proteins/genetics , Thyroid Hormones/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glycolysis , Humans , Survival Analysis , Thyroid Hormone-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...