Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.424
Filter
1.
J Manag Care Spec Pharm ; 30(6): 581-587, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824630

ABSTRACT

BACKGROUND: Larotrectinib is approved for patients with advanced NTRK gene fusion-positive solid tumors. Prior studies demonstrated promising results with larotrectinib compared with other systemic therapy. However, comparisons to checkpoint inhibitors, such as nivolumab or pembrolizumab, have not been done. OBJECTIVE: To estimate and compare expected life-years (LYs) and quality-adjusted LYs (QALYs) for patients with nonsmall cell lung cancer (NSCLC) eligible for larotrectinib vs patients with unknown NTRK gene fusion status on nivolumab or pembrolizumab. We also assessed patients with metastatic differentiated thyroid cancer (DTC), as pembrolizumab may be considered in certain circumstances. METHODS: We developed partitioned survival models to project long-term comparative effectiveness of larotrectinib vs nivolumab or pembrolizumab. Larotrectinib survival data were derived from an updated July 2021 analysis of 21 adult patients (≥18 years of age) with metastatic NTRK gene fusion-positive NSCLC and 21 with DTC. Survival inputs for nivolumab and pembrolizumab were obtained from published articles. Progression-free and overall survival were estimated using survival distributions (Exponential, Weibull, Log-logistic, and Log-normal). Exponential fits were chosen based on goodness-of-fit and clinical plausibility. RESULTS: In NSCLC, larotrectinib resulted in gains of 5.87 and 5.91 LYs compared to nivolumab and pembrolizumab, respectively, which translated to gains of 3.53 and 3.56 QALYs. In DTC, larotrectinib resulted in a gain of 5.23 LYs and 4.24 QALYs compared to pembrolizumab. CONCLUSIONS: In metastatic NSCLC and DTC, larotrectinib may produce substantial life expectancy and QALY gains compared to immune checkpoint inhibitors. Additional data with longer follow-up will further inform this comparison.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Nivolumab , Pyrazoles , Pyrimidines , Quality-Adjusted Life Years , Thyroid Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Nivolumab/therapeutic use , Pyrimidines/therapeutic use , Pyrazoles/therapeutic use , Male , Female , Antibodies, Monoclonal, Humanized/therapeutic use , Middle Aged , Adult , Aged , Treatment Outcome
2.
Oncol Res ; 32(6): 1011-1019, 2024.
Article in English | MEDLINE | ID: mdl-38827323

ABSTRACT

This review aimed to describe the inculpation of microRNAs (miRNAs) in thyroid cancer (TC) and its subtypes, mainly medullary thyroid carcinoma (MTC), and to outline web-based tools and databases for bioinformatics analysis of miRNAs in TC. Additionally, the capacity of miRNAs to serve as therapeutic targets and biomarkers in TC management will be discussed. This review is based on a literature search of relevant articles on the role of miRNAs in TC and its subtypes, mainly MTC. Additionally, web-based tools and databases for bioinformatics analysis of miRNAs in TC were identified and described. MiRNAs can perform as oncomiRs or antioncoges, relying on the target mRNAs they regulate. MiRNA replacement therapy using miRNA mimics or antimiRs that aim to suppress the function of certain miRNAs can be applied to correct miRNAs aberrantly expressed in diseases, particularly in cancer. MiRNAs are involved in the modulation of fundamental pathways related to cancer, resembling cell cycle checkpoints and DNA repair pathways. MiRNAs are also rather stable and can reliably be detected in different types of biological materials, rendering them favorable diagnosis and prognosis biomarkers as well. MiRNAs have emerged as promising tools for evaluating medical outcomes in TC and as possible therapeutic targets. The contribution of miRNAs in thyroid cancer, particularly MTC, is an active area of research, and the utility of web applications and databases for the biological data analysis of miRNAs in TC is becoming increasingly important.


Subject(s)
Biomarkers, Tumor , Carcinoma, Neuroendocrine , Computational Biology , MicroRNAs , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/therapy , Thyroid Neoplasms/pathology , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/diagnosis , Prognosis , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Internet , Molecular Targeted Therapy
3.
Med Oncol ; 41(6): 137, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705933

ABSTRACT

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Subject(s)
Epithelial-Mesenchymal Transition , Microtubule-Associated Proteins , Neoplasm Proteins , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Transforming Growth Factor beta , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice, Nude , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Transforming Growth Factor beta/metabolism
4.
JCO Precis Oncol ; 8: e2400017, 2024 May.
Article in English | MEDLINE | ID: mdl-38709990

ABSTRACT

RET somatic mutation analysis in sporadic MTC should be guided by postoperative evaluation results.


Subject(s)
Mutation , Proto-Oncogene Proteins c-ret , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins c-ret/genetics , Thyroid Neoplasms/genetics , Time Factors
5.
JCO Precis Oncol ; 8: e2300675, 2024 May.
Article in English | MEDLINE | ID: mdl-38709988

ABSTRACT

PURPOSE: Medullary thyroid carcinoma (MTC) in MEN2B syndrome is associated with germline RET mutation. Patients harboring de novo mutations are usually diagnosed at more advanced disease stages. We present a young woman with Met918Th mutation diagnosed with stage IV MTC at age 10 years. METHODS: The disease progressed despite total thyroidectomy and multiple surgical interventions for cervical lymph node recurrences, leading to distant metastases in the fifth year after the initial diagnosis. Subsequently, she underwent five different types of tyrosine kinase inhibitor (TKI) treatments. The 17-year disease course was divided into periods defined by four surgical interventions and sequential treatment intervals with four multikinase (sunitinib, vandetanib, cabozantinib, and lenvatinib) and one RET-selective TKI (selpercatinib). Tumor growth for different phases of spontaneous development and drug treatment intervals was characterized by changes in serial log-transformed calcitonin measurements (n = 114). RESULTS: Three operations (one for calcitonin-producing adrenal pheochromocytoma) were associated with drops in calcitonin levels. All of the nonselective TKIs were stopped due to adverse effects. As reflected by the negative calcitonin doubling rate, the best treatment response was observed with selpercatinib, which was associated with an initial large drop followed by a decreasing calcitonin trajectory over 514 days without any major side effects. CONCLUSION: This case of MEN2B medullary thyroid cancer with long-term survival presents how the effectiveness of different treatment modalities can be estimated using log-transformed calcitonin levels. Furthermore, our experience supports the view that serial calcitonin measurements may be more sensitive than radiological follow-up in advanced MTC. Our patient also represents a new case of rarely reported calcitonin-producing pheochromocytomas.


Subject(s)
Calcitonin , Carcinoma, Neuroendocrine , Multiple Endocrine Neoplasia Type 2b , Thyroid Neoplasms , Humans , Calcitonin/blood , Calcitonin/therapeutic use , Thyroid Neoplasms/blood , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Female , Multiple Endocrine Neoplasia Type 2b/genetics , Multiple Endocrine Neoplasia Type 2b/blood , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/blood , Carcinoma, Neuroendocrine/genetics , Proto-Oncogene Proteins c-ret/genetics , Protein Kinase Inhibitors/therapeutic use
6.
Pathol Res Pract ; 258: 155355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763089

ABSTRACT

Thyroid carcinomas are the most common endocrine malignancy and commonly have alterations in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathways in well-differentiated tumors. Alternative molecular alterations driving thyroid carcinomas have been identified rarely in the literature and are more likely to occur in poorly differentiated or anaplastic cases. In this study, uncommon genetic alterations such as MLH1, MSH2, NSD3::NUTM1, RET::SPECC1L, and G3BP2::FGFR2 were identified in patients with papillary thyroid carcinoma, poorly differentiated thyroid carcinoma, and differentiated high-grade thyroid carcinoma. Most of these tumors demonstrated an aggressive biological behavior. Atypical driver mutations in thyroid carcinomas can occur in patients with cancer predisposition syndromes as demonstrated by an NTRK1::TPM3 fusion in a patient with Li Fraumeni syndrome. In these settings of more aggressive disease, molecular testing targeting actionable fusions and mutations is important. As demonstrated in our case cohort, 100% of cases diagnosed as high-grade follicular-derived thyroid carcinoma had a mutation or fusion that is associated with worse prognosis, has a germline syndrome association requiring further work up, or an actionable mutation. This high yield seen in this cohort for molecular testing in patients with high-grade follicular-derived thyroid carcinoma suggests more routine molecular testing in this population would be a beneficial clinical practice.


Subject(s)
Adenocarcinoma, Follicular , Mutation , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Male , Female , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/pathology , Middle Aged , Adult , Aged , Biomarkers, Tumor/genetics , Young Adult
7.
BMC Endocr Disord ; 24(1): 68, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734621

ABSTRACT

BACKGROUND: To date, although most thyroid carcinoma (THCA) achieves an excellent prognosis, some patients experience a rapid progression episode, even with differentiated THCA. Nodal metastasis is an unfavorable predictor. Exploring the underlying mechanism may bring a deep insight into THCA. METHODS: A total of 108 THCA from Chinese patients with next-generation sequencing (NGS) were recruited. It was used to explore the gene alteration spectrum of THCA and identify gene alterations related to nodal metastasis in papillary thyroid carcinoma (PTC). The Cancer Genome Atlas THCA cohort was further studied to elucidate the relationship between specific gene alterations and tumor microenvironment. A pathway enrichment analysis was used to explore the underlying mechanism. RESULTS: Gene alteration was frequent in THCA. BRAF, RET, POLE, ATM, and BRCA1 were the five most common altered genes. RET variation was positively related to nodal metastasis in PTC. RET variation is associated with immune cell infiltration levels, including CD8 naïve, CD4 T and CD8 T cells, etc. Moreover, Step 3 and Step 4 of the cancer immunity cycle (CIC) were activated, whereas Step 6 was suppressed in PTC with RET variation. A pathway enrichment analysis showed that RET variation was associated with several immune-related pathways. CONCLUSION: RET variation is positively related to nodal metastasis in Chinese PTC, and anti-tumor immune response may play a role in nodal metastasis triggered by RET variation.


Subject(s)
High-Throughput Nucleotide Sequencing , Lymphatic Metastasis , Proto-Oncogene Proteins c-ret , Thyroid Cancer, Papillary , Thyroid Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Proto-Oncogene Proteins c-ret/genetics , Female , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Male , Middle Aged , Adult , Prognosis , Biomarkers, Tumor/genetics , Follow-Up Studies
8.
JCO Precis Oncol ; 8: e2300622, 2024 May.
Article in English | MEDLINE | ID: mdl-38754058

ABSTRACT

PURPOSE: Medullary thyroid cancer (MTC) is a rare cancer originating from parafollicular C cells of the thyroid gland. Therapeutically relevant alterations in MTC are predominantly reported in RET oncogene, and lower-frequency alterations are reported in KRAS and BRAF. Nevertheless, there is an unmet need existing to analyze the MTC in the Indian cohort by using in-depth sequencing techniques that go beyond the identification of known therapeutic biomarkers. MATERIALS AND METHODS: Here, we characterize MTC using integrative whole-exome and whole-transcriptome sequencing of 32 MTC tissue samples. We performed clinically relevant variant analysis, molecular pathway analysis, tumor immune-microenvironment analysis, and structural characterization of RET novel mutation. RESULTS: Mutational landscape analysis shows expected RET mutations in 50% of the cases. Furthermore, we observed mutations in known cancer genes like KRAS, HRAS, SF3B1, and BRAF to be altered only in the RET-negative cohort. Pathway analysis showed differential enrichment of mutations in transcriptional deregulation genes in the RET-negative cohort. Furthermore, we observed novel RET kinase domain mutation Y900S showing affinity to RET inhibitors accessed via molecular docking and molecular dynamics simulation. CONCLUSION: Altogether, this study provides a detailed genomic characterization of patients with MTC of Indian origin, highlighting the possible utility of targeted therapies in this disease.


Subject(s)
Carcinoma, Neuroendocrine , Mutation , Proto-Oncogene Proteins c-ret , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins c-ret/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Carcinoma, Neuroendocrine/genetics , Male , Female , Middle Aged , Adult , Aged , Young Adult
9.
Medicine (Baltimore) ; 103(19): e38144, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728457

ABSTRACT

Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.


Subject(s)
Anoikis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Anoikis/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Prognosis , Single-Cell Analysis/methods , Sequence Analysis, RNA , Protein Interaction Maps/genetics , Female , Male , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods
10.
Nat Commun ; 15(1): 3736, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744818

ABSTRACT

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Subject(s)
Mitosis , Protein Inhibitors of Activated STAT , Humans , Protein Inhibitors of Activated STAT/metabolism , Protein Inhibitors of Activated STAT/genetics , Animals , Cell Line, Tumor , Mice , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , RNA Interference , Spindle Apparatus/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Xenograft Model Antitumor Assays , Proteasome Endopeptidase Complex/metabolism , Sumoylation , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Female
11.
Sci Rep ; 14(1): 11005, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745021

ABSTRACT

The SUVmax is a measure of FDG uptake and is related with tumor aggressiveness in thyroid cancer, however, its association with molecular pathways is unclear. Here, we investigated the relationship between SUVmax and gene expression profiles in 80 papillary thyroid cancer (PTC) patients. We conducted an analysis of DEGs and enriched pathways in relation to SUVmax and tumor size. SUVmax showed a positive correlation with tumor size and correlated with glucose metabolic process. The genes that indicate thyroid differentiation, such as SLC5A5 and TPO, were negatively correlated with SUVmax. Unsupervised analysis revealed that SUVmax positively correlated with DNA replication(r = 0.29, p = 0.009), pyrimidine metabolism(r = 0.50, p < 0.0001) and purine metabolism (r = 0.42, p = 0.0001). Based on subgroups analysis, we identified that PSG5, TFF3, SOX2, SL5A5, SLC5A7, HOXD10, FER1L6, and IFNA1 genes were found to be significantly associated with tumor aggressiveness. Both high SUVmax PTMC and macro-PTC are enriched in pathways of DNA replication and cell cycle, however, gene sets for purine metabolic pathways are enriched only in high SUVmax macro-PTC but not in high SUVmax PTMC. Our findings demonstrate the molecular characteristics of high SUVmax tumor and metabolism involved in tumor growth in differentiated thyroid cancer.


Subject(s)
Thyroid Cancer, Papillary , Thyroid Neoplasms , Transcriptome , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Female , Male , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Middle Aged , Adult , Fluorodeoxyglucose F18 , Gene Expression Regulation, Neoplastic , Aged , Gene Expression Profiling , Tumor Burden/genetics
12.
Zhonghua Yi Xue Za Zhi ; 104(20): 1837-1843, 2024 May 28.
Article in Chinese | MEDLINE | ID: mdl-38782752

ABSTRACT

Objective: To investigate the relationship between genes and clinical characteristics in children and adolescents with metastatic differentiated thyroid cancer (caDTC). Methods: A cross sectional study. A total of 67 caDTC patients with lymph node metastasis or distant metastasis in Peking Union Medical College Hospital from December 2020 to December 2022 were included, according to the inclusion and exclusion criteria. Then the differences in clinicopathologic features and iodine intake were compared among different genomes, and the age subgroups divided by the age of 12 were further analyzed. Results: Among the 67 cases of caDTC, the diagnosed age [M(Q1, Q3)]was 13.2 (9.7, 16.9) years old, with 23 males and 44 females. There were 68.7% (46/67) of patients have distant metastasis (M1 stage). Pathogenic or potentially pathogenic gene variants were detected in 68.7% (46/67) of the patients, with RET or NTRK fusion (RET/NTRK) being the most common [43.3%(29/67)], BRAF V600E mutation followed [19.4%(13/67)].There was only 1 caDTC with NRAS Q61R mutation. The patients were divided into RET/NTRK fusion group (n=29), BRAF mutation group (n=12), other mutation group (n=4), and non-mutation group (n=21) (1 patient was not included in the gene mutation subgroup comparison due to the presence of NRAS Q61R mutation and BRAF V600E mutation). The comparison of gene feature groups showed that compared to the BRAF mutation group, caDTC with RET/NTRK fusion tended to have a lower age at diagnosis [12.6(9.3, 15.9) vs 17.2(15.5, 18.1) years old, P<0.001], the proportion of mutation load≥2 was higher (10.4% vs 8.3%, P=0.027), with statistically significant difference. Among 46 M1 stage patients, 71.7% (33/46) had initial iodine intake, and 30.4% (14/46) developed radioiodine-refractory (RAIR). In age group comparison, the<12 year old group had a higher proportion of male patients (51.9% vs 22.5%, P=0.013) and a lower incidence of BRAF V600E mutations (0 vs 32.5%, P<0.001) compared to the≥12 year old group, and the differences were statistically significant. Conclusions: The incidence of RET/NTRK fusion ranks first in metastatic caDTC, featured with younger age at diagnosis and higher rate of distant metastasis. Although most metastatic lesions initially consume iodine, they are prone to RAIR. Attention should be paid to the potential role of RET/NTRK fusion in the invasion and iodine resistance of young caDTC patients.


Subject(s)
Mutation , Thyroid Neoplasms , Humans , Male , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Female , Adolescent , Child , Cross-Sectional Studies , Lymphatic Metastasis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-ret/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Receptor, trkA/genetics
13.
Med Oncol ; 41(6): 160, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763968

ABSTRACT

Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. The pathology of PTC is far from clear. As a kinase that can be targeted, the role of TNIK in PTC has not been investigated. This study was focused on the effects and molecular mechanisms of TNIK in PTC. Both public datasets and clinical specimens were used to verify TNIK expression. The effects of TNIK were investigated in both cell lines and mice models. Transcriptome analysis was used to explore the underlying mechanism of TNIK. Immunofluorescence, wound healing, and qRT-PCR assays were used to validate the mechanism of TNIK in PTC. The therapeutic effects of TNIK inhibitor NCB-0846 were evaluated by flow cytometry, western blot, and subcutaneous xenografts mice. TNIK expression was upregulated in PTC tissues. TNIK knockdown could suppress cell proliferation and tumor growth in no matter cell models or nude mice. The transcriptome analysis, GO enrichment analysis, and GSEA analysis results indicated TNIK was highly correlated with cytoskeleton, cell motility, and Wnt pathways. The mechanistic studies demonstrated that TNIK regulated cytoskeleton remodeling and promoted cell migration. NCB-0846 significantly inhibited TNIK kinase activity, induced cell apoptosis, and activated apoptosis-related proteins in a dose-dependent manner. In addition, NCB-0846 inhibited tumor growth in tumor-bearing mice. In summary, we proposed a novel regulatory mechanism in which TNIK-mediated cytoskeleton remodeling and cell migration to regulate tumor progression in PTC. TNIK is a therapeutic target in PTC and NCB-0846 would act as a novel targeted drug for PTC therapy.


Subject(s)
Cell Proliferation , Mice, Nude , Thyroid Cancer, Papillary , Thyroid Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Mice , Thyroid Neoplasms/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Cell Movement/drug effects , Female , Mice, Inbred BALB C , Gene Expression Regulation, Neoplastic/drug effects , Male
14.
BMC Cancer ; 24(1): 605, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760772

ABSTRACT

BACKGROUND: This study was to explore the causal associations of sleep traits including sleep duration, snoring, chronotype, sleep disorders, getting up in the morning, sleeplessness/insomnia and nap during day with the risk of thyroid cancer based on Mendelian randomization (MR) analysis. METHOD: Summary single nucleotide polymorphism (SNP)-phenotype association data were obtained from published genome-wide association studies (GWASs) using the FinnGen and UK Biobank databases. A series of screening processes were performed to select qualified SNPs strongly related to exposure. We applied the inverse variance weighted (IVW), the Mendelian Randomization robust adjusted profile score (MR-RAPS), the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and the Weighted Median to estimate the causal links between sleep traits and the risk of thyroid cancer. Odds ratio (OR) and 95% confidence interval (CI) were calculated. RESULTS: The IVW results showed that getting up in the morning (OR = 0.055, 95%CI: 0.004-0.741) and napping during day (OR = 0.031, 95%CI: 0.002-0.462) were associated with decreased risk of thyroid cancer in the Italian population. A 1.30-h decrease of sleep duration was associated with 7.307-fold of thyroid cancer risk in the Finnish population (OR = 7.307, 95%CI: 1.642-32.519). Cronotype could decrease the risk of thyroid cancer in the Finnish population (OR = 0.282, 95%CI: 0.085-0.939). Sleep disorders increased the risk of thyroid cancer in the Finnish population (OR = 2.298, 95%CI: 1.194-4.422). The combined results revealed that sleep duration was correlated with increased risk of thyroid cancer (OR = 5.600, 95%CI: 1.458-21.486). CONCLUSION: Decreased sleep duration was associated with increased risk of thyroid cancer, which indicated the importance of adequate sleep for the prevention of thyroid cancer.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sleep , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/epidemiology , Risk Factors , Genetic Predisposition to Disease , Sleep Wake Disorders/genetics , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/complications
15.
Skin Res Technol ; 30(5): e13737, 2024 May.
Article in English | MEDLINE | ID: mdl-38769705

ABSTRACT

BACKGROUND: Chronic inflammation has been shown to promote cancer progression. Rosacea is indeed a long-term inflammatory skin condition and had been reported to link with increased risk for several types of malignancies, but evidence for causality is lacking. OBJECTIVES: To systematically estimate the causal relationship between rosacea and several types of cancer, including cutaneous malignant melanoma (CMM), cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), actinic keratosis (AK), thyroid cancer, breast cancer, glioma and hepatic cancer, as well as explore the potential underlying pathogenesis. METHODS: We conducted a bidirectional two-sample Mendelian randomization study to probe the potential causal relationships between rosacea and several types of cancer. Instrumental variables were established using genome-wide significant single nucleotide polymorphisms associated with rosacea and cancers. The assessment of causality was carried out through multiple methods, and the robustness of the results was evaluated via sensitivity analyses. RESULTS: There was no significant indication of causal effects of rosacea on CMM (pivw = 0.71), cSCC (pivw = 0.45), BCC (pivw = 0.90), AK (pivw = 0.73), thyroid cancer (pivw = 0.59), glioma (pivw = 0.15), and hepatic cancer (pivw = 0.07), but the genetic risk of rosacea was associated with an increased susceptibility to human epidermal growth factor receptor (HER)-negative malignant neoplasm of breast (odds ratio [OR], 1.10; 95% confidence interval [CI], 1.02-1.18; pivw = 0.01). TANK (TRAF family member associated nuclear factor kappa B (NFKB) activator) was identified as a common protective gene for both rosacea (OR, 0.90; 95% CI, 0.82-0.99; pivw = 0.048) and HER-negative malignant neoplasm of the breast (OR, 0.86; 95% CI, 0.75-0.98; pivw = 0.032), which was primarily enriched in the negative regulation of NF-κB signal transduction and may contribute to the genetic links between rosacea and this subtype of breast cancer. CONCLUSIONS: Our findings provide suggestive evidence for causal links between rosacea and HER-negative malignant neoplasm of the breast risk.


Subject(s)
Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Rosacea , Skin Neoplasms , Humans , Rosacea/genetics , Skin Neoplasms/genetics , Female , Melanoma/genetics , Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , Risk Factors , Genetic Predisposition to Disease/genetics , Breast Neoplasms/genetics , Keratosis, Actinic/genetics , Thyroid Neoplasms/genetics , Glioma/genetics , Liver Neoplasms/genetics , Male
16.
Lakartidningen ; 1212024 Feb 27.
Article in Swedish | MEDLINE | ID: mdl-38712675

ABSTRACT

Anaplastic and poorly differentiated thyroid cancer (ATC, PDTC) are rare and highly aggressive tumors that historically have been associated with a short life expectancy and low chance of cure. Molecular pathology and the introduction of highly effective targeted drugs have revolutionized the possibilities of management of patients with ATC and PDTC, with BRAF and MEK inhibitors as the most prominent example. Here we provide updated recommendations regarding diagnostics and management, including primary surgical management and targeted therapies based on specific molecular pathological findings.


Subject(s)
Molecular Targeted Therapy , Proto-Oncogene Proteins B-raf , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/diagnosis , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use
17.
Head Neck Pathol ; 18(1): 39, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727854

ABSTRACT

BACKGROUND: Columnar cell papillary thyroid carcinoma (CC-PTC) is a morphologic subtype of papillary thyroid carcinoma with a variable prognosis. It is characterized by neoplastic thyroid follicular-derived cells with pseudostratified columnar morphology arranged in papillary or follicular structures with supranuclear or subnuclear vacuoles. The molecular profile of this subtype has only recently come under scrutiny, with mixed results. The aim of this study is to further explore the morphologic, immunohistochemical, and genetic profile of CC-PTC, as well as to correlate these features with clinical outcomes. METHODS: CC-PTC cases were identified from 3 institutions. Immunohistochemistry (ER, CDX2) and molecular testing (DNA and RNA sequencing) were performed. Clinicopathologic parameters and patient outcomes were recorded. RESULTS: Twelve cases (2006-2023) were identified, all in adults (age 45-91). Two presented with disease outside the thyroid gland (neck and mediastinum) and two presented with distant metastasis. Four were high-grade differentiated thyroid carcinomas (necrosis or mitoses), one of which died of disease. Four were noninvasive or minimally invasive, one of which locally recurred. Three patients had lymph node metastases. ER and CDX2 were positive in 73% and 50%, respectively. Pathogenic mutations were found in TERT promoter (n = 3), RAS (n = 2), ATM, NOTCH1, APC, and ESR1, along with cases bearing AGK::BRAF fusion (n = 1), BRAF VE1 expression (n = 1), and NF2 loss (n = 1). CONCLUSIONS: This study represents the largest molecularly defined cohort of non-oncocytic thyroid carcinomas with columnar cell morphology. These tumors represent a genetically and behaviorally heterogeneous group of neoplasms, some of which have RAS-like or follicular neoplasm-like genetics, some of which have BRAF-p.V600E-like or classic papillary thyroid carcinoma-like genetics, and some of which remain unclear. Noninvasive or minimally invasive tumors showed an indolent course compared to those with angioinvasion, gross extrathyroidal growth, or high-grade morphology. Consideration could be given to reclassification of this neoplasm outside of the subtyping of papillary thyroid carcinoma in light of its genetic diversity, distinct morphology, and clinical behavior more closely aligned with follicular thyroid neoplasms.


Subject(s)
Adenocarcinoma, Follicular , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Male , Female , Middle Aged , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/genetics , Aged , Aged, 80 and over , Adenocarcinoma, Follicular/pathology , Adenocarcinoma, Follicular/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics
18.
Zhonghua Yi Xue Za Zhi ; 104(18): 1623-1627, 2024 May 14.
Article in Chinese | MEDLINE | ID: mdl-38742350

ABSTRACT

A total of 37 cases of thyroid tumors with pathological features suggestive of DICER1 gene mutation were selected to detect the DICER1 gene and BRAF gene using Sanger sequencing. A total of 10 patients (27.0%) exhibited DICER1 gene mutation all of whom were female with an age of [M(Q1, Q3)] 38.0 (30.5, 47.5) years. All patients had wild-type BRAFV600E gene. The ultrasound examination showed high-low echogenic well-demarcated intra-thyroidal nodules with abundant peripheral and internal blood flow signals in the DICER1 mutated thyroid tumor. The tumor was confined within the thyroid gland, with a diameter of (3.68±1.31) cm. The pathological features are as follows: the majority of tumors are encapsulated, which mainly composed of large follicles rich in colloid and some are small and micro follicles. The nucleus is round and deeply stained or slightly light stained, small to medium-sized, with occasional nuclear grooves and a lack of nuclear pseudoinclusion bodies within the nucleus. Immunohistochemical staining shows that Ki67 proliferation index of approximately 2%-10%. All cases were followed up for 11 to 18 months, and there was no recurrences or distant metastase. This study confirmed that the DICER1 gene mutation is mutually exclusive with the BRAFV600E gene mutation. The thyroid tumor with DICER1 mutation are in big size and are more common in young females with a good prognosis. Cases with the wild-type DICER1 gene may exhibit similar morphological features, and molecular testing is recommended. If somatic DICER1 mutation is confirmed, patients should undergo germline mutation testing to rule out DICER1 syndrome in order to define whether genetic counseling is necessary.


Subject(s)
DEAD-box RNA Helicases , Mutation , Ribonuclease III , Thyroid Neoplasms , Humans , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Adult , Middle Aged , Female , Proto-Oncogene Proteins B-raf/genetics , Male
19.
Curr Cancer Drug Targets ; 24(5): 519-533, 2024.
Article in English | MEDLINE | ID: mdl-38804344

ABSTRACT

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS: GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS: Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION: LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.


Subject(s)
Carcinoma, Neuroendocrine , Cell Proliferation , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Long Noncoding/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Enhancer Elements, Genetic , Disease Progression , Cell Line, Tumor , Cell Movement , Reactive Oxygen Species/metabolism , Enhancer RNAs
20.
Cesk Patol ; 60(1): 59-63, 2024.
Article in English | MEDLINE | ID: mdl-38697828

ABSTRACT

The WHO classification of thyroid tumours enters its second half-century of development with the 5th edition. Compared to the previous 4th edition of the clas- sification, the permanent increase in information is mainly at the molecular biological level. This has changed the view of very traditional entities - the preferred name for polynodous goiter is (given the monoclonal nature of some nodules) follicular nodular thyroid disease. Some terminological relics have also been re- moved - Hürthle cells are definitively referred to as oncocytes. Follicular adenoma has a new subtype with papillary arrangement (and missing nuclear features of papillary carcinoma). In the already used NIFTP unit, subtypes smaller than 10 mm and oncocytic are newly defined. All oncocytic tumours have an arbitrarily set minimum proportion of oncocytes at 75 %. A multidisciplinary approach to the treatment of thyropathies and the stratification of therapeutic procedures according to risk brought about the introduction of grading into several nosological units of papillary, follicular, and medullary carcinomas. Grading using the number of mitoses determines their quantification at 2 mm² instead of the previously used non-uniform HPFs (high power fields of view). Clarification was made on the basis of genetic findings in a number of other, less frequent diagnoses (e.g. classification of squamous cell carcinoma among anaplastic). Among rare tumors a new category of salivary gland - type carcinomas is formulated with two representatives: mucoepidermoid and secretory carcinoma. Cribriform morular carcinoma previously classified as a variant of papillary carcinoma is newly separated on the basis of the immunological and genetic profile into the newly created category of tumors of uncertain histogenesis. This category also includes sclerosing mucoepidermoid carcinoma with eosinophilia. Microcarcino- ma as a separate entity is not included in the 5th edition. A tumor smaller than 10 mm must be characterized by the appropriate features of the corresponding category. Thyroblastoma replaces terminologically malignant teratoma from the previous classification. Part of the newly established diagnostic criteria is also applicable in FNAB diagnosis. The newly introduced grading in some nosological units can exceptionally change the diagnosis (NIFTP/EFVPTC/non-invasive HG FVPTC), but above all it will affect the choice of therapeutic procedures.


Subject(s)
Thyroid Neoplasms , World Health Organization , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/classification , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...