Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.930
Filter
1.
Diagn Pathol ; 19(1): 77, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858715

ABSTRACT

Although most differentiated thyroid carcinoma has a clinically favorable prognosis, some of specific types of thyroid cancer (such as anaplastic thyroid carcinoma and advanced papillary thyroid carcinoma) show fatal outcomes and require novel treatments. Immunotherapy is a promising avenue for the treatment of advanced thyroid carcinoma. B7-H3 (B7 homolog 3 protein) and ICAM-1 (intercellular adhesion molecule 1), as two important immune checkpoints (ICPs), is becoming hopeful target spots for immunotherapy. A growing amount of evidence has suggested that B7-H3 and ICAM-1 are upregulated in papillary thyroid carcinoma. However, their expression level in specific types of thyroid cancer remains largely unclear. In the present study, we explored the expression level of B7-H3 and ICAM-1 in different types of thyroid carcinoma. In the groups of the TCGA cohort, both B7-H3 and ICAM-1 mRNA were highly expressed in thyroid carcinoma. Furthermore, the patients with Stage2, 61-80y, Follicular thyroid papillary carcinoma and N0 had lower B7-H3 and ICAM-1 mRNA expression. In the groups of our cohort, PTCs and ATCs showed frequently moderate to strong expression of B7-H3 and ICAM-1 protein expression. The significant relevance of B7-H3 staining score with ICAM-1 staining score was observed in TCGA database and our cohort, which might open avenues for the combination therapy in advanced thyroid cancer.


Subject(s)
B7 Antigens , Intercellular Adhesion Molecule-1 , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Thyroid Neoplasms/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , B7 Antigens/metabolism , B7 Antigens/genetics , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Aged , Aged, 80 and over , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/therapy , Thyroid Cancer, Papillary/metabolism , Adult
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 981-988, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862457

ABSTRACT

OBJECTIVE: To investigate cyclin D2 (CCND2) expression in papillary thyroid carcinoma (PTC) and its association with the clinicopathological features. METHODS: The public databases TCGA, TIMER 2.0 and UALCAN were used to explore CCND2 expression level in PTC and adjacent tissues, and its diagnostic value for PTC was analyzed using ROC curves. GO enrichment analysis of CCND2-related differentially expressed genes (DEGs) in PTC was performed, and tumor immune infiltration of CCND2 in thyroid cancer was analyzed using TIMER database and CIBERSORT data source. RT-qPCR and Western blot were used to detect CCND2 expression in normal human thyroid cell line Nthy-ori-3-1 and human PTC cell lines TPC-1 and BCPAP. CCND2 expression was also detected in clinical specimens of PTC and adjacent tissues by immunohistochemistry, and its correlation with clinicopathological features of the patients were analyzed. RESULTS: Informatic analysis revealed significantly higher CCND2 mRNA expression in thyroid cancer than in the adjacent tissues (P < 0.001) in close correlation with tumor stage, gender, age, pathological subtype, and lymph node involvement (P < 0.05). ROC curve analysis showed that at the cutoff value of 4.983, the diagnostic sensitivity, specificity, and accuracy of CCND2 expression for PTC was 83.6%, 94.9%, and 78.5%, respectively. CCND2 expression was positively correlated with B cells, CD4+ T cells, and macrophages (P < 0.001) and negatively with CD8+ T cells (P < 0.01), and also correlated with memory B-cell infiltration, CD4+ T-cell memory activation, M2 macrophages, resting mast cells, and mast cell activation (P < 0.05). RT-qPCR, Western blot and immunohistochemistry showed significantly higher CCND2 expression in the PTC cells than in Nthy-ori-3-1 cells (P < 0.01) and also in clinical PTC tissues than in the adjacent tissues (P < 0.05) in correlation with tumor size, lymph node metastasis and TNM stage (P < 0.05). CONCLUSION: CCND2 overexpression is closely correlated with tumor progression and immune cell infiltration in PTC patients..


Subject(s)
Cyclin D2 , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Cyclin D2/genetics , Cyclin D2/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Female , Male , ROC Curve , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis
3.
BMC Cancer ; 24(1): 710, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858612

ABSTRACT

BACKGROUND: Papillary thyroid carcinoma (PTC) is globally prevalent and associated with an increased risk of lymph node metastasis (LNM). The role of cancer-associated fibroblasts (CAFs) in PTC remains unclear. METHODS: We collected postoperative pathological hematoxylin-eosin (HE) slides from 984 included patients with PTC to analyze the density of CAF infiltration at the invasive front of the tumor using QuPath software. The relationship between CAF density and LNM was assessed. Single-cell RNA sequencing (scRNA-seq) data from GSE193581 and GSE184362 datasets were integrated to analyze CAF infiltration in PTC. A comprehensive suite of in vitro experiments, encompassing EdU labeling, wound scratch assays, Transwell assays, and flow cytometry, were conducted to elucidate the regulatory role of CD36+CAF in two PTC cell lines, TPC1 and K1. RESULTS: A significant correlation was observed between high fibrosis density at the invasive front of the tumor and LNM. Analysis of scRNA-seq data revealed metastasis-associated myoCAFs with robust intercellular interactions. A diagnostic model based on metastasis-associated myoCAF genes was established and refined through deep learning methods. CD36 positive expression in CAFs can significantly promote the proliferation, migration, and invasion abilities of PTC cells, while inhibiting the apoptosis of PTC cells. CONCLUSION: This study addresses the significant issue of LNM risk in PTC. Analysis of postoperative HE pathological slides from a substantial patient cohort reveals a notable association between high fibrosis density at the invasive front of the tumor and LNM. Integration of scRNA-seq data comprehensively analyzes CAF infiltration in PTC, identifying metastasis-associated myoCAFs with strong intercellular interactions. In vitro experimental results indicate that CD36 positive expression in CAFs plays a promoting role in the progression of PTC. Overall, these findings provide crucial insights into the function of CAF subset in PTC metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Single-Cell Analysis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Single-Cell Analysis/methods , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Cell Proliferation , Male , CD36 Antigens/metabolism , CD36 Antigens/genetics , Cell Movement , Female , Cell Line, Tumor , Lymphatic Metastasis , Neoplasm Invasiveness , Middle Aged , Apoptosis
4.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795180

ABSTRACT

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Subject(s)
Drug Resistance, Neoplasm , Indoles , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Sulfonamides , Thyroid Neoplasms , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Animals , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Indoles/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Sulfonamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Sorafenib/pharmacology , Quinolines/pharmacology , Mutation , Antigens/metabolism , Proteoglycans/metabolism , Membrane Proteins , Chondroitin Sulfate Proteoglycans
5.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791384

ABSTRACT

The PAX8/PPARγ rearrangement, producing the PAX8-PPARγ fusion protein (PPFP), is thought to play an essential role in the oncogenesis of thyroid follicular tumors. To identify PPFP-targeted drug candidates and establish an early standard of care for thyroid tumors, we performed ensemble-docking-based compound screening. Specifically, we investigated the pocket structure that should be adopted to search for a promising ligand compound for the PPFP; the position of the ligand-binding pocket on the PPARγ side of the PPFP is similar to that of PPARγ; however, the shape is slightly different between them due to environmental factors. We developed a method for selecting a PPFP structure with a relevant pocket and high prediction accuracy for ligand binding. This method was validated using PPARγ, whose structure and activity values are known for many compounds. Then, we performed docking calculations to the PPFP for 97 drug or drug-like compounds registered in the DrugBank database with a thiazolidine backbone, which is one of the characteristics of ligands that bind well to PPARγ. Furthermore, the binding affinities of promising ligand candidates were estimated more reliably using the molecular mechanics Poisson-Boltzmann surface area method. Thus, we propose promising drug candidates for the PPFP with a thiazolidine backbone.


Subject(s)
Molecular Docking Simulation , Oncogene Proteins, Fusion , PPAR gamma , Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , PPAR gamma/metabolism , PPAR gamma/chemistry , PPAR gamma/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/chemistry , Ligands , PAX8 Transcription Factor/metabolism , PAX8 Transcription Factor/genetics , Protein Binding , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Binding Sites , Computer Simulation
6.
Life Sci ; 347: 122682, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38702025

ABSTRACT

Thyroid cancer is one of the most common primary endocrine malignancies worldwide, and papillary thyroid carcinoma (PTC) is the predominant histological type observed therein. Although PTC has been studied extensively, our understanding of the altered metabolism and metabolic profile of PTC tumors is limited. We identified that the content of metabolite homogentisic acid (HGA) in PTC tissues was lower than that in adjacent non-cancerous tissues. We evaluated the potential of HGA as a novel molecular marker in the diagnosis of PTC tumors, as well as its ability to indicate the degree of malignancy. Studies have further shown that HGA contributes to reactive oxygen species (ROS) associated oxidative stress, leading to toxicity and inhibition of proliferation. In addition, HGA caused an increase in p21 expression levels in PTC cells and induced G1 arrest. Moreover, we found that the low HGA content in PTC tumors was due to the low expression levels of tyrosine aminotransferase (TAT) and p-hydroxyphenylpyruvate hydroxylase (HPD), which catalyze the conversion of tyrosine to HGA. The low expression levels of TAT and HPD are strongly associated with a higher probability of PTC tumor invasion and metastasis. Our study demonstrates that HGA could be used to diagnose PTC and provides mechanisms linking altered HGA levels to the biological behavior of PTC tumors.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21 , Homogentisic Acid , Reactive Oxygen Species , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Reactive Oxygen Species/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Homogentisic Acid/metabolism , Female , Male , Middle Aged , Cell Line, Tumor , Oxidative Stress , Carcinoma, Papillary/pathology , Carcinoma, Papillary/metabolism , Adult
7.
Biochem Pharmacol ; 225: 116323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815632

ABSTRACT

Relaxin's role in differentiated thyroid cancer (DTC) has been suggested but its characterization in a large clinical sample remains limited. We performed immunohistochemistry for relaxin-2 (RLN2), CD68 (total macrophages), CD163 (M2 macrophages) on tissue microarrays from 181 subjects with non-distant metastatic DTC, and 185 subjects with benign thyroid tissue. Mean pixels/area for each marker was compared between tumor and adjacent tissue via paired-t test and between DTC and benign subjects via t-test assuming unequal variances. RNA qPCR was performed for expression of RLN2, RLN1, and RXFP1 in cell lines. Amongst 181 cases, the mean age was 46 years, 75 % were females. Tumoral tissue amongst the DTC cases demonstrated higher mean expression of RLN2 (53.04 vs. 9.79; p < 0.0001) compared to tumor-adjacent tissue. DTC tissue also demonstrated higher mean expression of CD68 (14.46 vs. 4.79; p < 0.0001), and CD163 (23.13 vs. -0.73; p < 0.0001) than benign thyroid. These markers did not differ between tumor-adjacent and benign thyroid tissue groups; and amongst cases, did not differ by demographic or clinicopathologic features. RLN1 and RXFP1 expression was detected in a minority of the cell lines, while RLN2 was expressed by 6/7 cell lines. In conclusion, widespread RLN2 expression in DTC tissue and most cell lines demonstrates that RLN2 acts in a paracrine manner, and that RLN1 and RXFP1 are probably not involved in thyroid cancer cell signaling. RLN2 is a biomarker for thyroid carcinogenesis, being associated with but not secreted by immunosuppressive macrophages. These findings will guide further investigations for therapeutic avenues against thyroid cancer.


Subject(s)
Biomarkers, Tumor , Relaxin , Thyroid Neoplasms , Humans , Relaxin/metabolism , Relaxin/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Female , Middle Aged , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adult , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Cell Line, Tumor , Antigens, CD/genetics , Antigens, CD/metabolism , Aged , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics
8.
Chem Biol Interact ; 397: 111075, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38815667

ABSTRACT

Polybrominated biphenyls (PBBs) are associated with an increased risk of thyroid cancer; however, relevant mechanistic studies are lacking. In this study, we investigated the mechanisms underlying PBB-induced human thyroid cancer. Molecular docking and molecular dynamics methods were employed to investigate the metabolism of PBBs by the cytochrome P450 enzyme under aryl hydrocarbon receptor mediation into mono- and di-hydroxylated metabolites. This was taken as the molecular initiation event. Subsequently, considering the interactions of PBBs and their metabolites with the thyroxine-binding globulin protein as key events, an adverse outcome pathway for thyroid cancer caused by PBBs exposure was constructed. Based on 2D quantitative structure activity relationship (2D-QSAR) models, the contribution of amino acid residues and binding energy were analyzed to understand the mechanism underlying human carcinogenicity (adverse effect) of PBBs. Hydrogen bond and van der Waals interactions were identified as key factors influencing the carcinogenic adverse outcome pathway of PBBs. Analysis of non-bonding forces revealed that PBBs and their hydroxylation products were predominantly bound to the thyroxine-binding globulin protein through hydrophobic and hydrogen bond interactions. The key amino acids involved in hydrophobic interactions were alanine 330, arginine 381 and lysine 270, and the key amino acids involved in hydrogen bond interactions were arginine 381 and lysine 270. This study provides valuable insights into the mechanisms underlying human health risk associated with PBBs exposure.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Polybrominated Biphenyls , Quantitative Structure-Activity Relationship , Humans , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/chemistry , Polybrominated Biphenyls/metabolism , Hydrogen Bonding , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/metabolism , Thyroxine-Binding Globulin/metabolism , Thyroxine-Binding Globulin/chemistry , Protein Binding , Binding Sites , Carcinogens/toxicity , Carcinogens/chemistry , Hydrophobic and Hydrophilic Interactions , Computer Simulation , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/chemistry
9.
Med Oncol ; 41(6): 137, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705933

ABSTRACT

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Subject(s)
Epithelial-Mesenchymal Transition , Microtubule-Associated Proteins , Neoplasm Proteins , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Transforming Growth Factor beta , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice, Nude , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Transforming Growth Factor beta/metabolism
10.
Med Oncol ; 41(6): 160, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763968

ABSTRACT

Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. The pathology of PTC is far from clear. As a kinase that can be targeted, the role of TNIK in PTC has not been investigated. This study was focused on the effects and molecular mechanisms of TNIK in PTC. Both public datasets and clinical specimens were used to verify TNIK expression. The effects of TNIK were investigated in both cell lines and mice models. Transcriptome analysis was used to explore the underlying mechanism of TNIK. Immunofluorescence, wound healing, and qRT-PCR assays were used to validate the mechanism of TNIK in PTC. The therapeutic effects of TNIK inhibitor NCB-0846 were evaluated by flow cytometry, western blot, and subcutaneous xenografts mice. TNIK expression was upregulated in PTC tissues. TNIK knockdown could suppress cell proliferation and tumor growth in no matter cell models or nude mice. The transcriptome analysis, GO enrichment analysis, and GSEA analysis results indicated TNIK was highly correlated with cytoskeleton, cell motility, and Wnt pathways. The mechanistic studies demonstrated that TNIK regulated cytoskeleton remodeling and promoted cell migration. NCB-0846 significantly inhibited TNIK kinase activity, induced cell apoptosis, and activated apoptosis-related proteins in a dose-dependent manner. In addition, NCB-0846 inhibited tumor growth in tumor-bearing mice. In summary, we proposed a novel regulatory mechanism in which TNIK-mediated cytoskeleton remodeling and cell migration to regulate tumor progression in PTC. TNIK is a therapeutic target in PTC and NCB-0846 would act as a novel targeted drug for PTC therapy.


Subject(s)
Cell Proliferation , Thyroid Cancer, Papillary , Thyroid Neoplasms , Animals , Female , Humans , Male , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Xenograft Model Antitumor Assays
11.
Endocr Relat Cancer ; 31(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38768280

ABSTRACT

The genetic alterations currently identified in papillary thyroid microcarcinomas (PTMCs) are insufficient for distinguishing tumors with aggressive features. We aimed to identify candidate markers associated with lateral lymph node metastasis (LLNM, N1sb disease) in patients with PTMC using transcriptomic analysis. RNA sequencing was performed on 26 matched tumor and normal thyroid tissue samples (N0, n = 14; N1b, n = 12), followed by functional enrichment analyses of differentially expressed genes (DEGs). EcoTyper was used to explore the distinct tumor microenvironment (TME). We identified 631 DEGs (213 upregulated and 418 downregulated) between N1b and N0 PTMCs. The most significantly upregulated genes in N1b were associated with tumorigenesis, adhesion, migration, and invasion. DEGs were mainly enriched in the pathways of idiopathic pulmonary fibrosis, TME, wound healing, and inhibition of matrix metalloproteases. We predicted the activation of these pathways in N1b PTMCs. N1b PTMCs had a unique TME with abundant fibroblasts and epithelial cells, associated with an increased risk of disease progression. Fibroblast marker genes, including POSTN, MMP11, TNFAIP6,and FN1, and epithelial cell marker genes, including NOX4, MFAP2, TGFVBI,and TNC, were selected. POSTN and FN1, fibroblast cell-specific genes, and NOX4 and TNC, epithelial cell-specific genes, were promising biomarkers for predicting LLNM development and recurrence in patients with PTMC. We delineated the cellular ecotypes within the TME of patients with N1b PTMC and revealed potential markers for predicting LLNM and the prognosis of PTMC. These findings provide valuable insights into the contributions of cancer-associated fibroblasts and epithelial cells to PTMC progression and metastasis.


Subject(s)
Carcinoma, Papillary , Lymphatic Metastasis , Thyroid Neoplasms , Tumor Microenvironment , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Female , Male , Carcinoma, Papillary/pathology , Carcinoma, Papillary/genetics , Middle Aged , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
12.
Curr Cancer Drug Targets ; 24(5): 519-533, 2024.
Article in English | MEDLINE | ID: mdl-38804344

ABSTRACT

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS: GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS: Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION: LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.


Subject(s)
Carcinoma, Neuroendocrine , Cell Proliferation , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Long Noncoding/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Enhancer Elements, Genetic , Disease Progression , Cell Line, Tumor , Cell Movement , Reactive Oxygen Species/metabolism , Enhancer RNAs
13.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791433

ABSTRACT

Thyroid cancer (TC) and thyroid autoimmune disorders (AITD) are among the most common diseases in the general population, with higher incidence in women. Chronic inflammation and autoimmunity play a pivotal role in carcinogenesis. Some studies, indeed, have pointed out the presence of AITD as a risk factor for TC, although this issue remains controversial. Prevention of autoimmune disease and cancer is the ultimate goal for clinicians and scientists, but it is not always feasible. Thus, new treatments, that overcome the current barriers to prevention and treatment of TC and AITD are needed. Alkaloids are secondary plant metabolites endowed with several biological activities including anticancer and immunomodulatory properties. In this perspective, alkaloids may represent a promising source of prophylactic and therapeutic agents for TC and AITD. This review encompasses the current published literature on alkaloids effects on TC and AITD, with a specific focus on the pathways involved in TC and AITD development and progression.


Subject(s)
Alkaloids , Thyroid Neoplasms , Humans , Alkaloids/therapeutic use , Alkaloids/pharmacology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/prevention & control , Thyroid Neoplasms/drug therapy , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Autoimmune Diseases/prevention & control
14.
Metabolomics ; 20(3): 59, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773019

ABSTRACT

INTRODUCTION: Thyroid cancer incidence rate has increased substantially worldwide in recent years. Fine needle aspiration biopsy (FNAB) is currently the golden standard of thyroid cancer diagnosis, which however, is invasive and costly. In contrast, breath analysis is a non-invasive, safe and simple sampling method combined with a promising metabolomics approach, which is suitable for early cancer diagnosis in high volume population. OBJECTIVES: This study aims to achieve a more comprehensive and definitive exhaled breath metabolism profile in papillary thyroid cancer patients (PTCs). METHODS: We studied both end-tidal and mixed expiratory breath, solid-phase microextraction gas chromatography coupled with high resolution mass spectrometry (SPME-GC-HRMS) was used to analyze the breath samples. Multivariate combined univariate analysis was applied to identify potential breath biomarkers. RESULTS: The biomarkers identified in end-tidal and mixed expiratory breath mainly included alkanes, olefins, enols, enones, esters, aromatic compounds, and fluorine and chlorine containing organic compounds. The area under the curve (AUC) values of combined biomarkers were 0.974 (sensitivity: 96.1%, specificity: 90.2%) and 0.909 (sensitivity: 98.0%, specificity: 74.5%), respectively, for the end-tidal and mixed expiratory breath, indicating of reliability of the sampling and analysis method CONCLUSION: This work not only successfully established a standard metabolomic approach for early diagnosis of PTC, but also revealed the necessity of using both the two breath types for comprehensive analysis of the biomarkers.


Subject(s)
Biomarkers, Tumor , Breath Tests , Gas Chromatography-Mass Spectrometry , Metabolomics , Solid Phase Microextraction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Metabolomics/methods , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/metabolism , Breath Tests/methods , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Female , Male , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adult , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/metabolism , Early Detection of Cancer/methods , Aged
15.
Theranostics ; 14(7): 3014-3028, 2024.
Article in English | MEDLINE | ID: mdl-38773979

ABSTRACT

Background: Periostin (POSTN) is a critical extracellular matrix protein in various tumor microenvironments. However, the function of POSTN in thyroid cancer progression remains largely unknown. Methods: Postn and Rag1 knock-out mice and orthotopic mouse models were used to determine the role of POSTN on papillary thyroid tumor progression. Immunofluorescence, cell co-culture, fluorescence in situ hybridization, chromatin immunoprecipitation assay, recombinant protein and inhibitor treatment were performed to explore the underlying mechanisms of POSTN-promoted papillary thyroid tumor growth. Results: POSTN is up-regulated in papillary thyroid tumors and negatively correlates with the overall survival of patients with thyroid cancer. Cancer-associated fibroblast (CAF)-derived POSTN promotes papillary thyroid tumor growth in vivo and in vitro. POSTN deficiency in CAFs significantly impairs CAF-promoted papillary thyroid tumor growth. POSTN promotes papillary thyroid tumor cell proliferation and IL-4 expression through integrin-FAK-STAT3 signaling. In turn, tumor cell-derived IL-4 induces the activation of CAFs and stimulates POSTN expression by activating STAT6. We reveal the crucial role of CAF-derived POSTN and tumor cell-derived IL-4 in driving the development of papillary thyroid tumors through the POSTN-integrin-FAK-STAT3-IL-4 pathway in tumor cells and IL-4-STAT6-POSTN signaling in CAFs. Conclusion: Our findings underscore the significance of POSTN and IL-4 as critical molecular mediators in the dynamic interplay between CAFs and tumor cells, ultimately supporting the growth of papillary thyroid tumors.


Subject(s)
Cancer-Associated Fibroblasts , Cell Adhesion Molecules , Cell Proliferation , Mice, Knockout , STAT3 Transcription Factor , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Animals , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/genetics , STAT3 Transcription Factor/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Mice , Humans , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Interleukin-4/metabolism , Integrins/metabolism , Focal Adhesion Kinase 1/metabolism , Periostin
16.
Nat Commun ; 15(1): 3736, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744818

ABSTRACT

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Subject(s)
Mitosis , Protein Inhibitors of Activated STAT , Humans , Protein Inhibitors of Activated STAT/metabolism , Protein Inhibitors of Activated STAT/genetics , Animals , Cell Line, Tumor , Mice , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , RNA Interference , Spindle Apparatus/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Xenograft Model Antitumor Assays , Proteasome Endopeptidase Complex/metabolism , Sumoylation , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Female
17.
Sci Rep ; 14(1): 11005, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745021

ABSTRACT

The SUVmax is a measure of FDG uptake and is related with tumor aggressiveness in thyroid cancer, however, its association with molecular pathways is unclear. Here, we investigated the relationship between SUVmax and gene expression profiles in 80 papillary thyroid cancer (PTC) patients. We conducted an analysis of DEGs and enriched pathways in relation to SUVmax and tumor size. SUVmax showed a positive correlation with tumor size and correlated with glucose metabolic process. The genes that indicate thyroid differentiation, such as SLC5A5 and TPO, were negatively correlated with SUVmax. Unsupervised analysis revealed that SUVmax positively correlated with DNA replication(r = 0.29, p = 0.009), pyrimidine metabolism(r = 0.50, p < 0.0001) and purine metabolism (r = 0.42, p = 0.0001). Based on subgroups analysis, we identified that PSG5, TFF3, SOX2, SL5A5, SLC5A7, HOXD10, FER1L6, and IFNA1 genes were found to be significantly associated with tumor aggressiveness. Both high SUVmax PTMC and macro-PTC are enriched in pathways of DNA replication and cell cycle, however, gene sets for purine metabolic pathways are enriched only in high SUVmax macro-PTC but not in high SUVmax PTMC. Our findings demonstrate the molecular characteristics of high SUVmax tumor and metabolism involved in tumor growth in differentiated thyroid cancer.


Subject(s)
Thyroid Cancer, Papillary , Thyroid Neoplasms , Transcriptome , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Female , Male , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Middle Aged , Adult , Fluorodeoxyglucose F18 , Gene Expression Regulation, Neoplastic , Aged , Gene Expression Profiling , Tumor Burden/genetics
18.
Sci Rep ; 14(1): 10546, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719979

ABSTRACT

Radioiodine refractory (RAIR) patients do not benefit from iodine-131 therapy. Thus, timely identification of RAIR patients is critical for avoiding ineffective radioactive iodine therapy. In addition, determining the causes of iodine resistance will facilitate the development of novel treatment strategies. This study was comprised of 20 RAIR and 14 non-radioiodine refractory (non-RAIR) thyroid cancer patients. Liquid chromatography-mass spectrometry was used to identify differences in the serum metabolites of RAIR and non-RAIR patients. In addition, chemical assays were performed to determine the effects of the differential metabolites on iodine uptake. Metabolic pathway enrichment analysis of the differential metabolites revealed significant differences in the phenylalanine and tyrosine metabolic pathways. Notably, quinate and shikimic acid, metabolites of the tyrosine pathway, were significantly increased in the RAIR group. In contrast, the phenylalanine pathway metabolites, hippuric acid and 2-phenylacetamide, were markedly decreased in the RAIR group. Thyroid peroxidase plays an important role in catalyzing the iodination of tyrosine residues, while the ionic state of iodine promotes the iodination reaction. Quinate, shikimic acid, hippuric acid, and 2-phenylacetamide were found to be involved in the iodination of tyrosine, which is a key step in thyroid hormone synthesis. Specifically, quinate and shikimic acid were found to inhibit iodination, while hippuric acid and 2-phenylacetamide promoted iodination. Abnormalities in phenylalanine and tyrosine metabolic pathways are closely associated with iodine resistance. Tyrosine is required for thyroid hormone synthesis and could be a potential cause of iodine resistance.


Subject(s)
Iodine Radioisotopes , Metabolomics , Thyroid Neoplasms , Humans , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/radiotherapy , Female , Male , Middle Aged , Metabolomics/methods , Adult , Iodine/metabolism , Metabolic Networks and Pathways/drug effects , Aged , Metabolome
19.
Clin Transl Med ; 14(5): e1694, 2024 May.
Article in English | MEDLINE | ID: mdl-38797942

ABSTRACT

BACKGROUND: BRAFV600E is the most common genetic mutation in differentiated thyroid cancer (DTC) occurring in 60% of patients and drives malignant tumour cell phenotypes including proliferation, metastasis and immune-escape. BRAFV600E-mutated papillary thyroid cancer (PTC) also displays greatly reduced expression of thyroid differentiation markers, thus tendency to radioactive iodine (RAI) refractory and poor prognosis. Therefore, understanding the molecular mechanisms and main oncogenic events underlying BRAFV600E will guide future therapy development. METHODS: Bioinformatics and clinical specimen analyses, genetic manipulation of BRAFV600E-induced PTC model, functional and mechanism exploration guided with transcriptomic screening, as well as systematic rescue experiments were applied to investigate miR-31 function within BRAFV600E-induced thyroid cancer development. Besides, nanoparticles carrying miR-31 antagomirs were testified to alleviate 131I iodide therapy on PTC models. RESULTS: We identify miR-31 as a significantly increased onco-miR in BRAFV600E-associated PTC that promotes tumour progression, metastasis and RAI refractoriness via sustained Wnt/ß-catenin signalling. Mechanistically, highly activated BRAF/MAPK pathway induces miR-31 expression via c-Jun-mediated transcriptional regulation across in vitro and transgenic mouse models. MiR-31 in turn facilitates ß-catenin stabilisation via directly repressing tumour suppressors CEBPA and DACH1, which direct the expression of multiple essential Wnt/ß-catenin pathway inhibitors. Genetic functional assays showed that thyroid-specific knockout of miR-31 inhibited BRAFV600E-induced PTC progression, and strikingly, enhanced expression of sodium-iodide symporter and other thyroid differentiation markers, thus promoted 131I uptake. Nanoparticle-mediated application of anti-miR-31 antagomirs markedly elevated radio-sensitivity of BRAFV600E-induced PTC tumours to 131I therapy, and efficiently suppressed tumour progression in the pre-clinical mouse model. CONCLUSIONS: Our findings elucidate a novel BRAF/MAPK-miR-31-Wnt/ß-catenin regulatory mechanism underlying clinically BRAFV600E-associated DTC tumourigenesis and dedifferentiation, also highlight a potential adjuvant therapeutic strategy for advanced DTC.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins B-raf , Thyroid Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Dedifferentiation/genetics , Cell Dedifferentiation/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism
20.
Transl Res ; 271: 1-12, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38670453

ABSTRACT

The reactivation of TERT is associated with poor outcome in papillary thyroid cancer (PTC). Extra-telomeric functions of TERT were reported, with a protective role against oxidative stress (OS). The aim of the present study was to explore the extra-nuclear TERT localization in PTC and its role in cancer progression. TERT nuclear export under OS were analyzed in K1 PTC cell line. We investigated the role of different TERT localizations using specific TERT constructs that limit its localization to the nucleus or to the mitochondria. The effect of SRC kinase inhibitor PP2, which reduces TERT nuclear export, was investigated as well. Moreover, TERT localization was analyzed in 39 PTC tissues and correlated with the genetic profile and the level of OS, DNA damage and apoptosis in the tumors and with the clinical characteristics of the patients. We demonstrated that TERT is exported from the nucleus in response to OS induced either from H2O2 or the BRAF inhibitor PLX4720. We proved that extra-nuclear TERT reduces mitochondrial OS and induces mitochondrial fragmentation. Moreover, limiting mitochondrial TERT localization reduced proliferation, migration, AKT phosphorylation and glycolysis and increased DNA damage and p21 expression. Finally, in PTC tissues the fraction of mitochondrial/nuclear TERT resulted inversely correlated with OS and p21 expression and associated with tumor persistence. In conclusion, our data indicate that extra-nuclear TERT is involved in reducing the effect of excessive OS, thus promoting cancer cell survival. Extra-nuclear TERT may thus represent a marker of cancer progression and a possible therapeutic target in PTC.


Subject(s)
Disease Progression , Oxidative Stress , Telomerase , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Telomerase/metabolism , Telomerase/genetics , Oxidative Stress/drug effects , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Female , Mitochondria/metabolism , Mitochondria/drug effects , Male , Middle Aged , DNA Damage , Cell Proliferation/drug effects , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...