Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34946916

ABSTRACT

Thrips (Thysanoptera: Thripidae) is a major insect pest for alfalfa which can result in decreased plant nutrients, low yields, and even plant death. To identify the differentially expressed genes and metabolites in response to thrips in alfalfa, a combination of metabolomics and transcriptomics was employed using alfalfa (Caoyuan No. 2) with and without thrips infestation. The results showed that the flavonoid biosynthesis and isoflavonoid biosynthesis pathways were the most significantly enriched pathways in response to thrips infection, as shown by the combined transcriptome and metabolome analysis. The transcriptome results showed that SA and JA signal transduction and PAPM-triggered immunity and the MAPK signaling pathway-plant pathways played a crucial role in thrips-induced plant resistance in alfalfa. In addition, we found that thrips infestation could also induce numerous changes in plant primary metabolism, such as carbohydrate and amino acid metabolism as compared to the control. Overall, our results described here should improve fundamental knowledge of molecular responses to herbivore-inducible plant defenses and contribute to the design of strategies against thrips in alfalfa.


Subject(s)
Medicago sativa/genetics , Medicago sativa/parasitology , Metabolome/genetics , Thysanoptera/pathogenicity , Transcriptome/genetics , Animals , Gene Expression Regulation, Plant/genetics , Metabolomics/methods , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/parasitology
2.
PLoS One ; 15(10): e0239910, 2020.
Article in English | MEDLINE | ID: mdl-33002075

ABSTRACT

Transgenic cotton expressing Cry51Aa2.834_16 Bt toxin (hereafter referred to as MON 88702) has the potential to be an important tool for pest management due to its unique activity against tobacco thrips, Frankliniella fusca. Unlike other Bt toxins targeting lepidopteran cotton pests, MON 88702 does not cause direct mortality but has an antixenotic effect that suppresses F. fusca oviposition. Previous work has shown neonicotinoid seed treated (NST) crops have similar behavioral effects on thrips. This study used non-choice and common garden experiments to examine how the presence of MON 88702 cotton and soybean (another F. fusca host) with and without NSTs might alter F. fusca infestation distributions. In a no-choice environment, significant larval establishment differences were observed, with untreated soybean plants becoming most heavily infested. In choice experiments, plants expressing MON 88702 or were neonicotinoid treated had significantly lower larval establishment. Larval density decreased as dispersal distance increased, suggesting reproductive decisions were negatively related to distance from the release point. Understanding how F. fusca responds to MON 88702 in an environment where adults can choose among multiple host plants will provide valuable context for projections regarding design of MON 88702 resistance refuges. Reduced larval establishment on NST cotton and soybean suggests that area-wide use of NSTs could reduce the number of susceptible F. fusca generated in unstructured crop refuges for MON 88702. These results also suggest that although the presence of NST MON 88702 could suppress reproduction and resistance selection, over time this benefit could erode resulting in increased larval establishment on NST cotton and soybean due to increased frequency of neonicotinoid resistant F. fusca populations.


Subject(s)
Gossypium/parasitology , Insecticides/pharmacology , Neonicotinoids/pharmacology , Plant Diseases/prevention & control , Thysanoptera/drug effects , Animals , Bacillus thuringiensis/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Gossypium/genetics , Oviposition/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology , Seeds/parasitology , Glycine max/genetics , Glycine max/parasitology , Thysanoptera/pathogenicity , Thysanoptera/physiology
3.
PLoS One ; 15(6): e0233722, 2020.
Article in English | MEDLINE | ID: mdl-32479526

ABSTRACT

Melon yellow spot orthotospovirus (MYSV), a member of the genus Orthotospovirus, is an important virus in cucurbits. Thrips palmi is considered the most serious pest of cucurbits because it directly damages and indirectly transmits MYSV to the plant. The effects of MYSV-infected plants on the development time, fecundity, and preference of the thrips were analyzed in this study. Our results showed that the development time of male and female thrips did not differ significantly between MYSV-infected and non-infected cucumbers. The survival rate of thrips in non-infected and MYSV-infected cucumbers were not significantly different. In a non-choice assay, T. palmi adults were released on non-infected and MYSV-infected cucumbers and allowed to lay eggs. The number of hatched larvae did not significantly differ between non-infected and MYSV-infected cucumbers. In a choice assay, MYSV had no detectable effect on the number of adult thrips and preceding hatched larvae. In a pull assay, the settling rate of thrips on the released plant did not differ significantly when the adult thrips were released to non-infected or MYSV infected cucumbers for any cucumber cultivar. Based on our results, we propose that the effects of MYSV-infected cucumbers on the development time, fecundity, or preference of T. palmi may not be an important factor in MYSV spread between cucumbers.


Subject(s)
Cucumis sativus/parasitology , Orthobunyavirus/pathogenicity , Thysanoptera/physiology , Animals , Female , Fertility , Host Specificity , Male , Thysanoptera/growth & development , Thysanoptera/pathogenicity , Thysanoptera/virology
4.
Plant Cell Physiol ; 60(5): 1011-1024, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30715458

ABSTRACT

Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.


Subject(s)
Flowers/metabolism , Flowers/parasitology , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Thysanoptera/pathogenicity , Trichomes/metabolism , Animals , Flowers/genetics , Solanum lycopersicum/genetics , Quantitative Trait Loci/genetics , Trichomes/genetics
5.
Sci Rep ; 8(1): 13603, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206279

ABSTRACT

The flower thrips Frankliniella intonsa (Trybom) is one of the most economically important pests in cowpea greenhouses in China. Widespread pesticide resistance of thrips and the negative environmental effects limit the application of pesticides for thrips control. Two commercial cowpea greenhouse experiments were designed to determine the color preference of F. intonsa to colored cards, including white, pink, pale green, light yellow, powder blue, crimson, yellow green, deep sky blue, dark slate blue, dark orange, medium orchid, gold, and black. Clear pieces of plastic were used as the control cards. Additionally, the effects of placement height and orientation (cardinal direction) of the cards were also studied. Both greenhouse trials showed that white cards were significantly more attractive to F. intonsa than the other 13 card colors, followed by deep sky blue cards. White or deep sky blue cards placed low to the ground were found to be most attractive to F. intonsa. Orientation of the colored cards also affected the attractiveness to F. intonsa. The results indicate that white sticky cards were significantly more attractive to F. intonsa than blue cards and therefore can be recommended to monitor F. intonsa population densities and to control them in cowpea greenhouses as part of integrated pest management programs.


Subject(s)
Flowers/parasitology , Pest Control , Thysanoptera/physiology , Vigna/parasitology , Animals , China , Color , Flowers/growth & development , Humans , Pesticides/adverse effects , Population Density , Species Specificity , Thysanoptera/pathogenicity , Vigna/growth & development
6.
PLoS One ; 13(8): e0202199, 2018.
Article in English | MEDLINE | ID: mdl-30096210

ABSTRACT

The abundance of banana flower thrips (Thrips hawaiiensis Morgan) in a banana (Musa acuminata Colla "Williams" cultivar) plantation was investigated using yellow sticky traps (29.70 cm × 21.00 cm) in 2015. Banana flower thrips occurred throughout the year with monthly variation, and the maximum occurrence was observed in October and November during the bud burst (73.80 ± 6.32 adults/trap) and young fruit (70.06 ± 5.69 adults/trap) periods. The damage rates were as follows: interior flowers >3rd-layer flowers > 2nd-layer flowers > 1st-layer flowers > young fruits. This result indicates that thrips migrated to lower bracts, young fruits, and other flower buds as bracts gradually opened. Results also showed that the reducing sugar, vitamin C, protein and ash contents in thrips-damaged flowers were all significantly lower than those in undamaged flowers, while there was no significant difference between damaged and undamaged young banana fruit. Our results indicated that the abundances of banana flower thrips were closely associated with the growing stage of banana. Thrips mainly infested flower buds and caused a reduction in nutrients for the host plant, especially the reducing sugar and vitamin C contents, which reduced the nutritional quality of banana fruits and the quality of flower bud by-products of banana.


Subject(s)
Musa/metabolism , Musa/parasitology , Thysanoptera/pathogenicity , Animals , Ascorbic Acid/analysis , China , Flowers/chemistry , Flowers/growth & development , Fruit/chemistry , Host-Pathogen Interactions , Humans , Insect Control , Musa/growth & development , Nutritive Value , Plant Proteins, Dietary/analysis , Population Dynamics , Sugars/analysis
7.
PLoS One ; 12(4): e0175940, 2017.
Article in English | MEDLINE | ID: mdl-28423007

ABSTRACT

Peanut is a major oilseed crop worldwide. In the Brazilian peanut production, silvering thrips and red necked peanut worm are the most threatening pests. Resistant varieties are considered an alternative to pest control. Many wild diploid Arachis species have shown resistance to these pests, and these can be used in peanut breeding by obtaining hybrid of A and B genomes and subsequent polyploidization with colchicine, resulting in an AABB amphidiploid. This amphidiploid can be crossed with cultivated peanut (AABB) to provide genes of interest to the cultivar. In this study, the sterile diploid hybrids from A. magna V 13751 and A. kempff-mercadoi V 13250 were treated with colchicine for polyploidization, and the amphidiploids were crossed with A. hypogaea cv. IAC OL 4 to initiate the introgression of the wild genes into the cultivated peanut. The confirmation of the hybridity of the progenies was obtained by: (1) reproductive characterization through viability of pollen, (2) molecular characterization using microsatellite markers and (3) morphological characterization using 61 morphological traits with principal component analysis. The diploid hybrid individual was polyploidized, generating the amphidiploid An 13 (A. magna V 13751 x A. kempff-mercadoi V 13250)4x. Four F1 hybrid plants were obtained from IAC OL 4 × An 13, and 51 F2 seeds were obtained from these F1 plants. Using reproductive, molecular and morphological characterizations, it was possible to distinguish hybrid plants from selfed plants. In the cross between A. hypogaea and the amphidiploid, as the two parents are polyploid, the hybrid progeny and selves had the viability of the pollen grains as high as the parents. This fact turns the use of reproductive characteristics impossible for discriminating, in this case, the hybrid individuals from selfing. The hybrids between A. hypogaea and An 13 will be used in breeding programs seeking pest resistance, being subjected to successive backcrosses until recovering all traits of interest of A. hypogaea, keeping the pest resistance.


Subject(s)
Arachis/genetics , Crosses, Genetic , Genome, Plant , Pollen/genetics , Polyploidy , Seeds/genetics , Animals , Arachis/drug effects , Arachis/immunology , Arachis/parasitology , Chromosome Mapping , Colchicine/pharmacology , Helminths/pathogenicity , Helminths/physiology , Hybridization, Genetic , Microsatellite Repeats , Mutagens/pharmacology , Phylogeny , Plant Breeding/methods , Plant Immunity/genetics , Pollen/drug effects , Pollen/immunology , Principal Component Analysis , Seeds/drug effects , Seeds/immunology , Thysanoptera/pathogenicity , Thysanoptera/physiology
8.
Z Naturforsch C J Biosci ; 69(7-8): 335-45, 2014.
Article in English | MEDLINE | ID: mdl-25265854

ABSTRACT

A major interest in the gall-inducing thrips of Australia began with the discovery that some species have eusocial colonies. The origin of social castes remains one of the outstanding questions in evolutionary biology. The inference of the ancestral stage from study of solitary species is important to understanding the evolutionary history of semiochemicals in social species. Here we investigated two solitary species, Kladothrips nicolsoni and K. rugosus. Whole body extracts revealed that (Z)-3-dodecenoic acid, here reported for the first time in a thrips species, is the main component. (Z)-3-Dodecenoic acid and (E)-3-dodecenoic acid were synthesized in high stereoisomeric purity (> 99.8%) and exposed to K. nicolsoni 2nd-instar larvae in a contact chemoreception bioassay to test for potential bioactivity. Both isomers decreased the average time spent in the treated area per entry suggesting repellence at the tested dose. (Z)-3-Dodecenoic acid may function as alarm pheromone. (E)-3-Dodecenoic acid increased also the absolute change in direction of larvae compared to an n-hexane control and could potentially function as a repellent.


Subject(s)
Fatty Acids, Monounsaturated/metabolism , Pheromones/metabolism , Thysanoptera/metabolism , Animals , Biological Assay , Gas Chromatography-Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Thysanoptera/pathogenicity
9.
Plant Mol Biol ; 78(6): 577-97, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22328090

ABSTRACT

Darjeeling teas are the highest grown teas in the world and preferred for its flavour, aroma and quality. Apart from the genetic makeup of the plant, earlier reports suggest that insect infestation, particularly jassids and thrips triggers the aroma and flavour formation in Darjeeling tea. The present work encompasses the identification of the genes/transcriptomes responsible for the typical flavour of Darjeeling tea, besides understanding the role of jassids and thrips in particular, in producing the best cup character and quality. The quantitative real time PCR analysis was based on a suppression subtractive hybridisation forward library of B157 (tea clone infested with thrips), providing us transcripts related to aroma and flavour formation. We observed the expression of genes like leucine zipper, ntd, nced, geraniol synthase, raffinose synthase, trehalose synthase, amylase, farnesyl transferase, catalase, methyl transferase, linalool synthase, peroxidases, elicitor responsive proteins, linamarase, nerolidol linalool synthase 2, 12-oxophytodienoate reductase, glucosidase, MYB transcription factor, and alcohol dehydrogenase, highly regulated due to insect infestation, manufacturing stresses and mechanical injury. The first report on gene expression dynamics in thrips infested Darjeeling tea leaves can be extrapolated with increase in volatiles which is responsible for enhancing the quality of Darjeeling tea, specially the flavour and aroma of the infusion. We hope to model these responses in order to understand the molecular changes that occur during Darjeeling tea flavour formation.


Subject(s)
Camellia sinensis/chemistry , Tea/chemistry , Animals , Camellia sinensis/genetics , Camellia sinensis/parasitology , Flavoring Agents/chemistry , Genes, Plant , Insecta/pathogenicity , Thysanoptera/pathogenicity , Transcriptome , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...