Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.662
Filter
1.
Commun Biol ; 7(1): 686, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834864

ABSTRACT

Microbial necromass carbon (MNC) can reflect soil carbon (C) sequestration capacity. However, changes in the reserves of MNC in response to warming in alpine grasslands across the Tibetan Plateau are currently unclear. Based on large-scale sampling and published observations, we divided eco-clusters based on dominant phylotypes, calculated their relative abundance, and found that their averaged importance to MNC was higher than most other environmental variables. With a deep learning model based on stacked autoencoder, we proved that using eco-cluster relative abundance as the input variable of the model can accurately predict the overall distribution of MNC under current and warming conditions. It implied that warming could lead to an overall increase in the MNC in grassland topsoil across the Tibetan Plateau, with an average increase of 7.49 mg/g, a 68.3% increase. Collectively, this study concludes that alpine grassland has the tendency to increase soil C sequestration capacity on the Tibetan Plateau under future warming.


Subject(s)
Grassland , Soil Microbiology , Tibet , Carbon Sequestration , Carbon/metabolism , Global Warming , Soil/chemistry , Climate Change
2.
BMC Ecol Evol ; 24(1): 74, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831426

ABSTRACT

BACKGROUND: The geographic patterns of plant diversity in the Qinghai-Tibet Plateau (QTP) have been widely studied, but few studies have focused on wetland plants. This study quantified the geographic patterns of wetland plant diversity in the QTP through a comprehensive analysis of taxonomic, phylogenetic and functional indices. METHODS: Based on a large number of floras, monographs, specimens and field survey data, we constructed a comprehensive dataset of 1,958 wetland plant species in the QTP. Species richness (SR), phylogenetic diversity (PD), functional diversity (FD), net relatedness index (NRI) and net functional relatedness index (NFRI) were used to assess the taxonomic, phylogenetic and functional diversity of wetland plants. We explored the relationships between the diversity indices and four categories of environmental variables (i.e. energy-water, climate seasonality, topography and human activities). We used four diversity indices, namely endemic species richness, weighted endemism, phylogenetic endemism and functional endemism, together with the categorical analysis of neo- and paleo-endemism (CANAPE), to identify the endemic centers of wetland plants in the QTP. RESULTS: SR, PD and FD were highly consistent and showed a decreasing trend from southeast to northwest, decreasing with increasing elevation. The phylogenetic structure of wetland plant assemblages in most parts of the plateau is mainly clustered. The functional structure of wetland plant assemblages in the southeast of the plateau is overdispersed, while the functional structure of wetland plant assemblages in other areas is clustered. Energy-water and climate seasonality were the two most important categories of variables affecting wetland plant diversity. Environmental variables had a greater effect on the functional structure of wetland plants than on the phylogenetic structure. This study identified seven endemic centres, mainly in the Himalayas and Hengduan Mountains. CONCLUSIONS: Climate and topography are the main factors determining the geographic distribution of wetland plant diversity at large scales. The majority of grid cells in the QTP with significant phylogenetic endemism were mixed and super-endemism. At large scales, compared to climate and topography, human activities may not have a negative impact on wetland plant diversity in the QTP.


Subject(s)
Biodiversity , Plants , Wetlands , Plants/classification , Tibet , Phylogeny , China
3.
BMC Genomics ; 25(1): 454, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720264

ABSTRACT

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Subject(s)
Anura , Hibernation , Metabolomics , Muscle, Skeletal , Animals , Hibernation/genetics , Hibernation/physiology , Muscle, Skeletal/metabolism , Anura/genetics , Anura/metabolism , Anura/physiology , Myocardium/metabolism , Transcriptome , Gene Expression Profiling , Seasons , Metabolome , Tibet
4.
BMC Plant Biol ; 24(1): 371, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724940

ABSTRACT

Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.


Subject(s)
Altitude , Desert Climate , Tibet , Plant Leaves/physiology , Plant Leaves/anatomy & histology
5.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704527

ABSTRACT

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Subject(s)
Archaea , Lakes , Salinity , Lakes/microbiology , Lakes/chemistry , Archaea/genetics , Archaea/classification , Archaea/metabolism , Tibet , High-Throughput Nucleotide Sequencing , Phylogeny , Biodiversity , Ecosystem , RNA, Ribosomal, 16S/genetics , Nitrogen/metabolism , Nitrogen/analysis , DNA, Archaeal/genetics
6.
Front Public Health ; 12: 1392803, 2024.
Article in English | MEDLINE | ID: mdl-38784594

ABSTRACT

Background: Physical activity (PA) and physical fitness (PF) are important markers of health status in children and adolescents in different ethnicities. In this study, we aimed to compare the PA and PF indicators between Tibetan and Han children and adolescents. Methods: Children and adolescents of 4-9 grades were recruited in Shigatse (n = 963) and Shanghai (n = 2,525) respectively. The information related to demographic, PA, and PF was collected via a self-reported questionnaire. PA was assessed through the participation of moderate to vigorous PA (MVPA), muscle-strengthening exercise (MSE) and organized sport participation (OSP). PF was estimated using the International Fitness Scale containing components of overall fitness, cardiorespiratory fitness, speed and agility, muscular strength and flexibility. Results: Han (mean age = 13.45 ± 3.3 years; 49.7% girls) and Tibet (mean age = 13.8 ± 2.5 years; 48.3% girls) children and adolescents from Shanghai and Shigatse completed the questionnaire survey. It was revealed that Tibetan students had higher MVPA, MSE and OSP than children and adolescents of Han ethnicity (p < 0.01, small to medium effect size). A relatively higher percentage of student in Shanghai did not participate in any form of PA. On the other hand, less Tibetan students thought their PF indicators including overall fitness, cardiorespiratory fitness, speed and agility, muscular strength and flexibility were poor or very poor than their counterparts of Han ethnicity (p < 0.01, small to medium effect size). Conclusion: Tibetan children and adolescents have higher levels of PA and PF in comparison to their Han counterparts. More children and adolescents of Han ethnicity engage in no PA and think their PF indicators were poor.


Subject(s)
Exercise , Physical Fitness , Humans , Male , Adolescent , Female , Tibet , Child , Surveys and Questionnaires , China/ethnology , Ethnicity/statistics & numerical data , Students/statistics & numerical data , East Asian People
7.
BMJ Open ; 14(5): e079062, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740500

ABSTRACT

OBJECTIVES: This qualitative study aimed to explore opportunities to strengthen tuberculosis (TB) health service delivery from the perspectives of health workers providing TB care in Shigatse prefecture of Tibet Autonomous Region, China. DESIGN: Qualitative research, semi-structured in-depth interviews. SETTING: The TB care ecosystem in Shigatse, including primary and community care. PARTICIPANTS: Participants: 37 semi-structured interviews were conducted with village doctors (14), township doctors and nurses (14), county hospital doctors (7) and Shigatse Centre for Disease Control staff (2). RESULTS: The three main themes reported include (1) the importance of training primary and community health workers to identify people with symptoms of TB, ensure TB is diagnosed and link people with TB to further care; (2) the need to engage community health workers to ensure retention in care and adherence to TB medications; and (3) the opportunity for innovative technologies to support coordinated care, retention in care and adherence to medication in Shigatse. CONCLUSIONS: The quality of TB care could be improved across the care cascade in Tibet and other high-burden, remote settings by strengthening primary care through ongoing training, greater support and inclusion of community health workers and by leveraging technology to create a circle of care. Future formative and implementation research should include the perspectives of health workers at all levels to improve care organisation and delivery.


Subject(s)
Community Health Workers , Qualitative Research , Rural Health Services , Tuberculosis , Humans , Tibet , Tuberculosis/therapy , Tuberculosis/prevention & control , Rural Health Services/organization & administration , Community Health Workers/education , Female , Male , Interviews as Topic , Adult , Health Personnel/education , Delivery of Health Care/organization & administration , Primary Health Care/organization & administration , Primary Health Care/methods , Middle Aged
8.
PLoS One ; 19(5): e0301087, 2024.
Article in English | MEDLINE | ID: mdl-38781137

ABSTRACT

Tibetan Buddhism, as an indigenous religion, has a significant and far-reaching influence in the Tibetan areas of China. This study, focusing on Lhasa, explores the integration of Tibetan Buddhist spiritual perceptions within urban spaces. Employing a novel approach that combines street view data and deep learning technology, the research aims to identify and map the spatial distribution of Tibetan Buddhist spiritual sites against the backdrop of the urban landscape. Our analysis reveals a notable concentration of these spiritual places near urban architectural and cultural heritage areas, highlighting the profound connection between residents' cultural life and spiritual practices. Despite challenges posed by modern urbanisation, these spiritual sites demonstrate resilience and adaptability, continuing to serve as cultural and spiritual pillars of the Tibetan Buddhist community. This study contributes to the fields of urban planning, religious studies, and digital humanities by demonstrating the potential of technology in examining the impact of urban development on cultural and religious landscapes. The research underscores the importance of protecting and integrating spaces of spiritual perception in urban development planning. It shows that safeguarding these spaces is crucial not only for cultural heritage preservation but also for achieving sustainable urban development and social harmony. This study opens new avenues for interdisciplinary research, advocating for a deeper understanding of the dynamic relationship between urban development and spiritual spaces from psychological, sociological, and environmental science perspectives. As urban landscapes evolve, the study emphasises the need to maintain a balance between material sustainability and cultural and spiritual richness in urban planning.


Subject(s)
Buddhism , Buddhism/psychology , Humans , Tibet , Spirituality , Perception , Urbanization , China
9.
Sci Adv ; 10(21): eadn8490, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781339

ABSTRACT

Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.


Subject(s)
Ecosystem , Geologic Sediments , Metagenomics , Tibet , Animals , Metagenomics/methods , Geologic Sediments/microbiology , Ice Cover/microbiology , Herbivory , Permafrost/microbiology
10.
Front Public Health ; 12: 1355659, 2024.
Article in English | MEDLINE | ID: mdl-38807991

ABSTRACT

Background: The Tibetan population residing in high-altitude (HA) regions has adapted to extreme hypoxic environments. However, there is limited understanding of the genetic basis of body compositions in Tibetan population adapted to HA. Methods: We performed a genome-wide association study (GWAS) to identify genetic variants associated with HA and HA-related body composition traits. A total of 755,731 single nucleotide polymorphisms (SNPs) were genotyped using the precision medicine diversity array from 996 Tibetan college students. T-tests and Pearson correlation analysis were used to estimate the association between body compositions and altitude. The mixed linear regression identified the SNPs significantly associated with HA and HA-related body compositions. LASSO regression was used to screen for important SNPs in HA and body compositions. Results: Significant differences were observed in lean body mass (LBW), muscle mass (MM), total body water (TBW), standard weight (SBW), basal metabolic rate (BMR), total protein (TP), and total inorganic salt (Is) in different altitudes stratification. We identified three SNPs in EPAS1 (rs1562453, rs7589621 and rs7583392) that were significantly associated with HA (p < 5 × 10-7). GWAS analysis of 7 HA-related body composition traits, we identified 14 SNPs for LBM, 11 SNPs for TBW, 15 SNPs for MM, 16 SNPs for SBW, 9 SNPs for BMR, 12 SNPs for TP, and 26 SNPs for Is (p < 5.0 × 10-5). Conclusion: These findings provide insight into the genetic basis of body composition in Tibetan college students adapted to HA, and lay the foundation for further investigation into the molecular mechanisms underlying HA adaptation.


Subject(s)
Altitude , Body Composition , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Tibet , Polymorphism, Single Nucleotide/genetics , Male , Female , Body Composition/genetics , Young Adult , Adult , Adaptation, Physiological/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Genotype , East Asian People
11.
Genes (Basel) ; 15(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790201

ABSTRACT

Wintergrazer-70 and Ganyin No1 are high-yield forage varieties suitable for cultivation in high-altitude areas of Tibet (4300 m above sea level). Ganyin No1 was developed from Wintergrazer-70, with the latter serving as its parent variety. Ganyin No1 was identified as a spring variety, and subsequent RNA sequencing was conducted. RNA sequencing analysis identified 4 differentially expressed genes related to vernalization and 28 genes related to photoperiod regulation. The Sc7296g5-i1G3 gene is related to the flowering inhibition of rye, which may be related to the phenotypic difference in the Ganyin No1 variety in winter and spring. This finding provides valuable insights for future research on Ganyin No1, especially in addressing feed shortages in Tibet during winter and spring.


Subject(s)
Altitude , Seasons , Secale , Secale/genetics , Gene Expression Regulation, Plant , Sequence Analysis, RNA/methods , Mutation , Tibet , Plant Proteins/genetics
12.
Sci Rep ; 14(1): 10706, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729979

ABSTRACT

Wildfires, as an environmental filter, are pivotal ecological disturbances that reshape plant communities and soil dynamics, playing a crucial role in regulating biogeographic patterns and ecosystem services. In this study, we aim to explore the effects of wildfires on forest ecosystems, specifically focusing on the plant-soil feedback mechanisms within the northeastern margin of the Qinghai-Tibet Plateau (QTP). Utilizing Partial Least Squares Path Modeling (PLS-PM), we investigated the interrelationships among soil physicochemical properties, enzyme activities, species diversity, and community stability at varying post-fire recovery stages (5, 15, and 23 years). Results indicated that in the early recovery stages, rapid changes in soil properties such as decreased pH (p < 0.001) and increased nutrient availability facilitate the emergence of early successional species with high resource utilization traits. As the ecosystem evolved toward a climax community, the soil and vegetation exhibit increased stability. Furthermore, soil enzyme activities displayed dynamic patterns that corresponded with changes in soil nutrient content, directly influencing the regeneration and diversity of plant communities. Importantly, our study documented a transition in the influence of soil properties on community stability from direct positive effects in initial recovery phases to negative impacts in later stages, while indirect benefits accrue through increased species diversity and enzyme activity. Vegetation composition and structure changed dynamically with recovery time during community succession. Plant nutrient absorption and accumulation affected nutrient dynamics in the soil, influencing plant regeneration, distribution, and diversity. Our results underscore the complex interactions between soil and vegetation that drive the recovery dynamics post-wildfire, highlighting the resilience of forest ecosystems to fire disturbances. This study contributes to the understanding of post-fire recovery processes and offers valuable insights for the management and restoration of fire-affected forest ecosystems.


Subject(s)
Ecosystem , Soil , Wildfires , Soil/chemistry , Tibet , Forests , Biodiversity , Plants/metabolism
13.
J Environ Manage ; 359: 120957, 2024 May.
Article in English | MEDLINE | ID: mdl-38703642

ABSTRACT

Landscape patterns are pivotal in the realms of land use planning and ecological development, yet there remains a dearth of comprehensive research pertaining to the prediction of changes in landscape pattern characteristics. Within this study, we adopt the PLUS-CA-Markov and Fragstats models to forecast landscape patterns on the Tibetan Plateau spanning the period from 2030 to 2050. Through qualitative and quantitative analyses, we explore the spatiotemporal characteristics of landscape pattern changes between 2000 and 2050, concurrently identifying correlations among landscape pattern indices. Moreover, acknowledging the distinctive environmental gradients encompassing the plateau, notably elevation, slope, temperature, and precipitation, we investigate their implications on landscape pattern changes. Our findings indicate that: (1) Grassland degradation exhibited the utmost severity between 2000 and 2020, primarily attributed to overgrazing and climate-induced glacial melt. In contrast, cropland, forest, and water showcased divergent trends from 2020 to 2050 when compared to the preceding two decades, indicative of the efficacy of climate change control measures. (2) The distribution of landscape patterns on the Tibetan Plateau exhibited a considerable level of instability, marked by a decline in aggregation, reduced diversity and complexity, and amplified ecological connectivity between 2000 and 2020, signifying a partial amelioration in ecological quality. Between 2020 and 2050, landscape aggregation decreased alongside landscape fragmentation and the number of connectivity paths, signifying a discernible degradation of the plateau's ecosystem. (3) The most significant trade-off relationship was observed between landscape division index and largest patch index, while the synergistic relationship between landscape shape index and mean shape index was more pronounced. (4) Landscape aggregation, division, and largest patch index demonstrated non-linear quadratic trends in relation to elevation and temperature. Landscape shape index and patch density exhibited irregular non-linear effects. Largest patch index was predominantly influenced by slope, whereas division index was most affected by precipitation.


Subject(s)
Climate Change , Tibet , Ecosystem , Conservation of Natural Resources , Forests
14.
Mol Ecol Resour ; 24(5): e13966, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695851

ABSTRACT

Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Genome, Plant , Pedicularis , Genome, Plant/genetics , Pedicularis/genetics , Genome Size , Phylogeny , Chromosomes, Plant/genetics , Retroelements/genetics , Tibet
15.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697247

ABSTRACT

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Subject(s)
Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
16.
J Hazard Mater ; 472: 134593, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749249

ABSTRACT

Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.


Subject(s)
Denitrification , Microplastics , Soil Microbiology , Soil Pollutants , Denitrification/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Tibet , Microplastics/toxicity , Plasticizers/toxicity , Plasticizers/metabolism , Microbiota/drug effects , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Metals, Heavy/toxicity
17.
J Hazard Mater ; 472: 134611, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754230

ABSTRACT

Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.


Subject(s)
Cadmium , Fritillaria , Fritillaria/genetics , Fritillaria/metabolism , Cadmium/toxicity , Tibet , Oxidative Stress/drug effects , Photosynthesis/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Multiomics
18.
Sci Rep ; 14(1): 11961, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796571

ABSTRACT

Tibetan-speaking patients seeking care in predominantly Mandarin-speaking healthcare settings frequently face communication barriers, leading to potential disparities and difficulties in accessing care. To address this issue, we translated, culturally adapted, and validated the Numerical Pain Rating Scale (NPRS) and the Global Rating of Change (GRoC) into Tibetan (NPRS-Tib and GRoC-Tib), aiming to facilitate cross-linguistic and cross-cultural interactions while examining potential challenges in the adaptation process. Using standard translation-backward translation methods, expert review, pilot testing, and validation through a cross-sectional study with a short-term longitudinal component, we engaged 100 Tibetan patients with musculoskeletal trauma for psychometric validation, including 37 women (aged 22-60 years, mean age 39.1 years). The NPRS-Tib and GRoC-Tib exhibited outstanding psychometric properties, with an Intraclass Correlation Coefficient (ICC) of 0.983 for NPRS-Tib indicating superb test-retest reliability, and expert review confirming good content validity for both instruments. A Spearman's correlation coefficient (Rho) of -0.261 (P = 0.0087) revealed a significant, albeit weak, correlation between changes in NPRS-Tib scores and GRoC-Tib scores. The adaptation process also presented notable challenges, including translation discrepancies from translators' diverse backgrounds and levels of expertise, ambiguity in scale options, and the lack of established tools for criterion validity assessment in Tibetan.


Subject(s)
Pain Measurement , Psychometrics , Humans , Female , Adult , Tibet , Middle Aged , Male , Psychometrics/methods , Pain Measurement/methods , Cross-Sectional Studies , Young Adult , Reproducibility of Results , Translations , Translating , Surveys and Questionnaires , Musculoskeletal Pain
19.
Int J Food Microbiol ; 418: 110728, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38696987

ABSTRACT

Most of the research on the characterization of Fusarium species focused on wheat, barley, rice, and maize in China. However, there has been limited research in highland barley (qingke). Recently, Fusarium head blight (FHB) of qingke was recently observed in Tibet, China, especially around the Brahmaputra River. To gain a better understanding of the pathogens involver, 201 Fusarium isolates were obtained from qingke samples in 2020. Among these isolates, the most abundant species was F. avenaceum (45.3 %), followed by F. equiseti (27.8 %), F. verticillioides (13.9 %), F. acuminatum (9.0 %), F. flocciferum (3.5 %), and F. proliferatum (0.5 %). The distribution of Fusarium species varied along the Brahmaputra River, with F. avenaceum being predominant in the midstream and downstream regions, while F. equiseti was more common in the upstream region. Chemical analyses of all the isolates revealed the production of different mycotoxins by various Fusarium species. It was found that enniatins were produced by F. acuminatum, F. avenaceum, and F. flocciferum, beauvericin (BEA) and fumonisins were produced F. proliferatum and F. verticillioides, and zearalenone (ZEN) and nivalenol (NIV) were produced by F. equiseti. Pathogenicity test showed that F. avenaceum was more aggressive in causing FHB compared to F. acuminatum, F. equiseti, and F. flocciferum. The disease severity, measured by the area under the disease progress curve (AUDPC), was significantly positively (P < 0.01) correlated with the concentration of total toxins produced by each species. Furthermore, all the Fusarium strains which were used for pathogenicity test were susceptible to carbendazim, and the 50 % effective concentration (EC50) ranged from 0.406 µg/mL to 0.673 µg/mL with an average EC50 of 0.551 ± 0.012 µg/mL.


Subject(s)
Fusarium , Hordeum , Mycotoxins , Plant Diseases , Fusarium/classification , Fusarium/isolation & purification , Fusarium/genetics , Fusarium/pathogenicity , Hordeum/microbiology , Tibet , Plant Diseases/microbiology , Mycotoxins/metabolism
20.
Genomics ; 116(3): 110854, 2024 May.
Article in English | MEDLINE | ID: mdl-38701989

ABSTRACT

Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.


Subject(s)
Altitude , DNA Transposable Elements , Tibet , Humans , Adaptation, Physiological/genetics , Acclimatization/genetics , Polymorphism, Genetic , Asian People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...