Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 401
Filter
1.
World J Microbiol Biotechnol ; 40(8): 233, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842631

ABSTRACT

Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-ß-naphthylamide dihydrochloride (PaßN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Antiporters
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732105

ABSTRACT

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Subject(s)
Apoptosis , Bortezomib , Mitochondria , Multiple Myeloma , Reactive Oxygen Species , Tigecycline , Bortezomib/pharmacology , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tigecycline/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Mitophagy/drug effects , Cell Cycle/drug effects
3.
Microb Cell Fact ; 23(1): 152, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790017

ABSTRACT

BACKGROUND: A novel plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 in Klebsiella pneumoniae tremendously threatens the use of convenient therapeutic options in the post-antibiotic era, including the "last-resort" antibiotic tigecycline. RESULTS: In this work, the natural alkaloid harmaline was found to potentiate tigecycline efficacy (4- to 32-fold) against tmexCD1-toprJ1-positive K. pneumoniae, which also thwarted the evolution of tigecycline resistance. Galleria mellonella and mouse infection models in vivo further revealed that harmaline is a promising candidate to reverse tigecycline resistance. Inspiringly, harmaline works synergistically with tigecycline by undermining tmexCD1-toprJ1-mediated multidrug resistance efflux pump function via interactions with TMexCD1-TOprJ1 active residues and dissipation of the proton motive force (PMF), and triggers a vicious cycle of disrupting cell membrane integrity and metabolic homeostasis imbalance. CONCLUSION: These results reveal the potential of harmaline as a novel tigecycline adjuvant to combat hypervirulent K. pneumoniae infections.


Subject(s)
Anti-Bacterial Agents , Drug Repositioning , Harmaline , Klebsiella Infections , Klebsiella pneumoniae , Tigecycline , Klebsiella pneumoniae/drug effects , Tigecycline/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Animals , Mice , Anti-Bacterial Agents/pharmacology , Harmaline/pharmacology , Harmaline/analogs & derivatives , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Female
4.
J Infect Public Health ; 17(5): 929-937, 2024 May.
Article in English | MEDLINE | ID: mdl-38599013

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a substantial healthcare challenge. This study assessed the in vitro efficacy of selected antibiotic combinations against CRKP infections. METHODS: Our research involved the evaluation of 40 clinical isolates of CRKP, with half expressing Klebsiella pneumoniae carbapenemase (KPC) and half producing Metallo-ß-lactamase (MBL), two key enzymes contributing to carbapenem resistance. We determined the minimum inhibitory concentrations (MICs) of four antibiotics: eravacycline, tigecycline, polymyxin-B, and ceftazidime/avibactam. Synergistic interactions between these antibiotic combinations were examined using checkerboard and time-kill analyses. RESULTS: We noted significant differences in the MICs of ceftazidime/avibactam between KPC and MBL isolates. Checkerboard analysis revealed appreciable synergy between combinations of tigecycline (35%) or eravacycline (40%) with polymyxin-B. The synergy rates for the combination of tigecycline or eravacycline with polymyxin-B were similar among the KPC and MBL isolates. These combinations maintained a synergy rate of 70.6% even against polymyxin-B resistant isolates. In contrast, combinations of tigecycline (5%) or eravacycline (10%) with ceftazidime/avibactam showed significantly lower synergy than combinations with polymyxin-B (P < 0.001 and P = 0.002, respectively). Among the MBL CRKP isolates, only one exhibited synergy with eravacycline or tigecycline and ceftazidime/avibactam combinations, and no synergistic activity was identified in the time-kill analysis for these combinations. The combination of eravacycline and polymyxin-B demonstrated the most promising synergy in the time-kill analysis. CONCLUSION: This study provides substantial evidence of a significant synergy when combining tigecycline or eravacycline with polymyxin-B against CRKP strains, including those producing MBL. These results highlight potential therapeutic strategies against CRKP infections.


Subject(s)
Azabicyclo Compounds , Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Tetracyclines , Humans , Ceftazidime/therapeutic use , Tigecycline/pharmacology , Carbapenems/pharmacology , Carbapenems/therapeutic use , Klebsiella pneumoniae , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/pharmacology , Polymyxins/pharmacology , Polymyxins/therapeutic use , Microbial Sensitivity Tests
5.
Sci Rep ; 14(1): 9054, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643223

ABSTRACT

The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Animals , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Pakistan , Drug Resistance, Bacterial/genetics , Birds/genetics , Plasmids/genetics , Genomics , Microbial Sensitivity Tests
6.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600509

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Subject(s)
COVID-19 , Coinfection , Escherichia coli Infections , Humans , Escherichia coli , Ertapenem/pharmacology , Levofloxacin/pharmacology , Meropenem/pharmacology , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Imipenem/pharmacology , Porins/genetics , Porins/pharmacology , Microbial Sensitivity Tests
7.
Front Cell Infect Microbiol ; 14: 1345935, 2024.
Article in English | MEDLINE | ID: mdl-38572315

ABSTRACT

Introduction: Bacterial resistance is a major threat to public health worldwide. To gain an understanding of the clinical infection distribution, drug resistance information, and genotype of CRE in Dongguan, China, as well as the resistance of relevant genotypes to CAZ-AVI, this research aims to improve drug resistance monitoring information in Dongguan and provide a reliable basis for the clinical control and treatment of CRE infection. Methods: VITEK-2 Compact automatic analyzer was utilized to identify 516 strains of CRE collected from January 2017 to June 2023. To determine drug sensitivity, the K-B method, E-test, and MIC methods were used. From June 2022 to June 2023, 80 CRE strains were selected, and GeneXpert Carba-R was used to detect and identify the genotype of the carbapenemase present in the collected CRE strains. An in-depth analysis was conducted on the CAZ-AVI in vitro drug sensitivity activity of various genotypes of CRE, and the results were statistically evaluated using SPSS 23.0 and WHONET 5.6 software. Results: This study identified 516 CRE strains, with the majority (70.16%) being K.pneumoniae, followed by E.coli (18.99%). Respiratory specimens had highest detection rate with 53.77% identified, whereas urine specimens had the second highest detection rate with 17.99%. From June 2022 to June 2023, 95% of the strains tested using the CRE GeneXpert Carba-R assay possessed carbapenemase genes, of which 32.5% were blaNDM strains and 61.25% blaKPC strains. The results showed that CRE strains containing blaKPC had a significantly higher rate of resistance to amikacin, cefepime, and aztreonam than those harboring blaNDM. Conclusions: The CRE strains isolated from Dongguan region demonstrated a high resistance rate to various antibiotics used in clinical practice but a low resistance rate to tigecycline. These strains produce Class A serine carbapenemases and Class B metals ß-lactamases, with the majority of them carrying blaNDM and blaKPC. Notably, CRE strains with blaKPC and blaNDM had significantly lower resistance rates to tigecycline. CAZ-AVI showed a good sensitivity rate with no resistance to CRE strains carrying blaKPC. Therefore, CAZ-AVI and tigecycline should be used as a guide for rational use of antibiotics in clinical practice to effectively treat CRE.


Subject(s)
Azabicyclo Compounds , Carbapenems , Ceftazidime , Enterobacteriaceae , Enterobacteriaceae/genetics , Carbapenems/pharmacology , Tigecycline/pharmacology , Hospital Distribution Systems , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Combinations , beta-Lactamases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Cephalosporins/pharmacology , Klebsiella pneumoniae/genetics , Genotype , Microbial Sensitivity Tests
8.
Front Cell Infect Microbiol ; 14: 1289396, 2024.
Article in English | MEDLINE | ID: mdl-38655285

ABSTRACT

The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Tigecycline , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Minocycline/analogs & derivatives , Minocycline/pharmacology , Microbial Sensitivity Tests , Plasmids/genetics , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology
9.
J Antimicrob Chemother ; 79(6): 1294-1302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574003

ABSTRACT

OBJECTIVES: To elucidate the mechanism of tigecycline resistance in Escherichia coli that is mediated by the tet(A) variant gene. METHODS: E. coli strain 573 carried a plasmid-borne tet(A) variant gene, tentatively designated tet(A)TIG, that conferred decreased tigecycline susceptibility (MIC 0.5 mg/L). When exposed to increasing concentrations of tigecycline (0.25-8 mg/L), mutants growing at 2, 4 and 8 mg/L were obtained and sequenced. Copies of plasmid and tet(A)TIG relative to the chromosomal DNA in the mutants were determined by WGS and quantitative PCR (qPCR). Expression of tet(A)TIG in the mutants was evaluated by RT-qPCR. The tet(A)TIG-carrying plasmids were visualized by S1-PFGE and Southern blot hybridization. PCR served for the detection of a tet(A)TIG-carrying unconventional circularizable structure (UCS). RESULTS: Tigecycline resistance with maximum MICs of 16 mg/L was seen in E. coli mutants selected in the presence of tigecycline. Compared with the parental strain, the relative copy number and transcription level of tet(A)TIG in the mutants increased significantly in the presence of 2, 4 and 8 mg/L tigecycline, respectively. With increasing tigecycline selection pressure, the tet(A)TIG-carrying plasmids in the mutants increased in size, correlating with the number of tandem amplificates of a ΔTnAs1-flanked UCS harbouring tet(A)TIG. These tandem amplificates were not stable in the absence of tigecycline. CONCLUSIONS: Tigecycline resistance is due to the tandem amplification of a ΔTnAs1-flanked tet(A)TIG-carrying plasmid-borne segment in E. coli. The gain/loss of the tandem amplificates in the presence/absence of tigecycline represents an economic way for the bacteria to survive in the presence of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Minocycline/pharmacology , Minocycline/analogs & derivatives , Gene Amplification , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing , Antiporters
10.
mBio ; 15(5): e0021824, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564664

ABSTRACT

Antibiotic resistance could rapidly emerge from acquiring the mobile antibiotic resistance genes, which are commonly evolved from an intrinsic gene. The emergence of the plasmid-borne mobilized efflux pump gene cluster tmexCD1-toprJ1 renders the last-resort antibiotic tigecycline ineffective, although its evolutionary mechanism remains unclear. In this study, we investigate the regulatory mechanisms of the progenitor NfxB-MexCD-OprJ, a chromosomally encoded operon that does not mediate antibiotic resistance in the wild-type version, and its homologs, TNfxB1-TMexCD1-TOprJ1 mediating high-level tigecycline resistance, and TNfxB3-TMexCD3-TOprJ1. Mechanistic studies demonstrated that in nfxB-mexCD-oprJ, MexCD expression was under a weaker promoter, PmexC and inhibited by a strong repressor NfxB. For tmexCD1-toprJ1, TMexCD1 was highly expressed owing to the presence of a strong promoter, PtmexC1, and an inactive suppressor, TNfxB1, with a T39R mutation that rendered it unable to bind to promoter DNA. In tnfxB3-tmexCD3-toprJ1b, TMexCD3 expression was intermediate because of the local regulator TNfxB3, which binds to two inverted repeat sequences of PtmexC. Additionally, TNfxB3 exhibited lower protein expression and weaker DNA binding affinity than its ancestor NfxB, together with their promoter activities difference explaining the different expression levels of tmexCD-toprJ homologs. Distinct fitness burdens on these homologs-carrying bacteria were observed due to the corresponding expression level, which might be associated with their global prevalence. In summary, our data depict the mechanisms underlying the evolution and dissemination of an important mobile antibiotic resistance gene from an intrinsic chromosomal gene.IMPORTANCEAs antibiotic resistance seriously challenges global health, tigecycline is one of the few effective drugs in the pipeline against infections caused by multidrug-resistant pathogens. Our previous work identified a novel tigecycline resistance efflux pump gene cluster tmexCD1-toprJ1 in animals and humans, together with its various variants, a rising clinical concern. Herein, this study focused on how the local regulation modes of tmexCD1-toprJ1 evolved to a highly expressed efflux pump. Through comparative analysis between three tnfxB-tmexCD-toprJ homologs and their progenitor nfxB-mexCD-oprJ, modes, we demonstrated the evolutionary dynamics from a chromosomal silent gene to an active state. We found the de-repression of the local regulator and an increase of the promoter activity work together to promote a high production of drug efflux machines and enhance multidrug resistance. Our findings revealed that TMexCD1-TOprJ1 adopts a distinct evolutionary path to achieve higher multidrug resistance, urgently needing tight surveillance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Evolution, Molecular , Promoter Regions, Genetic , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Multigene Family , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Tigecycline/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Operon
11.
J Nanobiotechnology ; 22(1): 138, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555444

ABSTRACT

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Tigecycline/pharmacology , Tigecycline/therapeutic use , Minocycline/pharmacology , Acinetobacter Infections/drug therapy , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Water
12.
Environ Pollut ; 346: 123658, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38432343

ABSTRACT

The transmission of antibiotic resistance genes (ARGs) in pathogenic bacteria affects culture animal health, endangers food safety, and thus gravely threatens public health. However, information about the effect of disinfectants - triclosan (TCS) on ARGs dissemination of bacterial pathogens in aquatic animals is still limited. One Citrobacter freundii (C. freundii) strain harboring tet(X4)-resistant plasmid was isolated from farmed grass carp guts, and subsequently conjugative transfer frequency from C. freundii to Escherichia coli C600 (E. coli C600) was analyzed under different mating time, temperature, and ratio. The effect of different concentrations of TCS (0.02, 0.2, 2, 20, 200 and 2000 µg/L) on the conjugative transfer was detected. The optimum conditions for conjugative transfer were at 37 °C for 8h with mating ratio of 2:1 or 1:1 (C. freundii: E. coli C600). The conjugative transfer frequency was significantly promoted under TCS treatment and reached the maximum value under 2.00 µg/L TCS with 18.39 times that of the control group. Reactive oxygen species (ROS), superoxide dismutase (SOD) and catalase (CAT) activities, cell membrane permeability of C. freundii and E. coli C600 were obviously increased under TCS stress. Scanning electron microscope showed that the cell membrane surface of the conjugative strains was wrinkled and pitted, even broken at 2.00 µg/L TCS, while lysed or even ruptured at 200.00 µg/L TCS. In addition, TCS up-regulated expression levels of oxidative stress genes (katE, hemF, bcp, hemA, katG, ahpF, and ahpC) and cell membrane-related genes (fimC, bamE and ompA) of donor and recipient bacteria. Gene Ontology (GO) enrichment demonstrated significant changes in categories relevant to pilus, porin activity, transmembrane transporter activity, transferase activity, hydrolase activity, material transport and metabolism. Taken together, a tet(X4)-resistant plasmid could horizontal transmission among different pathogens, while TCS can promote the propagation of the resistant plasmid.


Subject(s)
Triclosan , Animals , Tigecycline/pharmacology , Triclosan/toxicity , Escherichia coli , Citrobacter freundii/genetics , Anti-Bacterial Agents/toxicity , Plasmids , Bacteria/genetics , Microbial Sensitivity Tests
13.
Diagn Microbiol Infect Dis ; 109(2): 116235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458096

ABSTRACT

OBJECTIVES: Ceftazidime-avibactam (CAZ-AVI) is an option for infections caused by MDR gram-negative bacilli. In this study, we aimed to analyze the in vitro antimicrobial activity of CAZ-AVI and other antimicrobial agents against gram-negative bacilli that were collected in Colombia between 2019 and 2021 from patients with bacteremia and skin and soft-tissue infections (SSTIs). METHODS: A total of 600 Enterobacterales and 259 P. aeruginosa strains were analyzed. The phenotypic resistance of isolates, particularly non-susceptibility to meropenem, multidrug-resistant (MDR) isolates, and difficult-to-treat (DTR) P. aeruginosa, was evaluated according to CLSI breakpoints. RESULTS: Enterobacterales had the most susceptibility to CAZ-AVI (96.5 %) and tigecycline (95 %). Tigecycline and CAZ-AVI were the antimicrobial agents with the most in vitro activity against carbapenem-resistant Enterobacterales (CRE). CAZ-AVI was the antimicrobial treatment with the most activity against P. aeruginosa. CONCLUSIONS: Tigecycline and CAZ-AVI were the antimicrobial agents with the most activity against CRE and MDR Enterobacterales. For P. aeruginosa, CAZ-AVI was the antimicrobial treatment with the most in vitro activity.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Gram-Negative Bacteria , Microbial Sensitivity Tests , Soft Tissue Infections , Tigecycline , Humans , Ceftazidime/pharmacology , Soft Tissue Infections/microbiology , Soft Tissue Infections/drug therapy , Colombia , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteremia/microbiology , Bacteremia/drug therapy , Gram-Negative Bacteria/drug effects , Tigecycline/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Enterobacteriaceae/drug effects , Skin Diseases, Bacterial/microbiology , Skin Diseases, Bacterial/drug therapy
14.
Sci Rep ; 14(1): 5215, 2024 03 03.
Article in English | MEDLINE | ID: mdl-38433246

ABSTRACT

Tigecycline has been regarded as one of the most important last-resort antibiotics for the treatment of infections caused by extensively drug-resistant (XDR) bacteria, particularly carbapenem- and colistin-resistant Klebsiella pneumoniae (C-C-RKP). However, reports on tigecycline resistance have been growing. Overall, ~ 4000 K. pneumoniae clinical isolates were collected over a five-year period (2017-2021), in which 240 isolates of C-C-RKP were investigated. Most of these isolates (91.7%) were resistant to tigecycline. Notably, a high-risk clone of ST16 was predominantly identified, which was associated with the co-harboring of blaNDM-1 and blaOXA-232 genes. Their major mechanism of tigecycline resistance was the overexpression of efflux pump acrB gene and its regulator RamA, which was caused by mutations in RamR (M184V, Y59C, I141T, A28T, C99/C100 insertion), in RamR binding site (PI) of ramA gene (C139T), in MarR (S82G), and/or in AcrR (L154R, R13Q). Interestingly, four isolates of ST147 carried the mutated tet(A) efflux pump gene. To our knowledge, this is the first report on the prevalence and mechanisms of tigecycline resistance in C-C-RKP isolated from Thailand. The high incidence of tigecycline resistance observed among C-C-RKP in this study reflects an ongoing evolution of XDR bacteria against the last-resort antibiotics, which demands urgent action.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Colistin , Tigecycline/pharmacology , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Thailand/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology
15.
Vet Microbiol ; 292: 110046, 2024 May.
Article in English | MEDLINE | ID: mdl-38471428

ABSTRACT

Pasteurella multocida is a leading cause of respiratory disorders in pigs. However, the genotypes and antimicrobial resistance characteristics of P. multocida from pigs in China have not been reported frequently. In this study, we investigated 381 porcine strains of P. multocida collected in China between 2013 and 2022. These strains were assigned to capsular genotypes A (69.55%, n = 265), D (27.82%, n =106), and F (2.62%, n = 10); or lipopolysaccharide genotypes L1 (1.31%, n = 5), L3 (24.41%, n = 93), and L6 (74.28%, n = 283). Overall, P. multocida genotype A:L6 (46.46%) was the most-commonly identified type, followed by D:L6 (27.82%), A:L3 (21.78%), F:L3 (2.62%), and A:L1 (1.31%). Antimicrobial susceptibility testing showed that a relatively high proportion of strains were resistant to tetracycline (66.67%, n = 254), and florfenicol (35.17%, n = 134), while a small proportion of strains showed resistance phenotypes to enrofloxacin (10.76%, n = 41), ampicillin (8.40%, n = 32), tilmicosin (7.09%, n = 27), and ceftiofur (2.89%, n = 11). Notably, Illumina short-read and Nanopore long-read sequencing identified a chromosome-borne tigecycline-resistance gene cluster tmexCD3-toprJ1 in P. multocida. The structure of this cluster was highly similar to the respective structures found in several members of Proteus or Pseudomonas. It is assumed that the current study identified the tmexCD3-toprJ1 cluster for the first time in P. multocida.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Swine Diseases , Swine , Animals , Pasteurella multocida/genetics , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enrofloxacin , Multigene Family , Pasteurella Infections/veterinary , Pasteurella Infections/drug therapy , Swine Diseases/drug therapy
16.
Indian J Med Microbiol ; 48: 100565, 2024.
Article in English | MEDLINE | ID: mdl-38522746

ABSTRACT

PURPOSE: Drug-resistant Acinetobacter baumannii is an emerging threat. This study has been conducted to observe the efficacy of eravacycline along with the RND-efflux pump system. METHODS: A cross-sectional study was done collecting 48 clinical isolates of Acinetobacter baumannii. MICs of 15 antibiotics were detected along with BMD of tigecycline and eravacycline. PCR products of drug-resistant regulatory genes were sequenced and analyzed. RESULTS: Of the total 48 Isolates, 35 (72.91%) were XDR and 13 (27.08%) were MDR. Out of all, 60.41% of isolates were found to be susceptible to eravacycline by BMD according to both FDA and EUCAST guidelines. A 2-fold decline of MIC50/90 was observed with the use of eravacycline compared to tigecycline. RND-efflux genes like AdeC in 30 (62.5%) isolates and Regulatory gene AdeS in 29 (60.41%) isolates were detected, explaining the existing resistance mechanism. CONCLUSIONS: XDR Acinetobacter poses an escalating threat due to its resistance to multiple antibiotics, raising serious concerns in healthcare settings. Eravacycline is an encouraging new drug for empirical use in severe infection caused due to the same. Molecular investigation and strict antimicrobial stewardship should be followed to control the emergence, and a better understanding of mechanisms of resistance to prevent the spread of drug-resistant isolates.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Tetracyclines , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Tetracyclines/pharmacology , Acinetobacter Infections/microbiology , Cross-Sectional Studies , Tigecycline/pharmacology , Bacterial Proteins/genetics , Membrane Transport Proteins/genetics
17.
BMC Cancer ; 24(1): 323, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459456

ABSTRACT

BACKGROUND: Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS: A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS: Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION: Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Tigecycline/metabolism , Tigecycline/pharmacology , Drug Repositioning , Cell Line, Tumor , Mitochondria/metabolism , Anti-Bacterial Agents/pharmacology , Colonic Neoplasms/metabolism , Cell Proliferation , Apoptosis , Adenosine Triphosphate/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mammals/metabolism
18.
Ann Clin Microbiol Antimicrob ; 23(1): 24, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448920

ABSTRACT

BACKGROUND: Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum ß-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS: Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS: K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum ß-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS: This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.


Subject(s)
Acinetobacter , Klebsiella , Humans , Tigecycline/pharmacology , Klebsiella/genetics , Plasmids/genetics , beta-Lactamases/genetics
19.
Phytomedicine ; 126: 155421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430819

ABSTRACT

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Tigecycline/metabolism , Tigecycline/pharmacology , Tigecycline/therapeutic use , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Minocycline/pharmacology , Minocycline/metabolism , Minocycline/therapeutic use , Tandem Mass Spectrometry , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Indole Alkaloids/pharmacology , Adenosine Triphosphate/metabolism , Microbial Sensitivity Tests
20.
Microbiol Spectr ; 12(4): e0388423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38385691

ABSTRACT

Tigecycline and colistin were referred to as the "last resort" antibiotics in defending against carbapenem-resistant, Gram-negative bacterial infections, and are currently widely used in clinical treatment. However, the emergence and prevalence of plasmid-mediated tet(X4) and mcr-1 genes pose a serious threat to the therapeutic application of tigecycline and colistin, respectively. In this research, a tigecycline- and colistin-resistant bacteria resensitization system was developed based on efficient and specific DNA damage caused by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Associated Protein 9 (Cas9) nucleases. A conjugation method was used to deliver the resensitization system, which harbors two single-guide RNAs targeting tet(X4) and mcr-1 genes and constitutively expressed Cas9. The conjugation efficiency was nearly 100% after conjugation condition optimization in vitro, and the resensitivity efficiency for clinical isolates was over 90%. In addition, when performing resensitization in vivo, the resistance marker was replaced with a glutamate-based, chromosomal, plasmid-balanced lethal system to prevent the introduction of additional resistance genes in clinical settings, making this strategy a therapeutic approach to combat the in vivo spread of antibiotic resistance genes (ARGs) among bacterial pathogens. As a proof of concept, this resensitive system can significantly decrease the counts of tigecycline- and colistin-resistant bacteria to 1% in vivo. Our study demonstrates the efficacy and adaptability of CRISPR-Cas systems as powerful and programmable antimicrobials in resensitizing tet(X4)- and mcr-1-mediated, tigecycline- and colistin-resistant strains, and opens up new pathways for the development of CRISPR-based tools for selective bacterial pathogen elimination and precise microbiome composition change. IMPORTANCE: The emergence of plasmid-encoded tet(X4) and mcr-1 isolated from human and animal sources has affected the treatment of tigecycline and colistin, and has posed a significant threat to public health. Tigecycline and colistin are considered as the "last line of defense" for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections, so there is an urgent need to find a method that can resensitize tet(X4)-mediated tigecycline-resistant and mcr-1-mediated colistin-resistant bacteria. In this study, we developed a glutamate-based, chromosomal, plasmid-balanced lethal conjugative CRISPR/Cas9 system, which can simultaneously resensitize tet(X4)-mediated tigecycline-resistant and mcr-1-mediated colistin-resistant Escherichia coli. The counts of tigecycline- and colistin-resistant bacteria decreased to 1% in vivo after the resensitization system was administered. This study opens up new pathways for the development of CRISPR-based tools for selective bacterial pathogen elimination and precise microbiome composition change.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Animals , Humans , Tigecycline/pharmacology , Tigecycline/metabolism , Colistin/pharmacology , Escherichia coli/metabolism , CRISPR-Cas Systems , Drug Resistance, Bacterial/genetics , RNA, Guide, CRISPR-Cas Systems , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Escherichia coli Infections/microbiology , Bacteria/genetics , Glutamates/genetics , Glutamates/metabolism , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...