Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nanotheranostics ; 8(3): 312-329, 2024.
Article in English | MEDLINE | ID: mdl-38577319

ABSTRACT

Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682µg/ml and 36.675 ± 0.916µg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Tinospora , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Reactive Oxygen Species/metabolism , Tinospora/metabolism , Caco-2 Cells , Methanol/pharmacology , Apoptosis , Oxidative Stress , Colorectal Neoplasms/drug therapy
2.
Sci Rep ; 14(1): 2799, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307917

ABSTRACT

Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.


Subject(s)
Alkaloids , Plants, Medicinal , Tinospora , Humans , Plants, Medicinal/genetics , Tinospora/genetics , Tinospora/metabolism , Phylogeny , Plant Extracts/metabolism , Alkaloids/metabolism
3.
ACS Chem Neurosci ; 14(17): 3077-3087, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37579290

ABSTRACT

Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Tinospora , Mice , Animals , Parkinson Disease/metabolism , Rotenone/pharmacology , Neuroprotective Agents/pharmacology , Tinospora/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Oxidative Stress , Antioxidants/pharmacology , Mitochondria/metabolism
4.
Nutrients ; 15(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242122

ABSTRACT

Background: The plant Tinospora cordifolia (TC), traditionally known as guduchi or giloy, is used for a number of health conditions as a nutritional supplement and rejuvenation medicine. Its nutritional supplementary products are traditionally recommended for a wide range of health issues, including diabetes, menstruation discomfort, fever, obesity, inflammation, and more. Unfortunately, there has not been extensive research into its effectiveness in treating or managing insulin resistance, lipid and carbohydrate metabolism, hormonal imbalance, and metabolic syndrome-associated polycystic ovary syndrome (PCOS). Methods: Consequently, the present study was designed to induce insulin resistance, dyslipidemia, hormonal abnormality, hyperglycemia, and menstrual disturbance of PCOS using dehydroepiandrosterone (DHEA) in mice and study the effect of oral TC extracts on these factors by using ancient and modern technologies. During the 21-day study, 6 mg/100 g/day of DHEA was given to female mice. Levels of glucose, insulin, lipids, and hormones were estimated. In addition to being seen with the naked eye, the morphological and microscopic changes were also observed on histology slides. Results: The study outcomes show that pretreatment with TC preparations significantly improved biochemical and histological abnormalities in female mice. Diestrus phase was only observed in DHEA-treated animals, while cornified epithelial cells were present in TC-treated mice. Pretreatment with TC satva showed significant (p < 0.001) reductions in body weight compared to placebo. Fasting blood glucose, 1-h OGTT, and 2-h OGTT levels were all significantly lower in TC satva- and oil-treated animals in comparison to the disease control group (p < 0.001). Treatment with TC extracts resulted in a normalization of estradiol, progesterone, and testosterone levels (p < 0.05). Treatment with TC extract improved lipid profiles (p < 0.001), LH/FSH ratios (p < 0.01), fasting insulin levels (p < 0.001), HOMA-IR (p < 0.001), HOMA-Beta (p < 0.001), and QUICKI (p < 0.001). Both macroscopic and microscopic alterations were seen to be restored after TC extract treatment. After being treated with TC satva, oil, and hydroalcoholic extract, the severity of PCOS decreased by 54.86%. Conclusions: These findings lead us to the conclusion that TC extracts and satva as nutritional supplements are useful for treating PCOS and associated symptoms. It is recommended that additional research be conducted to determine the molecular mechanism of action of TC nutritional supplements on PCOS-related changes in metabolic profiles. We also recommend further clinical studies to explore the clinical efficacy and effectiveness of TC nutritional supplements in treating and/or managing PCOS.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Tinospora , Female , Humans , Mice , Animals , Insulin Resistance/physiology , Tinospora/metabolism , Insulin , Dehydroepiandrosterone , Glucose/therapeutic use , Lipids , Carbohydrate Metabolism , Blood Glucose/metabolism , Body Mass Index
5.
Reprod Domest Anim ; 58(6): 793-801, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37009827

ABSTRACT

The present study was undertaken to assess the effects of stem extract of Tinospora cordifolia (Giloy or Guduchi) in the semen extender on seminal parameters, leakage of intracellular enzymes and antioxidants in semen of Sahiwal bull. A total of 48 ejaculates from four bulls were selected for the study. Spermatozoa of 25 × 106 were incubated in 100, 300 and 500 µg of stem extract of Guduchi as Gr II, III and IV, respectively, and pre-freeze and post-thaw semen samples were analysed for seminal parameters [motility, viability, total sperm abnormality (TSA), plasma membrane integrity (PMI) and acrosomal integrity (AcI)], intracellular enzymes [aspartate aminotransferase (AST) and lactate dehydrogenase (LDH)] and seminal antioxidants [superoxide dismutase (SOD) and catalase] in comparison with an untreated control group (Gr I). The results revealed that stem extract-treated semen had significantly (p < .05) higher motility, viability, PMI, AcI, SOD and catalase and had significantly (p < .05) lower TSA, AST and LDH compared to those in untreated control group at pre-freeze and post-thaw stages. Semen treated with 100 µg stem extract/25 × 106 spermatozoa had significantly (p < .05) higher motility, viability, PMI, AcI, SOD and catalase and had significantly (p < .05) lower TSA, AST and LDH compared to those in control, 300- and 500-µg-treated groups at pre-freeze and post-thaw stages. Further, these seminal parameters and antioxidants were showing decreasing trend and TSA and leakage of intracellular enzymes were showing increasing trend from Gr II to Gr IV at pre-freeze and post-thaw stages. Thus, 100 µg/25 × 106 spermatozoa were optimum or suitable dose for cryopreservation of Sahiwal bull semen. The study concluded that T. cordifolia stem extract 100 µg/25 × 106 spermatozoa in the semen extender can be effectively utilized to reduce the oxidative stress and improve the pre-freeze and post-thaw seminal parameters in Sahiwal bull. However, further studies on effects of different concentrations of stem extract on in vitro or in vivo fertility trials are to be conducted to assess the impact of the stem extract supplementation in the semen extender on field pregnancy outcomes in bovine species.


Subject(s)
Semen Preservation , Tinospora , Pregnancy , Female , Animals , Male , Cattle , Antioxidants/pharmacology , Antioxidants/metabolism , Tinospora/metabolism , Catalase/pharmacology , Spermatozoa , Semen Analysis/veterinary , Semen Analysis/methods , Cryoprotective Agents/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , Cryopreservation/methods , Superoxide Dismutase , L-Lactate Dehydrogenase , Sperm Motility , Seeds/metabolism
6.
Neurochem Res ; 47(6): 1692-1706, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35230647

ABSTRACT

Since sleep is a key homeostatic phenomenon of the body, therefore understanding the complex etiology of the neurological outcome of sleep deprivation (SD) such as anxiety, depression, cognitive dysfunctions, and their management is of utmost importance. The findings of the current study encompass the neurobehavioral as well as hormonal, and neuroinflammatory changes in serum and hypothalamus region of the brain as an outcome of acute SD and their amelioration by pre-treatment with butanol extract of Tinospora cordifolia. SD group animals showed anxiety-like behavior as evident from Elevated Plus Maze data and higher serum cortisol levels, whereas, pre-treatment with B-TCE showed anxiolytic activity and also reduced cortisol levels which was corroborated by an increase in leptin and insulin levels. Further, SD induced elevation of serum pro-inflammatory cytokines IL-6, TNF-α, IL-1ß, and MCP-1 and subsequent activation of astroglial cells in the hypothalamus was suppressed in B-TCE pre-treated animals. The current findings suggest that besides the cortical structures, hypothalamus region's synaptic plasticity and cell survival are adversely impacted by acute SD. Further active ingredients present in B-TCE may be useful for the management of SD-induced anxiety, systemic inflammation, and neuroinflammation by targeting hypothalamic BDNF-TrkB/PI3K-Akt pathways.


Subject(s)
Tinospora , Animals , Anxiety , Butanols , Cell Survival , Hydrocortisone , Hypothalamus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Tinospora/chemistry , Tinospora/metabolism
7.
J Diet Suppl ; 19(2): 271-285, 2022.
Article in English | MEDLINE | ID: mdl-33480818

ABSTRACT

Emergent health threats have heightened human awareness of the need for health and wellness measures that promote resilience to disease. In addition to proper nutrition and exercise, health-conscious consumers are seeking natural-based modalities, e.g. botanical preparations, that positively impact the immune system. In Ayurvedic ethnomedicine, Tinospora cordifolia (T. cordifolia), a deciduous climbing shrub indigenous to India, has been used to historically to combat acute and chronic inflammation as well as to promote a balanced immune response. As a dietary supplement, T. cordifolia has been administered most often as a decoction either alone or in compositions containing other medicinal plant extracts of the Terminalia and Phyllanthus species. Extensive phytochemical characterization of aqueous and alcoholic extracts of different Tinospora species has identified over two hundred different phytochemicals from non-overlapping chemical classes with the most abundant being diterpenoids containing the clerodane-type skeleton. Numerous pharmacology studies have demonstrated that T. cordifolia modulates key signaling pathways related to cell proliferation, inflammation, and immunomodulation. However, rigorous dereplication studies to identify active constituents in various T. cordifolia extracts and their fractions are lacking. In this review, we will summarize the current information regarding T. cordifolia's ethnomedicinal uses, phytochemistry, pharmacological activities, and safety in order to highlight its potential as an immunomodulatory dietary supplement.


Subject(s)
Tinospora , Humans , Immunity , Immunomodulation , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tinospora/chemistry , Tinospora/metabolism
9.
Curr Top Med Chem ; 20(8): 698-709, 2020.
Article in English | MEDLINE | ID: mdl-31976836

ABSTRACT

BACKGROUND: Medicinal phytochemistry involving UPLC-DAD in an exhaustive analysis involving quantification of eight commercially important phytochemicals viz. syringin, cordifolioside A, magnoflorine, tinocordiside, palmatine, 20ß-hydroxyecdysone, L-tetrahydropalmatine and berberine has been done in 143 accessions from eight states and the union territories of Delhi and Jammu & Kashmir of India representing three different ploidy levels viz. diploid (2x), triploid (3x) and synthetic tetraploid (4x). The study was done to assess the effect of sex, ploidy level and ecogeography on the expression level of secondary metabolites in stems of dioecious, medicinally important shrub Tinospora cordifolia. METHODS: Two different UPLC-DAD methods were used for the quantification of eight selected phytochemicals from the alcoholic stem extracts of T. cordifolia accessions. The Waters Acquity UPLC system hyphenated to the QTOF micromass system, equipped with PDA and ESI-Q-TOF detectors was utilized for the quantitative analysis, Mass Lynx v 4.0 software was used for data analysis. RESULTS: Significant quantitative changes were observed in the analysed secondary metabolites among different accessions of T. cordifolia. The triploid (3x) cytotypes revealed higher amounts of seven out of eight analysed secondary metabolites than diploids and only 20ß-hydroxyecdysone was observed to be present in significantly higher amount in diploid cytotypes. Further, at the tetraploid level, novel induced colchiploid (synthetic 4x) genotypes revealed increase in the yield of all of the analysed eight phytochemicals than their respective diploid counterparts. The quantity of active principles in tetraploid cytotypes were also higher than the average triploid levels at multiple locations in five out of eight tested phytochemicals, indicating the influence of ploidy on expression levels of secondary metabolites in T. cordifolia. Additionally, at each of the three ploidy levels (2x, 3x and synthetic 4x), a significant sex specificity could be observed in the expression levels of active principles, with female sex outperforming the male in the content of some phytochemicals, while others getting overexpressed in the male sex. The manifestation of diverse ecogeographies on secondary metabolism was observed in the form of identification of high yielding accessions from the states of Madhya Pradesh, Delhi and Himachal Pradesh and the Union territory of Jammu & Kashmir. Two triploid female accessions that contained approximately two- to eight fold higher amounts of five out of the eight analysed phytochemicals have been identified as superior elites from the wild from the states of Delhi and Madhya Pradesh. CONCLUSION: The paper shows the first observations of ploidy specificity along with subtle sex and ecogeography influence on the expression levels of secondary metabolome in T. cordifolia.


Subject(s)
Phytochemicals/analysis , Plant Extracts/analysis , Tinospora/chemistry , Chromatography, High Pressure Liquid , Phytochemicals/metabolism , Plant Extracts/metabolism , Ploidies , Sex Factors , Tinospora/metabolism
10.
Sci Rep ; 9(1): 14327, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586109

ABSTRACT

Tinospora cordifolia (TC) is scientifically proven immunomodulatory drug being used for centuries. Ancient literature reported that inter-specific interactions change medicinal properties of TC. Thus, the current study is aimed to understand the influence of interspecific biotic interactions on chemo-profiles of TC. To explore it, TC samples collected from six co-occurring plants, i.e. Azarditchita indica, Acacia nilotica, Albezia lebbeck, Ficus benghalensis, Tamarandus indica and Acacia leucophloea were analyzed by HPLC-ESI-QTOF-MS. Mass data were subjected to multivariate analysis. Support vector machines (SVMs) was found to be best classifier (r2 < 0.93). Data analysis showed the specific compounds in all TC due to inter-specific interactions. Data were further analyzed with SNK post-hoc test followed by permutative (n = 50) Bonferroni FDR multiple testing correction. The compound without any missing values reduced the number of variables to 133 (p < 0.01). Statistical analysis revealed that TC having interactions with A.lebbeck and A. nilotica formed the most distant groups. However, TC co-occurred with A. indica showed the highest number of up-regulated metabolites, including jatrorrhizine, chrysin, peonidin, 6-methylcoumarin and some terpenoids. Some metabolites, including jatrorrhizine and magnoflorine were quantified to confirm the accuracy of qualitative analysis. Results demonstrated the influence of inter-specific biotic interactions on TC chemo-profiles, hence its medicinal properties.


Subject(s)
Biota , Plant Extracts/standards , Secondary Metabolism , Tinospora/metabolism , Metabolome , Metabolomics/methods , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Quality Control , Support Vector Machine , Tinospora/chemistry , Tinospora/growth & development , Trees
11.
J Microbiol Methods ; 160: 107-116, 2019 05.
Article in English | MEDLINE | ID: mdl-30871999

ABSTRACT

Metallic nanoparticles such as gold, zinc, copper possess anti-microbial activity. These nanoparticles have a small size which provides a large surface area for the interaction with microbes and there are various mechanisms through which copper nanoparticles (CuNPs) act. The demand of these nanoparticles are increasing in the textile industry as they decrease the catalytic degradation property of various dyes as well as being helpful in the treatment of various topical infections. Our aim is to formulate the copper nanoparticle which is capped with Tinospora cardifolia and incorporate these nanoparticles on fabric and to study the anti-microbial activity of these nanoparticles formulated along with their study on the fabric. Formulated nanoparticles were tested for various characterizations such as SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) for the microscopical study. The interaction of excipients with the drug was studied using FTIR, XRD, and Raman and the anti-microbial study was studied to determine the activity of the nanoparticles on gram-positive and gram-negative bacteria. Least particle size of 63.3 nm was used as optimized formulation (CuNPs-5) and further used for testing. Laundry durability, ZOI study and %efficacy of copper nanoparticles along with nanoparticle-coated fabric was tested and it was found that fabric was more efficacious for gram-positive bacteria as ZOI for gram positive and gram negative was 21.99 mm and 11 mm. The %efficacy of copper nanoparticle-coated fabric was 101% and 74% at the highest concentration for gram positive and gram negative bacteria respectively.


Subject(s)
Copper/therapeutic use , Metal Nanoparticles/therapeutic use , Plant Extracts/therapeutic use , Textiles , Tinospora/metabolism , Anti-Bacterial Agents/therapeutic use , Antioxidants/therapeutic use , Escherichia coli/drug effects , Particle Size , Staphylococcus aureus/drug effects
12.
Cell Stress Chaperones ; 24(3): 549-565, 2019 05.
Article in English | MEDLINE | ID: mdl-30919212

ABSTRACT

Stressors of different kinds adversely affect life history parameters like growth, development, and reproduction. Organisms overcome the negative impact of environmental stressors and strive to reach a tolerant state through genetic and metabolic activities. Ayurvedic formulations are reported to have life trait benefitting properties which improve capacity to withstand stress and tolerate adverse conditions. Guduchi (Tinospora cordifolia) and Madhuyashti (Glycirrhiza glabra) Ayurvedic formulations are known to have immunomodulatory, intellect promoting, and adaptogenic properties, thus favoring good health and healthy aging. Present study investigates the efficacy of Guduchi and Madhuyashti in providing tolerance to different stresses and the underlying mechanisms using the Drosophila model. Drosophila larvae/flies fed on Guduchi or Madhuyashti were better thermo-protected, which correlated with increased expression of heat shock genes even without the heat shock. Guduchi or Madhuyashti feeding also increased antimicrobial peptide expression, thus providing better tolerance to pathogenic assaults. Feeding on Guduchi- or Madhuyashti- supplemented food also enhanced starvation and desiccation tolerance. However, neither of these formulations provided beneficial effects when grown under crowded conditions or when exposed to oxidative stressors.


Subject(s)
Animal Feed , Drosophila melanogaster , Fabaceae/metabolism , Larva , Plant Extracts/pharmacology , Stress, Physiological/drug effects , Tinospora/metabolism , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Larva/drug effects , Larva/metabolism
13.
Appl Microbiol Biotechnol ; 103(2): 881-891, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30413849

ABSTRACT

The exploration of nanoscale materials for their therapeutic potential against emerging and re-emerging infections has been increased in recent years. Silver nanoparticles (AgNPs) are known to possess antimicrobial activities against different pathogens including viruses and provide an excellent opportunity to develop new antivirals. The present study focused on biological synthesis of AgNPs from Andrographis paniculata, Phyllanthus niruri, and Tinospora cordifolia and evaluation of their antiviral properties against chikungunya virus. Synthesized plants AgNPs were characterized to assess their formation, morphology, and stability. The cytotoxicity assays in Vero cells revealed that A. paniculata AgNPs were most cytotoxic with maximum non-toxic dose (MNTD) value of 31.25 µg/mL followed by P. niruri (MNTD, 125 µg/mL) and T. cordifolia AgNPs (MNTD, 250 µg/mL). In vitro antiviral assay of AgNPs based on degree of inhibition of cytopathic effect (CPE) showed that A. paniculata AgNPs were most effective, followed by T. cordifolia and P. niruri AgNPs. The results of antiviral assay were confirmed by cell viability test using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) dye, which revealed that A. paniculata AgNPs inhibited the virus to a maximum extent. The cell viability of CHIKV-infected cells significantly increased from 25.69% to 80.76 and 66.8%, when treated with A. paniculata AgNPs at MNTD and ½MNTD, respectively. These results indicated that use of plants AgNPs as antiviral agents is feasible and could provide alternative treatment options against viral diseases which have no specific antiviral or vaccines available yet.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Green Chemistry Technology/methods , Metal Nanoparticles , Plants, Medicinal/metabolism , Silver/metabolism , Andrographis/metabolism , Animals , Chlorocebus aethiops , Microbial Sensitivity Tests , Phyllanthus/metabolism , Silver/pharmacology , Tinospora/metabolism , Vero Cells
14.
Chem Biol Interact ; 299: 120-130, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30543781

ABSTRACT

Approximately 15% of globally diagnosed breast cancers are designated as triple negative breast cancer (TNBC). In this study, we investigated the effect of the natural compound, Bis(2- ethyl hexyl) 1H-pyrrole-3,4-dicarboxylate (TCCP), purified from Tinospora cordifolia on MDA-MB-231, a TNBC cell line. The pro-apoptotic nature of TCCP on MDA-MB-231 was determined by assessing various apoptotic markers. ROS generation, intracellular calcium, mitochondrial membrane potential (ΔΨm), MPTP, cardiolipin peroxidation and caspase activity were determined fluorometrically. BAX, BCL-2, cytochrome c, caspases, and p53 protein expressions were determined by immunoblotting. Further, the effect of TCCP on DNA and cell death was determined by DNA fragmentation assay, annexin-V staining, and cell cycle analysis. TCCP treatment caused endogenous ROS generation, increase in intracellular calcium and phosphorylation of p53 in a concentration-dependent manner, which was reverted upon pre-treatment with pifithrin-µ. This led to the downstream altered expression of Bcl-2 and Bax proteins, mitochondrial membrane depolarization, MPTP, and cardiolipin peroxidation. TCCP induced cytochrome c release into the cytosol, caspase activation, ultimately resulting in DNA fragmentation. Further, induction of apoptosis and morphological alterations were evident from the phosphatidylserine externalization and increase in sub G1 population. The in vivo Ehrlich ascites tumor (EAT) mouse study revealed the effectiveness of TCCP in reducing the tumor burden and resulted in a ~2 fold increase in mice survival with minimal hepato-renal toxicity. Overall, TCCP was shown to be efficient in inducing ROS and mitochondrial-mediated apoptosis by restoring p53 activity in MDA-MB-231 cells and also induced EAT cell death in vivo thereby inhibiting tumor proliferation.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Mitochondria/drug effects , Pyrroles/chemistry , Reactive Oxygen Species/metabolism , Tinospora/chemistry , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , DNA Fragmentation/drug effects , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Survival Rate , Tinospora/metabolism
15.
Cell Stress Chaperones ; 22(5): 751-766, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28717943

ABSTRACT

Heat shock proteins (HSPs), molecular chaperones, are crucial for the cancer cells to facilitate proper functioning of various oncoproteins involved in cell survival, proliferation, migration, and tumor angiogenesis. Tumor cells are said to be "addicted" to HSPs. HSPs are overexpressed in many cancers due to upregulation of transcription factor Heat-shock factor 1 (HSF-1), the multifaceted master regulator of heat shock response. Therefore, pharmacological targeting of HSPs via HSF-1 is an effective strategy to treat malignant cancers like triple negative breast cancer. In the current study, we evaluated the efficacy of a pyrrole derivative [bis(2-ethylhexyl)1H-pyrrole-3,4-dicarboxylate], TCCP, purified from leaves of Tinospora cordifolia for its ability to suppress heat shock response and angiogenesis using MDA-MB-231 cells and the murine mammary carcinoma: Ehrlich ascites tumor model. HSP90 was downregulated by TCCP by inactivation of HSF-1 resulting in inhibition of tumor cell proliferation, VEGF-induced cell migration, and concomitant decrease in tumor burden and neo-angiogenesis in vivo. The mechanism of suppression of HSPs involves inactivation of PI3K/Akt and phosphorylation on serine 307 of HSF-1 by the activation of ERK1. HSF-1 and HSP90 and 70 localization and expression were ascertained by immunolocalization, immunoblotting, and qPCR experiments. The anti-angiogenic effect of TCCP was studied in vivo in tumor-bearing mice and ex vivo using rat corneal micro-pocket assay. All the results thus corroborate the logic behind inactivating HSF-1 using TCCP as an alternative approach for cancer therapy.


Subject(s)
Down-Regulation/drug effects , HSP90 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/metabolism , Pyrroles/toxicity , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cornea/drug effects , Cornea/metabolism , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Heat Shock Transcription Factors/antagonists & inhibitors , Humans , Mice , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Plant Leaves/chemistry , Plant Leaves/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrroles/chemistry , Pyrroles/isolation & purification , Pyrroles/therapeutic use , Rats , Rats, Wistar , Tinospora/chemistry , Tinospora/metabolism , Transplantation, Heterologous
16.
Int J Biol Macromol ; 82: 471-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26517959

ABSTRACT

Ras related protein (Rab5a) is one of the most important member of the Rab family which regulates the early endosome fusion in endocytosis, and it also helps in the regulation of the budding process. Here, for the first time we report a simple and reproducible method for the purification of the Rab5a from a medicinal plant Tinospora cordifolia. We have used weak cation-exchange (CM-Sepharose-FF) followed by gel-filtration chromatography. A purified protein of 22-kDa was observed on SDS-PAGE which was identified as Rab5a using MALDI-TOF/MS. Our purification procedure is fast and simple with high yield. The purified protein was characterized using circular dichroism for the measurement of secondary structure followed by GdmCl- and urea-induced denaturation to calculate the values of Gibbs free energy change (ΔGD), ΔGD°, midpoint of the denaturation Cm, i.e. molar GdmCl [GdmCl] and molar urea [Urea] concentration at which ΔGD=0; and m, the slope (=∂ΔGD/∂[d]) values. Furthermore, thermodynamic properties of Rab5a were also measured by differential scanning calorimeter. Here, using isothermal calorimeteric measurements we further showed that Rab5a binds with the GTP. This is a first report on the purification and biophysical characterization of Rab5a protein from T. cordifolia.


Subject(s)
Plant Proteins/chemistry , Plant Proteins/isolation & purification , rab5 GTP-Binding Proteins/chemistry , rab5 GTP-Binding Proteins/isolation & purification , Amino Acid Sequence , Calorimetry, Differential Scanning , Chromatography, Gel , Circular Dichroism , Ligands , Molecular Sequence Data , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Sequence Alignment , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thermodynamics , Tinospora/chemistry , Tinospora/metabolism
18.
Int Immunopharmacol ; 14(4): 641-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23079132

ABSTRACT

The immunogenicity of dendritic cells (DC) is known to increase with their maturation state and both are induced by microbial products like LPS. In this study, we have investigated the effect of G1-4A, a polysaccharide isolated from Indian medicinal plant, Tinospora cordifolia on phenotypic and functional maturation of murine bone marrow derived dendritic cells (BMDC) and its ability to be used as an adjuvant in immunotherapy. G1-4A, enhanced surface expression of CD40, CD80, CD86, MHCII by BMDC in vitro and splenic DC in vivo. T cell allostimulatory activity and secretion of IL-12 and TNFα by BMDC were also increased. Treatment with G1-4A resulted in decreased phagocytosis and increased antigen processing that are characteristic of mature DC. G1-4A treated DC cross presented exogenous antigens on a MHC I background which resulted in the activation of cytotoxic T cells. These cells thus activated could cause lysis of target tumor cells in vitro. Administration of tumor lysate pulsed G1-4A treated DC resulted in decreased tumor burden in preventive as well as therapeutic tumor challenge experiments in a murine lymphoma model. These results thus confirm that G1-4A could be a promising nontoxic maturation agent to be potentially used in DC based immunotherapy of tumor.


Subject(s)
Dendritic Cells/drug effects , Lymphoma/drug therapy , Neoplasms, Experimental/drug therapy , Polysaccharides/pharmacology , Tinospora/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dendritic Cells/immunology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Immunity, Cellular , Lymphoma/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Polysaccharides/metabolism , T-Lymphocytes, Cytotoxic/physiology
19.
Parasitol Res ; 109(1): 185-94, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21212979

ABSTRACT

Insecticide resistance and inadequate attention to the application instructions of topical pediculicides are common reasons for treatment failure. Essential oils or plant extracts are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. The present study was carried out to establish the pediculocidal and larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf aqueous extract of Tinospora cordifolia Miers (Menispermaceae) against the head louse Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae) and fourth instar larvae of malaria vector, Anopheles subpictus Grassi and filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). We reported the aqueous plant extract and synthesized AgNPs against head lice and vectors. Direct contact method was conducted to determine the potential of pediculocidal activity. The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. Head lice and mosquito larvae were exposed to varying concentrations of aqueous extracts and synthesized AgNPs for 24 h. The results suggest that the optimal times for measuring mortality effects of synthesized AgNPs were 33% at 5 min, 67% at 15 min, and 100% after 1 h. The maximum activity was observed in the synthesized AgNPs against lice, A. subpictus and C. quinquefasciatus (LC(50) = 12.46, 6.43 and 6.96 mg/L; r (2) = 0.978, 0.773 and 0.828), respectively. The findings revealed that synthesized AgNPs possess excellent anti-lice and mosquito larvicidal activity. These results suggest that the green synthesis of AgNPs have the potential to be used as an ideal ecofriendly approach for the control of head lice and vectors.


Subject(s)
Culicidae/drug effects , Insecticides/metabolism , Metal Nanoparticles , Pediculus/drug effects , Plant Extracts/metabolism , Silver/metabolism , Tinospora/metabolism , Animals , Survival Analysis , Time Factors
20.
Biol Trace Elem Res ; 133(3): 357-63, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19588079

ABSTRACT

Traditionally, Tinospora cordifolia (Willd.) Hook. F. & Thomson (Menispermaceae), Ocimum sanctum L. (Lamiaceae), Moringa oleifera Lam. (Moringaceae), and Phyllanthus niruri L. (Euphorbiaceae) are some of the commonly used medicinal plants in India for curing ailments ranging from common cold, skin diseases, and dental infections to major disorders like diabetes, hypertension, jaundice, rheumatism, etc. To understand and correlate their medicinal use, trace element studies on the aqueous extract of these medicinal plants have been carried out using particle-induced X-ray emission technique. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, and Sr in them. Results have revealed that these elements are present in varying concentrations in the selected plants. Notable results include very high concentrations of Cl, K, and Ca in all the leaf samples, appreciable levels of Mn in all plants, high Zn content in T. cordifolia, and the aqueous extract of Moringa leaves compared to others and relative higher concentrations of Cr in all the plants.


Subject(s)
Moringa/metabolism , Ocimum/metabolism , Phyllanthus/metabolism , Plant Extracts/analysis , Plants/metabolism , Spectrometry, X-Ray Emission/methods , Tinospora/metabolism , Trace Elements/analysis , India , Malus/metabolism , Plant Leaves/metabolism , Plants, Medicinal/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...