Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.032
Filter
1.
Sci Rep ; 14(1): 20672, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237645

ABSTRACT

PANoptosis induces programmed cell death (PCD) through extensive crosstalk and is associated with development of cancer. However, the functional mechanisms, clinical significance, and potential applications of PANoptosis-related genes (PRGs) in colorectal cancer (CRC) have not been fully elucidated. Functional enrichment of key PRGs was analyzed based on databases, and relationships between key PRGs and the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, signal transduction pathways, transcription factor regulation, and miRNA regulatory networks were systematically explored. This study identified 5 key PRGs associated with CRC: BCL10, CDKN2A, DAPK1, PYGM and TIMP1. Then, RT-PCR was used to verify expression of these genes in CRC cells and tissues. Clinical significance and prognostic value of key genes were further verified by multiple datasets. Analyses of the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, and signal transduction pathways suggest a close relationship between these key genes and development of CRC. In addition, a novel prognostic nomogram model for CRC was successfully constructed by combining important clinical indicators and the key genes. In conclusion, our findings offer new insights for understanding the pathogenesis of CRC, predicting CRC prognosis, and identifying multiple therapeutic targets for future CRC therapy.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Tumor Microenvironment/genetics , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/metabolism , Prognosis , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Carcinogenesis/genetics , Gene Regulatory Networks , Signal Transduction , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Nomograms
2.
Physiol Rep ; 12(17): e70047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39267201

ABSTRACT

Increased circulating tissue inhibitor of metalloproteinases-1 (TIMP-1) levels have been observed in patients with acute lung injury (ALI). However, the sex-specific regulation of TIMP-1 and the underlying molecular mechanisms have not been well elucidated. In this study, we found that plasma TIMP-1 levels were significantly higher in COVID-19 and H1N1 patients compared with those in healthy subjects (n = 25). TIMP-1 concentrations were significantly different between males and females in each disease group. Among female but not male patients, TIMP-1 levels significantly correlated with the PaO2/FiO2 ratio and hospital length of stay. Using the mouse model of ALI induced by the H1N1 virus, we found that TIMP-1 is strikingly induced in PDGFRα-positive cells in the murine lungs. Moreover, female mice showed a higher Timp-1 expression in the lungs on day 3 postinfection. Mechanistically, we observed that estrogen can upregulate TIMP-1 expression in lung fibroblasts, not epithelial cells. In addition, overexpression of estrogen receptor α (ERα) increased the TIMP-1 promoter activity. In summary, TIMP-1 is an estrogen-responsive gene, and its promoter activity is regulated by ERα. Circulating TIMP-1 may serve as a sex-specific marker, reflecting the severity and worst outcomes in female patients with SARS-CoV2- and IAV-related ALI.


Subject(s)
Acute Lung Injury , Biomarkers , COVID-19 , Estrogen Receptor alpha , Tissue Inhibitor of Metalloproteinase-1 , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/blood , Animals , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/metabolism , Female , Male , Humans , Mice , COVID-19/metabolism , COVID-19/genetics , COVID-19/blood , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Biomarkers/blood , Biomarkers/metabolism , Estrogens/blood , Middle Aged , Influenza A Virus, H1N1 Subtype , Lung/metabolism , SARS-CoV-2 , Adult , Gene Expression Regulation , Mice, Inbred C57BL , Sex Factors , Sex Characteristics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/genetics
3.
BMC Cancer ; 24(1): 978, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118103

ABSTRACT

BACKGROUND: The unfolded protein response (UPR) is associated with immune cells that regulate the biological behavior of tumors. This article aims to combine UPR-associated genes with immune cells to find a prognostic marker and to verify its connection to the UPR. METHODS: Univariate cox analysis was used to screen prognostically relevant UPRs and further screened for key UPRs among them by machine learning. ssGSEA was used to calculate immune cell abundance. Univariate cox analysis was used to screen for prognostically relevant immune cells. Multivariate cox analysis was used to calculate UPR_score and Tumor Immune Microenvironment score (TIME_score). WGCNA was used to screen UPR-Immune-related (UI-related) genes. Consensus clustering analysis was used to classify patients into molecular subtype. Based on the UI-related genes, we classified colon adenocarcinoma (COAD) samples by cluster analysis. Single-cell analysis was used to analyze the role of UI-related genes. We detected the function of TIMP1 by cell counting and transwell. Immunoblotting was used to detect whether TIMP1 was regulated by key UPR genes. RESULTS: Combined UPR-related genes and immune cells can determine the prognosis of COAD patients. Cluster analysis showed that UI-related genes were associated with clinical features of COAD. Single-cell analysis revealed that UI-related genes may act through stromal cells. We defined three key UI-related genes by machine learning algorithms. Finally, we found that TIMP1, regulated by key genes of UPR, promoted colon cancer proliferation and metastasis. CONCLUSIONS: We found that TIMP1 was a prognostic marker and experimentally confirmed that TIMP1 was regulated by key genes of UPR.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Tissue Inhibitor of Metalloproteinase-1 , Tumor Microenvironment , Unfolded Protein Response , Humans , Unfolded Protein Response/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Gene Expression Regulation, Neoplastic , Cluster Analysis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Machine Learning , Single-Cell Analysis/methods , Female , Cell Line, Tumor , Male
4.
Nat Cardiovasc Res ; 3(6): 714-733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39215134

ABSTRACT

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.


Subject(s)
Cell Proliferation , Gene Regulatory Networks , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Tissue Inhibitor of Metalloproteinase-1 , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Humans , Cell Proliferation/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cells, Cultured , Single-Cell Analysis , Epigenesis, Genetic , Transcriptome , Animals , Core Binding Factor Alpha 2 Subunit
5.
Aging (Albany NY) ; 16(16): 12008-12028, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39177661

ABSTRACT

Atractylodes lancea which was listed in "Shennong's Materia Medica" and could be used to treat gastrointestinal-associated diseases. However, its roles, core and active ingredients, and mechanisms in treatment of colorectal cancer (CRC) were still unknown. Therefore, network pharmacology and experimental validation were used to clarify the effects, core active ingredients and molecular mechanisms of Atractylodes lancea. We found that Atractylodes lancea has 28 effective active components and 213 potential targets. Seventy-three genes which demonstrate interaction between the Atractylodes lancea and CRC were confirmed. Enrichment analysis showed that 2033 GO biological process items and 144 KEGG pathways. Survival and molecular docking analysis revealed that luteolin as the core component interacted with these genes (Matrix metalloproteinase 3 (MMP3), Matrix metalloproteinase 9 (MMP9), Tissue inhibitor of metalloproteinases 1 (TIMP1), Vascular endothelial growth factor A (VEGFA)) with the lowest binding energy, and these genes were involved in building a prognostic model for CRC. Cellular phenotyping experiments showed that luteolin could inhibit the proliferation and migration of CRC cells and downregulate the expression of MMP3, MMP9, TIMP1, VEGFA probably by Phosphoinositide 3-kinase/ serine/threonine kinase Akt (PI3K/AKT) pathway. To conclude, Atractylodes lancea could inhibit proliferation and migration of CRC cells through its core active ingredient (luteolin) to suppress the expression of MMP3, MMP9, TIMP1, VEGFA probably by PI3K/AKT pathway.


Subject(s)
Atractylodes , Colorectal Neoplasms , Luteolin , Molecular Docking Simulation , Network Pharmacology , Atractylodes/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Luteolin/pharmacology , Cell Proliferation/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Movement/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
6.
BMC Infect Dis ; 24(1): 663, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956476

ABSTRACT

BACKGROUND: Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS: The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS: Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS: This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Leukocytes, Mononuclear , SARS-CoV-2 , Humans , COVID-19/blood , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Male , Female , Middle Aged , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Aged , Adult , Biomarkers/blood , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/genetics , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/genetics , Severity of Illness Index , Case-Control Studies , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics
7.
Biomolecules ; 14(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39062514

ABSTRACT

Liver fibrosis, a consequence of chronic liver damage or inflammation, is characterized by the excessive buildup of extracellular matrix components. This progressive condition significantly raises the risk of severe liver diseases like cirrhosis and hepatocellular carcinoma. The lack of approved therapeutics underscores the urgent need for novel anti-fibrotic drugs. Hepatic stellate cells (HSCs), key players in fibrogenesis, are promising targets for drug discovery. This study investigated the anti-fibrotic potential of Citrus hystrix DC. (KL) and its bioactive compound, ß-citronellol (ß-CIT), in a human HSC cell line (LX-2). Cells exposed to TGF-ß1 to induce fibrogenesis were co-treated with crude KL extract and ß-CIT. Gene expression was analyzed by real-time qRT-PCR to assess fibrosis-associated genes (ACTA2, COL1A1, TIMP1, SMAD2). The release of matrix metalloproteinase 9 (MMP-9) was measured by ELISA. Proteomic analysis and molecular docking identified potential signaling proteins and modeled protein-ligand interactions. The results showed that both crude KL extract and ß-CIT suppressed HSC activation genes and MMP-9 levels. The MAPK signaling pathway emerged as a potential target of ß-CIT. This study demonstrates the ability of KL extract and ß-CIT to inhibit HSC activation during TGF-ß1-induced fibrogenesis, suggesting a promising role of ß-CIT in anti-hepatic fibrosis therapies.


Subject(s)
Acyclic Monoterpenes , Hepatic Stellate Cells , Liver Cirrhosis , Transforming Growth Factor beta1 , Humans , Actins , Antifibrotic Agents/pharmacology , Cell Line , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Molecular Docking Simulation , Smad2 Protein/metabolism , Smad2 Protein/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/pharmacology , Acyclic Monoterpenes/pharmacology
8.
Bull Exp Biol Med ; 177(1): 74-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38955854

ABSTRACT

Activated hepatic stellate cells differentiate into myofibroblasts, which synthesize and secrete extracellular matrix (ECM) leading to liver fibrosis. It was previously demonstrated that bulleyaconitine A (BLA), an alkaloid from Aconitum bulleyanum, inhibits proliferation and promotes apoptosis of human hepatic Lieming Xu-2 (LX-2) cells. In this study, we analyzed the effect of BLA on the production of ECM and related proteins by LX-2 cells activated with acetaldehyde (AA). The cells were randomized into the control group, AA group (cells activated with 400 µM AA), and BLA+AA group (cells cultured in the presence of 400 µM AA and 18.75 µg/ml BLA). In the BLA+AA group, the contents of collagens I and III and the expression of α-smooth muscle actin and transforming growth factor-ß1 (TGF-ß1) were statistically significantly higher than in the control, but lower than in the AA group. Expression of MMP-1 in the BLA+AA group was also significantly higher than in the AA group, but lower than in the control. Expression of TIMP-1 in the BLA+AA group was significantly higher than in the control, but lower than in the AA group. Thus, BLA suppressed activation and proliferation of LX-2 cells by inhibiting TGF-ß1 signaling pathway and decreasing the content of collagens I and III by reducing the MMP-1/TIMP-1 ratio.


Subject(s)
Acetaldehyde , Aconitine , Actins , Collagen Type I , Extracellular Matrix , Hepatic Stellate Cells , Tissue Inhibitor of Metalloproteinase-1 , Transforming Growth Factor beta1 , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Acetaldehyde/pharmacology , Acetaldehyde/analogs & derivatives , Aconitine/pharmacology , Aconitine/analogs & derivatives , Collagen Type I/metabolism , Collagen Type I/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Actins/metabolism , Actins/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Cell Line , Collagen Type III/metabolism , Collagen Type III/genetics , Cell Proliferation/drug effects , Aconitum/chemistry , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
9.
Ann Hepatol ; 29(5): 101517, 2024.
Article in English | MEDLINE | ID: mdl-38852781

ABSTRACT

INTRODUCTION AND OBJECTIVES: Liver fibrosis remains a complication derived from a chronic Hepatitis C Virus (HCV) infection even when it is resolved, and no liver antifibrotic drug has been approved. Molecular mechanisms on hepatocytes and activation of hepatic stellate cells (HSCs) play a central role in liver fibrogenesis. To elucidate molecular mechanisms, it is important to analyze pathway regulation during HSC activation and HCV infection. MATERIALS AND METHODS: We evaluate the fibrosis-associated molecular mechanisms during a co-culture of human HSCs (LX2), with human hepatocytes (Huh7) that express HCV NS5A or Core protein. We evaluated LX2 activation induced by HCV NS5A or Core expression in Huh7 cells during co-culture. We determined a fibrosis-associated gene expression profile in Huh7 that expresses NS5A or Core proteins during the co-culture with LX2. RESULTS: We observed that NS5A induced 8.3-, 6.7- and 4-fold changes and that Core induced 6.5-, 1.8-, and 6.2-fold changes in the collagen1, TGFß1, and timp1 gene expression, respectively, in LX2 co-cultured with transfected Huh7. In addition, NS5A induced the expression of 30 genes while Core induced 41 genes and reduced the expression of 30 genes related to fibrosis in Huh7 cells during the co-culture with LX2, compared to control. The molecular pathways enriched from the gene expression profile were involved in TGFB signaling and the organization of extracellular matrix. CONCLUSIONS: We demonstrated that HCV NS5A and Core protein expression regulate LX2 activation. NS5A and Core-induced LX2 activation, in turn, regulates diverse fibrosis-related gene expression at different levels in Huh7, which can be further analyzed as potential antifibrotic targets during HCV infection.


Subject(s)
Coculture Techniques , Collagen Type I , Hepacivirus , Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Tissue Inhibitor of Metalloproteinase-1 , Transforming Growth Factor beta1 , Viral Core Proteins , Viral Nonstructural Proteins , Humans , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Hepacivirus/genetics , Hepatocytes/metabolism , Hepatocytes/virology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Gene Expression Regulation , Signal Transduction , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Gene Expression Profiling/methods , Cell Line, Tumor , RNA-Dependent RNA Polymerase
10.
Nat Aging ; 4(8): 1043-1052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834882

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.


Subject(s)
Clonal Hematopoiesis , Epigenesis, Genetic , Proteomics , Clonal Hematopoiesis/genetics , Humans , DNA Methylation , Female , Male , Hematopoietic Stem Cells/metabolism , Middle Aged , Proteome/metabolism , Proteome/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Aged
11.
Life Sci ; 351: 122768, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38851417

ABSTRACT

AIMS: Cancer-associated fibroblasts (CAFs) have been shown to promote the metastasis of head and neck squamous cell carcinoma (HNSCC), but the underlying mechanisms remain unclear. The purpose of this study is to identify gene in CAFs that are associated with metastasis and to preliminarily validate its impact on the metastasis of HNSCC. MATERIALS AND METHODS: Scissor analysis was utilized to process single-cell and bulk RNA sequencing datasets, identifying genes associated with the metastasis of HNSCC through differential gene expression analysis. A risk model was constructed using LASSO regression analysis. Quantitative real time-PCR and Western blot were employed to measure mRNA and protein expressions, respectively. Multiplex immunohistochemistry (mIHC) was used to assess protein expression in CAFs. siRNA was utilized to achieve gene knockdown. CCK-8 and Transwell assays were employed to evaluate the biological characteristics of HNSCC cells. KEY FINDINGS: Compare to the nonmetastatic primary CAFs (nmCAFs), tissue inhibitors of metalloproteinase-1 (TIMP1) was founded to be overexpressed in the cells and tissues of metastatic primary CAFs (mCAFs). Knocking down TIMP1 in CAFs can signifucantly inhibit the proliferation, invasion, and migration of HNSCC cells. SIGNIFICANCE: CAFs facilitate HNSCC cell metastasis by upregulating TIMP1, highlighting TIMP1 as a potential therapeutic target in HNSCC metastasis management.


Subject(s)
Cancer-Associated Fibroblasts , Head and Neck Neoplasms , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Tissue Inhibitor of Metalloproteinase-1 , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/secondary , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Single-Cell Analysis/methods , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Metastasis/genetics , Cell Movement/genetics , Sequence Analysis, RNA/methods , Male , Female
12.
PLoS One ; 19(6): e0304185, 2024.
Article in English | MEDLINE | ID: mdl-38857261

ABSTRACT

OBJECTIVE: The present study aims to investigate the specific protective effects and underlying mechanisms of Ganshuang granule (GSG) on dimethylnitrosamine (DMN)-induced hepatic fibrosis in rat models. METHODS: Hepatic fibrosis was experimentally evoked in rats by DMN administration, and varying dosages of GSG were employed as an intervention. Hepatocellular damage was assessed by measuring serum levels of aminotransferase and bilirubin, accompanied by histopathological examinations of hepatic tissue. The hepatic concentrations of platelet-derived growth factor (PDGF) and transforming growth factor-ß1 (TGF-ß1) were quantitated via enzyme-linked immunosorbent assay (ELISA). The expression of α-smooth muscle actin (α-SMA) within hepatic tissue was evaluated using immunohistochemical techniques. The levels of hepatic interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and a spectrum of interleukins (IL-2, IL-4, IL-6, IL-10) were quantified by quantitative real-time PCR (qRT-PCR). Additionally, hepatic stellate cells (HSCs) were cultured in vitro and exposed to TNF-α in the presence of naringin, a principal component of GSG. The gene expression levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase-1 (MMP-1) in these cells were also quantified by qRT-PCR. Proliferative activity of HSCs was evaluated by the Cell Counting Kit-8 assay. Finally, alterations in Smad protein expression were analyzed through Western blotting. RESULTS: Administration of GSG in rats with fibrosis resulted in reduced levels of serum aminotransferases and bilirubin, along with alleviation of histopathological liver injury. Furthermore, the fibrosis rats treated with GSG exhibited significant downregulation of hepatic TGF-ß1, PDGF, and TNF-α levels. Additionally, GSG treatment led to increased mRNA levels of IFN-γ, IL-2, and IL-4, as well as decreased expression of α-SMA in the liver. Furthermore, treatment with naringin, a pivotal extract of GSG, resulted in elevated expression of MMP-1 and decreased levels of TIMP-1 in TNF-α-stimulated HSCs when compared to the control group. Additionally, naringin administration led to a reduction in Smad expression within the HSCs. CONCLUSION: GSG has the potential to mitigate fibrosis induced by DMN in rat models through the regulation of inflammatory and fibrosis factors. Notably, naringin, the primary extract of GSG, may exert a pivotal role in modulating the TGF-ß-Smad signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Hepatic Stellate Cells , Liver Cirrhosis , Signal Transduction , Smad Proteins , Animals , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Signal Transduction/drug effects , Flavanones/pharmacology , Flavanones/therapeutic use , Male , Rats , Smad Proteins/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Rats, Sprague-Dawley , Dimethylnitrosamine , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Platelet-Derived Growth Factor/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Actins/metabolism
13.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928311

ABSTRACT

Aneurysms pose life-threatening risks due to the dilatation of the arteries and carry a high risk of rupture. Despite continuous research efforts, there are still no satisfactory or clinically effective pharmaceutical treatments for this condition. Accelerated inflammatory processes during aneurysm development lead to increased levels of matrix metalloproteinases (MMPs) and destabilization of the vessel wall through the degradation of the structural components of the extracellular matrix (ECM), mainly collagen and elastin. Tissue inhibitors of metalloproteinases (TIMPs) directly regulate MMP activity and consequently inhibit ECM proteolysis. In this work, the synthesis of TIMP-1 protein was increased by the exogenous delivery of synthetic TIMP-1 encoding mRNA into aortic vessel tissue in an attempt to inhibit MMP-9. In vitro, TIMP-1 mRNA transfection resulted in significantly increased TIMP-1 protein expression in various cells. The functionality of the expressed protein was evaluated in an appropriate ex vivo aortic vessel model. Decreased MMP-9 activity was detected using in situ zymography 24 h and 48 h post microinjection of 5 µg TIMP-1 mRNA into the aortic vessel wall. These results suggest that TIMP-1 mRNA administration is a promising approach for the treatment of aneurysms.


Subject(s)
Matrix Metalloproteinase 9 , RNA, Messenger , Tissue Inhibitor of Metalloproteinase-1 , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Humans , Rats , Aneurysm/therapy , Aneurysm/genetics , Aorta/metabolism , Male , Arteries/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology
14.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
15.
Aging (Albany NY) ; 16(9): 8260-8278, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38728374

ABSTRACT

RATIONALE: Myocardial fibrosis is an important pathological change that occurs during ventricular remodeling in patients with hypertension and is an important pathophysiological basis of cardiovascular disease. However, the molecular mechanism underlying this ventricular remodeling is unclear. METHODS: Bioinformatics analysis identified HLA-B and TIMP1 as hub genes in the process of myocardial fibrosis. Expression and correlation analyses of significant hub genes with ventricular remodeling were performed. Weighted gene co-expression network analysis (WGCNA) was performed to verify the role of HLA-B. ceRNA network was constructed to identify the candidate molecule drugs. Receiver operating characteristic (ROC) curves were analyzed. RESULTS: RT-qPCR was performed to verify the roles of HLA-B and TIMP1 in seven control individuals with hypertension and seven patients with hypertension and ventricular remodeling. The WGCNA showed that HLA-B was in the brown module and the correlation coefficient between HLA-B and ventricular remodeling was 0.67. Based on univariate logistic proportional regression analysis, HLA-B influences ventricular remodeling (P<0.05). RT-qPCR showed that the relative expression levels of HLA-B and TIMP1 were significantly higher in HLVR samples compared with their expression in the control group. CONCLUSIONS: HLA-B and TIMP1 might provide novel research targets for the diagnosis and treatment of HLVR.


Subject(s)
HLA-B Antigens , Hypertension , Tissue Inhibitor of Metalloproteinase-1 , Ventricular Remodeling , Humans , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Ventricular Remodeling/genetics , HLA-B Antigens/genetics , Hypertension/genetics , Male , Female , Middle Aged , Gene Regulatory Networks , Computational Biology , Aged , Fibrosis/genetics
16.
Genes Immun ; 25(3): 188-200, 2024 06.
Article in English | MEDLINE | ID: mdl-38777826

ABSTRACT

Immune checkpoint therapies (ICT) for advanced solid tumors mark a new milestone in cancer therapy. Yet their efficacy is often limited by poor immunogenicity, attributed to inadequate priming and generation of antitumor T cells by dendritic cells (DCs). Identifying biomarkers to enhance DC functions in such tumors is thus crucial. Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), recognized for its influence on immune cells, has an underexplored relationship with DCs. Our research reveals a correlation between high TIMP1 levels in metastatic melanoma and increased CD8 + T cell infiltration and survival. Network studies indicate a functional connection with HLA genes. Spatial transcriptomic analysis of a national melanoma cohort revealed that TIMP1 expression in immune compartments associates with an HLA-A/MHC-I peptide loading signature in lymph nodes. Primary human and bone-marrow-derived DCs secrete TIMP-1, which notably increases MHC-I expression in classical type 1 dendritic cells (cDC1), especially under melanoma antigen exposure. TIMP-1 affects the immunoproteasome/TAP complex, as seen by upregulated PSMB8 and TAP-1 levels of myeloid DCs. This study uncovers the role of TIMP-1 in DC-mediated immunogenicity with insights into CD8 + T cell activation, providing a foundation for mechanistic exploration and highlighting its potential as a new target for combinatorial immunotherapy to enhance ICT effectiveness.


Subject(s)
Dendritic Cells , Melanoma , Tissue Inhibitor of Metalloproteinase-1 , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Melanoma/immunology , Melanoma/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics
17.
Gene ; 922: 148557, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38740354

ABSTRACT

The primary aim of this study was to explore the impact of diabetes on matrix metalloproteases and tissue inhibitors, crucial factors for successful implantation, and to elucidate the molecular mechanisms that undergo changes in the endometrium and the embryo during diabetic pregnancies. In this investigation, we established a streptozotocin-induced diabetic pregnant rat model. Microarray analysis followed by RT-PCR was utilized to identify gene regions exhibiting expression alterations. Subsequently, we assessed the effects of MMPs and tissue inhibitors using ELISA and immunohistochemistry techniques, in addition to analyzing changes at the genetic level. Diabetes led to the upregulation of MMP3, MMP9, and MMP20 on the 6.5th day of pregnancy, while causing the downregulation of MMP3, MMP9, and MMP11 on the 8.5th day of pregnancy. TIMP1 expression was downregulated on the 8.5th day compared to the control group. No statistically significant differences were observed between the groups regarding other TIMP expressions. KEGG pathway analysis revealed that diabetes induced alterations in the expression of genes associated with certain microRNAs, as well as signaling pathways such as cAMP, calcium, BMP, p53, MAPK, PI3K-Akt, Jak-STAT, Hippo, Wnt, and TNF. Additionally, gene ontology analysis unveiled changes in membrane structures, extracellular matrix, signaling pathways, ion binding, protein binding, cell adhesion molecule binding, and receptor-ligand activity. This study serves as a valuable guide for investigating the mechanisms responsible for complications in diabetic pregnancies. By revealing the early-stage effects of diabetes, it offers insight into the development of new diagnostic and treatment approaches, ultimately contributing to improved patient care.


Subject(s)
Diabetes Mellitus, Experimental , Endometrium , Animals , Female , Pregnancy , Endometrium/metabolism , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Signal Transduction , Embryo, Mammalian/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Pregnancy in Diabetics/metabolism , Pregnancy in Diabetics/genetics , Embryo Implantation/genetics , Rats, Sprague-Dawley , MicroRNAs/genetics , MicroRNAs/metabolism
18.
Mol Biol Rep ; 51(1): 667, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780696

ABSTRACT

BACKGROUND: The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1ß, Tnf-α, and Tgfß1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS: Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1ß, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfß1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfß1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS: Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.


Subject(s)
Cytokines , Matrix Metalloproteinases , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Physical Conditioning, Animal/physiology , Male , Rats , Muscle, Skeletal/metabolism , Cytokines/metabolism , Cytokines/genetics , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Extracellular Matrix/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Gene Expression Regulation
19.
Clin Exp Nephrol ; 28(7): 599-607, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587753

ABSTRACT

The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.


Subject(s)
Albuminuria , Claudin-1 , Diabetic Nephropathies , Epigenesis, Genetic , NAD , Sirtuin 1 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Humans , Albuminuria/genetics , Claudin-1/genetics , Claudin-1/metabolism , Cytokines/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Mice, Inbred C57BL , Mice, Knockout , NAD/metabolism , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Podocytes/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Sirtuins/genetics , Sirtuins/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics
20.
Biochem Biophys Res Commun ; 711: 149894, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38603834

ABSTRACT

BACKGROUND: Low-grade glioma (LGG) has an extremely poor prognosis, and the mechanism leading to malignant development has not been determined. The aim of our study was to clarify the function and mechanism of anoikis and TIMP1 in the malignant progression of LGG. METHODS: We screened 7 anoikis-related genes from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a prognostic-predicting model. The study assessed the clinical prognosis, pathological characteristics, and immune cell infiltration in both high- and low-risk groups. Additionally, the potential modulatory effects of TIMP1 on proliferation, migration, and anoikis in LGG were investigated both in vivo and in vitro. RESULTS: In this study, we identified seven critical genes, namely, PTGS2, CCND1, TIMP1, PDK4, LGALS3, CDKN1A, and CDKN2A. Kaplan‒Meier (K‒M) curves demonstrated a significant correlation between clinical features and overall survival (OS), and single-cell analysis and mutation examination emphasized the heterogeneity and pivotal role of hub gene expression imbalances in LGG development. Immune cell infiltration and microenvironment analysis further elucidated the relationships between key genes and immune cells. In addition, TIMP1 promoted the malignant progression of LGG in both in vitro and in vivo models. CONCLUSIONS: This study confirmed that TIMP1 promoted the malignant progression of LGG by inhibiting anoikis, providing insights into LGG pathogenesis and potential therapeutic targets.


Subject(s)
Anoikis , Glioma , Tissue Inhibitor of Metalloproteinase-1 , Humans , Anoikis/genetics , Glioma/genetics , Glioma/immunology , Glioma/pathology , Prognosis , Tissue Inhibitor of Metalloproteinase-1/genetics , Animals , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice , Male , Cell Proliferation/genetics , Female , Mice, Nude , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Neoplasm Grading
SELECTION OF CITATIONS
SEARCH DETAIL