Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.168
Filter
1.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822833

ABSTRACT

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Subject(s)
Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Saccharum , Salicylic Acid , Signal Transduction , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Saccharum/genetics , Saccharum/microbiology , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Plant Leaves/genetics , Plant Leaves/microbiology , Abscisic Acid/metabolism , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity
2.
Physiol Plant ; 176(3): e14375, 2024.
Article in English | MEDLINE | ID: mdl-38837224

ABSTRACT

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Plant Diseases , Nicotiana/virology , Nicotiana/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Salicylic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tobamovirus/physiology , Tobamovirus/genetics , Plants, Genetically Modified
3.
Plant Cell Rep ; 43(6): 162, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837057

ABSTRACT

KEY MESSAGE: A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.


Subject(s)
Agrobacterium , Glycine max , Plant Leaves , Plants, Genetically Modified , Glycine max/genetics , Glycine max/microbiology , Glycine max/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Agrobacterium/genetics , Gene Expression Regulation, Plant , Nicotiana/genetics , Genetic Vectors/genetics
4.
Plant Signal Behav ; 19(1): 2359257, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38825861

ABSTRACT

Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.


Subject(s)
14-3-3 Proteins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Potassium , Nicotiana/genetics , Nicotiana/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Potassium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
5.
PLoS One ; 19(5): e0302692, 2024.
Article in English | MEDLINE | ID: mdl-38722893

ABSTRACT

Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.


Subject(s)
Nicotiana , Phylogeny , Plant Diseases , Point Mutation , Potyvirus , Viral Proteins , Nicotiana/virology , Potyvirus/genetics , Potyvirus/pathogenicity , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Amino Acid Sequence , Necrosis , Molecular Sequence Data , Open Reading Frames/genetics
6.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713285

ABSTRACT

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Subject(s)
Cyclic AMP , Heat-Shock Response , Nicotiana , Plant Proteins , Phosphorylation , Nicotiana/genetics , Nicotiana/metabolism , Heat-Shock Response/physiology , Cyclic AMP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
7.
Physiol Plant ; 176(3): e14311, 2024.
Article in English | MEDLINE | ID: mdl-38715208

ABSTRACT

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Subject(s)
CRISPR-Cas Systems , Chlamydomonas reinhardtii , Cytokinins , Disease Resistance , Nicotiana , Plant Diseases , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Cytokinins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Mutation
8.
Sci Adv ; 10(18): eadl3747, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701212

ABSTRACT

Early-life tobacco exposure serves as a non-negligible risk factor for aging-related diseases. To understand the underlying mechanisms, we explored the associations of early-life tobacco exposure with accelerated biological aging and further assessed the joint effects of tobacco exposure and genetic susceptibility. Compared with those without in utero exposure, participants with in utero tobacco exposure had an increase in Klemera-Doubal biological age (KDM-BA) and PhenoAge acceleration of 0.26 and 0.49 years, respectively, but a decrease in telomere length of 5.34% among 276,259 participants. We also found significant dose-response associations between the age of smoking initiation and accelerated biological aging. Furthermore, the joint effects revealed that high-polygenic risk score participants with in utero exposure and smoking initiation in childhood had the highest accelerated biological aging. There were interactions between early-life tobacco exposure and age, sex, deprivation, and diet on KDM-BA and PhenoAge acceleration. These findings highlight the importance of reducing early-life tobacco exposure to improve healthy aging.


Subject(s)
Aging , Genetic Predisposition to Disease , Prenatal Exposure Delayed Effects , Humans , Female , Male , Prenatal Exposure Delayed Effects/genetics , Aging/genetics , Adult , Pregnancy , Nicotiana/adverse effects , Nicotiana/genetics , Smoking/adverse effects , Risk Factors , Middle Aged
10.
Plant Cell Rep ; 43(6): 143, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750149

ABSTRACT

Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.


Subject(s)
Brachypodium , Gene Expression Regulation, Plant , Hydrogen Peroxide , Nicotiana , Oxidative Stress , Plant Proteins , Plants, Genetically Modified , Transcription Factors , Nicotiana/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidative Stress/genetics , Brachypodium/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Phylogeny
11.
Plant Mol Biol ; 114(3): 61, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764076

ABSTRACT

Transient expression and induction of RNA silencing by agroinfiltration is a fundamental method in plant RNA biology. Here, we introduce a new reporter assay using RUBY, which encodes three key enzymes of the betalain biosynthesis pathway, as a polycistronic mRNA. The red pigmentation conferred by betalains allows visual confirmation of gene expression or silencing levels without tissue disruption, and the silencing levels can be quantitatively measured by absorbance in as little as a few minutes. Infiltration of RUBY in combination with p19, a well-known RNA silencing suppressor, induced a fivefold higher accumulation of betalains at 7 days post infiltration compared to infiltration of RUBY alone. We demonstrated that co-infiltration of RUBY with two RNA silencing inducers, targeting either CYP76AD1 or glycosyltransferase within the RUBY construct, effectively reduces RUBY mRNA and betalain levels, indicating successful RNA silencing. Therefore, compared to conventional reporter assays for RNA silencing, the RUBY-based assay provides a simple and rapid method for quantitative analysis without the need for specialized equipment, making it useful for a wide range of RNA silencing studies.


Subject(s)
Betalains , Nicotiana , RNA Interference , Betalains/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
12.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Article in English | MEDLINE | ID: mdl-38767756

ABSTRACT

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potyvirus , Potyvirus/pathogenicity , Potyvirus/physiology , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication , Nicotiana/virology , Nicotiana/genetics
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 411-418, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790097

ABSTRACT

Objective To explore the effects of aloperine (Alo) on cigarette smoke-induced injury in human bronchial epithelial cells and its potential mechanism. Methods After human bronchial epithelial 16HBE cells were co-treated by 100 mL/L cigarette smoke extract (CSE) and various concentrations (50,100 and 200 µmol/L) of Alo, cell viability was assessed using CCK-8 assay. Lactate dehydrogenase (LDH) activity was measured with a related kit. Cell apoptosis was evaluated using the terminal-deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot analysis. The levels of inflammatory factors were detected by ELISA. Oxidative stress levels were assessed using 2'7'-dichlorofluorescin diacetate (DCFH-DA) staining. The expression of Toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) signaling-associated proteins was measured by Western blot analysis. After cells were co-treated with 100 mL/L CSE and 200 µmol/L Alo, the aforementioned assays were applied to evaluate the effects of TLR4 overexpression on the TLR4/NF-κB/NLRP3 signaling, LDH activity, apoptosis, inflammatory response and oxidative stress in cells. Results CSE exposure might inhibit 16HBE cell viability, increase LDH activity, apoptosis, inflammatory response and oxidative stress levels and activate TLR4/NF-κB/NLRP3 signaling. Treatment with Alo promoted cell viability, decreased LDH activity, cell apoptosis, inflammation and oxidative stress levels, and inactivated TLR4/NF-κB/NLRP3 signaling. Furthermore, TLR4 overexpression might reverse the protective role of Alo treatment in CSE-induced injury in 16HBE cells. Conclusion Alo may ameliorate CSE-induced injury in human bronchial epithelial cells via inhibiting TLR4/NF-κB/NLRP3 signaling.


Subject(s)
Apoptosis , Bronchi , Epithelial Cells , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Quinolizidines , Signal Transduction , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Bronchi/cytology , Bronchi/metabolism , Bronchi/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apoptosis/drug effects , Quinolizidines/pharmacology , Smoke/adverse effects , Oxidative Stress/drug effects , Cell Survival/drug effects , Cell Line , Nicotiana/adverse effects
14.
Plant Physiol Biochem ; 211: 108714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749374

ABSTRACT

The CDC48 protein, highly conserved in the living kingdom, is a player of the ubiquitin proteasome system and contributes to various cellular processes. In plants, CDC48 is involved in cell division, plant growth and, as recently highlighted in several reports, in plant immunity. In the present study, to further extend our knowledge about CDC48 functions in plants, we analysed the incidence of its overexpression on tobacco development and immune responses. CDC48 overexpression disrupted plant development and morphology, induced changes in plastoglobule appearance and exacerbated ROS production. In addition, levels of salicylic acid (SA) and glycosylated SA were higher in transgenic plants, both in the basal state and in response to cryptogein, a protein produced by the oomycete Phytophthora cryptogea triggering defence responses. The expression of defence genes, notably those coding for some pathogenesis-related (PR) proteins, was also exacerbated in the basal state in transgenic plant lines. Finally, tobacco plants overexpressing CDC48 did not develop necrosis in response to tobacco mosaic virus (TMV) infection, suggesting a role for CDC48 in virus resistance.


Subject(s)
Nicotiana , Plant Immunity , Plant Proteins , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/virology , Nicotiana/immunology , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Plant Diseases/virology , Plant Diseases/immunology , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Tobacco Mosaic Virus/physiology , Phytophthora/physiology , Phytophthora/pathogenicity
15.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786062

ABSTRACT

Pollen, the male gametophyte of seed plants, is extremely sensitive to UV light, which may prevent fertilization. As a result, strategies to improve plant resistance to solar ultraviolet (UV) radiation are required. The tardigrade damage suppressor protein (Dsup) is a putative DNA-binding protein that enables tardigrades to tolerate harsh environmental conditions, including UV radiation, and was therefore considered as a candidate for reducing the effects of UV exposure on pollen. Tobacco pollen was genetically engineered to express Dsup and then exposed to UV-B radiation to determine the effectiveness of the protein in increasing pollen resistance. To establish the preventive role of Dsup against UV-B stress, we carried out extensive investigations into pollen viability, germination rate, pollen tube length, male germ unit position, callose plug development, marker protein content, and antioxidant capacity. The results indicated that UV-B stress has a significant negative impact on both pollen grain and pollen tube growth. However, Dsup expression increased the antioxidant levels and reversed some of the UV-B-induced changes to pollen, restoring the proper distance between the tip and the last callose plug formed, as well as pollen tube length, tubulin, and HSP70 levels. Therefore, the expression of heterologous Dsup in pollen may provide the plant male gametophyte with enhanced responses to UV-B stress and protection against harmful environmental radiation.


Subject(s)
Nicotiana , Plant Proteins , Pollen , Ultraviolet Rays , Nicotiana/radiation effects , Nicotiana/genetics , Nicotiana/metabolism , Pollen/radiation effects , Pollen/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Stress, Physiological/radiation effects , Pollen Tube/metabolism , Pollen Tube/radiation effects , Pollen Tube/genetics , Plants, Genetically Modified , Antioxidants/metabolism , Germination/radiation effects , Gene Expression Regulation, Plant/radiation effects
16.
PLoS One ; 19(5): e0300271, 2024.
Article in English | MEDLINE | ID: mdl-38805435

ABSTRACT

BACKGROUND: Nepal is one of the high prevalent countries for tobacco use in Southeast Asia regions. Tobacco related cancer share the major burden since a decade, however, population-based estimates is still lacking. This study provides results from population-based cancer registries on tobacco-related cancer (TRCs) burden in Nepal. METHODS: The data were collected by population-based cancer registry conducted in nine districts by Nepal Health Research Council. The districts were categorized in urban, semi-urban and rural regions on the basis of geographical locations and facilities available in the regions. Analysis was done to identify tobacco-associated cancer incidence, mortality and patterns along with cumulative risk of having cancer before the age of 75 years. RESULTS: Tobacco-related cancer was 35.3% in men and 17.3% in women. We found that every one in 36 men and one in 65 women developed tobacco-related cancer before age 75 in Nepal. Cancer of lung, mouth, esophagus and larynx were among the five most common tobacco-related cancers in both men and women. The incidence of tobacco-associated cancers was higher in urban region with age adjusted rate 33.6 and 17.0 per 100,000 population for men and women respectively compared to semi-urban and rural regions. Tobacco-associated cancer mortality was significantly higher compared to incidence. CONCLUSION: The prevalence of tobacco-related cancer found high in Nepal despite of enforcement of tobacco control policy and strategies including WHO framework convention on tobacco control. Concerned authorities should focus towards monitoring of implemented tobacco control policy and strategies.


Subject(s)
Neoplasms , Registries , Rural Population , Urban Population , Humans , Nepal/epidemiology , Male , Female , Neoplasms/epidemiology , Neoplasms/mortality , Neoplasms/etiology , Rural Population/statistics & numerical data , Middle Aged , Adult , Aged , Urban Population/statistics & numerical data , Incidence , Prevalence , Nicotiana/adverse effects , Young Adult , Adolescent
17.
Methods Mol Biol ; 2786: 289-300, 2024.
Article in English | MEDLINE | ID: mdl-38814400

ABSTRACT

In this protocol, we outline how to produce a chimeric viral vaccine in a biosafety level 1 (BSL1) environment. An animal viral vector RNA encapsidated with tobacco mosaic virus (TMV) coat protein can be fully assembled in planta. Agrobacterium cultures containing each component are inoculated together into tobacco leaves and the self-assembled hybrid chimeric viral vaccine is harvested 4 days later and purified with a simple PEG precipitation. The viral RNA delivery vector is derived from the BSL1 insect virus, Flock House virus (FHV), and replicates in human and animal cells but does not spread systemically. A polyethylene glycol purification protocol is also provided to collect and purify these vaccines for immunological tests. In this update, we also provide a protocol for in trans co-inoculation of a modified FHV protein A, which significantly increased the yield of in planta chimeric viral vaccine.


Subject(s)
Nicotiana , Replicon , Tobacco Mosaic Virus , Viral Vaccines , Nicotiana/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , Animals , Tobacco Mosaic Virus/genetics , Tobacco Mosaic Virus/immunology , Replicon/genetics , RNA, Viral/genetics , Genetic Vectors/genetics , Nodaviridae/genetics , Nodaviridae/immunology , Plants, Genetically Modified/genetics , Capsid Proteins/genetics , Capsid Proteins/immunology , Agrobacterium/genetics , Humans
18.
BMC Plant Biol ; 24(1): 473, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811869

ABSTRACT

BACKGROUND: Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS: Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS: Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.


Subject(s)
Carbon , Metabolomics , Nicotiana , Plant Growth Regulators , Transcriptome , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Carbon/metabolism , Plant Growth Regulators/metabolism , Gene Expression Profiling , Metabolome , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/genetics
19.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791101

ABSTRACT

Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.


Subject(s)
Lead , Melatonin , Nicotiana , Oxidative Stress , Phospholipids , Melatonin/pharmacology , Nicotiana/metabolism , Nicotiana/drug effects , Oxidative Stress/drug effects , Phospholipids/metabolism , Lead/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Lipidomics/methods , Cell Line , Plant Cells/metabolism , Plant Cells/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects
20.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791298

ABSTRACT

Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.


Subject(s)
Nucleus Accumbens , Ventral Tegmental Area , Animals , Rats , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/drug effects , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Smoke/adverse effects , Nicotine/adverse effects , Rats, Wistar , Nicotiana/adverse effects , Tobacco Use Disorder/metabolism , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...