Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.990
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 367-372, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710520

ABSTRACT

Toll-like receptor 2 (TLR2) is a pattern recognition receptor expressed on the surface of leukocytes. Various ligands can activate or inhibit TLR2, therefore regulating the inflammation and apoptosis of immune cells. Mycobacterium tuberculosis (MTB) typically parasitizes macrophages. Further, after infecting the body, MTB can interact with TLR2 on the surface of various immune cells, including macrophages, leading to the release of cytokines that can affect the state and proliferation of MTB in the body. Additional research is needed to understand the polymorphism of TLR2 at the molecular level. Current studies indicate that the majority of TLR2 polymorphisms are not associated with susceptibility to MTB infection. This review provides an overview of the researches related to TLR2 and its ligands, the immune regulation activities of TLR2 following MTB infection, and the association of TLR2 polymorphism with susceptibility to MTB.


Subject(s)
Mycobacterium tuberculosis , Toll-Like Receptor 2 , Tuberculosis , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Polymorphism, Genetic , Animals , Genetic Predisposition to Disease
2.
Front Immunol ; 15: 1353922, 2024.
Article in English | MEDLINE | ID: mdl-38745645

ABSTRACT

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Subject(s)
Dendritic Cells , Inflammation , Interleukin-4 , Mast Cells , Mice, Inbred C57BL , Toll-Like Receptor 2 , Zymosan , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Inflammation/immunology , Inflammation/metabolism , Interleukin-4/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Mice, Knockout
3.
World J Microbiol Biotechnol ; 40(7): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755413

ABSTRACT

Globally colorectal cancer ranks as the third most widespread disease and the third leading cause of cancer-associated mortality. Immunotherapy treatments like PD-L1 blockade have been used to inhibit the PD-L1 legend, which boosts the activity of cytotoxic T lymphocytes. Recently, studies suggest that some probiotics could potentially enhance the effectiveness of immunotherapy treatments for cancer patients. We found that in Caco-2 and HT-29 cells, the live Leuconostoc mesenteroides treatment resulted an increase in the PD-L1 expression and this treatment stimulated interferon-gamma (IFN-γ) production in Jurkat T-cells. Due to the well-established ability of IFN-γ to enhance PD-L1 expression, the combination of IFN-γ and L. mesenteroides was used in colon cancer cell lines and a resulting remarkable increase of over tenfold in PD-L1 expression was obtained. Interestingly, when L. mesenteroides and IFN-γ are present, the blockage of PD-L1 using PD-L1 antibodies not only improved the viability of Jurkat T-cells but also significantly boosted the levels of IFN-γ and IL-2, the T-cells activation marker cytokines. In addition to upregulating PD-L1, L. mesenteroides also activated Toll-like receptors (TLRs) and NOD-like receptors (NODs) pathways, specifically through TLR2 and NOD2, while also exerting a suppressive effect on autophagy in colon cancer cell lines. In conclusion, our findings demonstrate a significant upregulation of PD-L1 expression in colon cancer cells upon co-culturing with L. mesenteroides. Moreover, the presence of PD-L1 antibodies during co-culturing activates Jurkat T cells. The observed enhancement in PD-L1 expression may be attributed to the inhibition of the Autophagy pathway or activation of the hippo pathway. KEY POINTS: Co-culturing L. mesenteroides increases PD-L1 gene and protein transaction in colon cancer. L. mesenteroides existing enhances T cells viability and activity. GPCR41/42 is a possible link between L. mesenteroides, YAP-1 and PD-L1.


Subject(s)
B7-H1 Antigen , Colonic Neoplasms , Interferon-gamma , Leuconostoc mesenteroides , Up-Regulation , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Interferon-gamma/metabolism , Colonic Neoplasms/immunology , HT29 Cells , Jurkat Cells , Caco-2 Cells , Leuconostoc mesenteroides/metabolism , Leuconostoc mesenteroides/genetics , Interleukin-2/metabolism , Lymphocyte Activation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Probiotics/pharmacology , Cell Line, Tumor , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics
4.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786077

ABSTRACT

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Subject(s)
COVID-19 , Lung , Megakaryocytes , SARS-CoV-2 , Thrombosis , Toll-Like Receptor 2 , Up-Regulation , Humans , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , Male , Female , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/virology , Aged , Middle Aged , Aged, 80 and over , Lung/pathology , Lung/virology , Lung/metabolism , Up-Regulation/genetics , Thrombosis/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Immunity, Innate , Pandemics
5.
Genes (Basel) ; 15(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790263

ABSTRACT

In the present study, we have explored the involvement of Toll-like Receptor 4 (TLR4) in atrial fibrillation (AF), by using a meta-analysis of publicly available human transcriptomic data. The meta-analysis revealed 565 upregulated and 267 downregulated differentially expressed genes associated with AF. Pathway enrichment analysis highlighted a significant overrepresentation in immune-related pathways for the upregulated genes. A significant overlap between AF differentially expressed genes and TLR4-modulated genes was also identified, suggesting the potential role of TLR4 in AF-related transcriptional changes. Additionally, the analysis of other Toll-like receptors (TLRs) revealed a significant association with TLR2 and TLR3 in AF-related gene expression patterns. The examination of MYD88 and TICAM1, genes associated with TLR4 signalling pathways, indicated a significant yet nonspecific enrichment of AF differentially expressed genes. In summary, this study offers novel insights into the molecular aspects of AF, suggesting a pathophysiological role of TLR4 and other TLRs. By targeting these specific receptors, new treatments might be designed to better manage AF, offering hope for improved outcomes in affected patients.


Subject(s)
Atrial Fibrillation , Toll-Like Receptor 4 , Humans , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Transcriptome , Signal Transduction/genetics , Computational Biology/methods , Gene Expression Profiling , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Adaptor Proteins, Vesicular Transport
6.
Front Biosci (Landmark Ed) ; 29(4): 161, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682207

ABSTRACT

Atherosclerosis (AS) is a chronic inflammatory vascular disease that begins with endothelial activation followed by a series of inflammatory responses, plaque formation, and finally rupture. An early event in endothelial dysfunction is activation of the nuclear factor-κB (NF-κB) signaling axis. Toll-like receptors (TLRs) in endothelial cells (ECs) play an essential role in recognizing pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and lifestyle-associated molecular patterns (LAMPs). Activation of the canonical NF-κB pathway stimulates the expression of cytokines, chemokines, and an array of additional genes which activate and amplify AS-associated inflammatory responses. In this review, we discuss the involvement of TLR2/4 and NF-κB signaling in ECs during AS initiation, as well as regulation of the inflammatory response during AS by noncoding RNAs, especially microRNA (miRNA) and circular RNA (circRNA).


Subject(s)
Atherosclerosis , Endothelial Cells , NF-kappa B , Signal Transduction , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Humans , Atherosclerosis/metabolism , Atherosclerosis/immunology , NF-kappa B/metabolism , Endothelial Cells/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/physiology , Inflammation/metabolism
7.
Front Immunol ; 15: 1383113, 2024.
Article in English | MEDLINE | ID: mdl-38646530

ABSTRACT

It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.


Subject(s)
Inflammation , Osteogenesis , Toll-Like Receptor 2 , Wnt Signaling Pathway , Animals , Male , Mice , Adaptor Proteins, Signal Transducing , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoblasts/immunology , Osteocytes/drug effects , Osteocytes/metabolism , Osteogenesis/drug effects , Skull , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Wnt Proteins/metabolism
8.
Microb Pathog ; 191: 106660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657710

ABSTRACT

Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.


Subject(s)
Apoptosis , Cattle Diseases , Endometritis , Escherichia coli Infections , Escherichia coli , Oxidative Stress , Up-Regulation , Uterus , Cattle , Animals , Female , Endometritis/veterinary , Endometritis/microbiology , Endometritis/pathology , Endometritis/metabolism , Cattle Diseases/microbiology , Cattle Diseases/metabolism , Cattle Diseases/immunology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Inflammation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation Mediators/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
9.
Viruses ; 16(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38675975

ABSTRACT

Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification. LCMV-ARM induces robust NF-κB and interferon response factor (IRF) activation while LCMV-WE seems to avoid early innate sensing and failed to induce strong NF-κB and IRF responses in dual-reporter monocyte and epithelial cells. Toll-like receptor 2 (TLR-2) signaling appears to play a critical role in NF-κB activation and the silencing of TLR-2 shuts down IL-6 production in ARM but not in WE-infected cells. Pathogenic LCMV-WE infection is poorly recognized in early endosomes and failed to induce TLR-2/Mal-dependent pro-inflammatory cytokines. Following infection, Interleukin-1 receptor-associated kinase 1 (IRAK-1) expression is diminished in LCMV-ARM- but not LCMV-WE-infected cells, which indicates it is likely involved in the LCMV-ARM NF-κB activation. By confocal microscopy, ARM and WE strains have similar intracellular trafficking although LCMV-ARM infection appears to coincide with greater co-localization of early endosome marker EEA1 with TLR-2. Both strains co-localize with Rab-7, a late endosome marker, but the interaction with LCMV-WE seems to be more prolonged. These findings suggest that LCMV-ARM's intracellular trafficking pathway may facilitate interaction with innate immune sensors, which promotes the induction of effective innate and adaptive immune responses.


Subject(s)
Immunity, Innate , Lymphocytic choriomeningitis virus , Virus Internalization , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Lymphocytic choriomeningitis virus/physiology , Animals , Humans , Mice , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Endosomes/metabolism , NF-kappa B/metabolism , Signal Transduction , Cell Line , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Epithelial Cells/virology , Epithelial Cells/immunology
10.
J Ethnopharmacol ; 331: 118210, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38641074

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Long-term chronic inflammation often leads to chronic diseases. Although Sophora flavescens has been shown to have anti-inflammatory properties, its detailed molecular mechanism is still unknown. AIM OF STUDY: This study investigated the effect of Radix Sophorae Flavescentis on the LPS-induced inflammatory response in macrophages. MATERIALS AND METHODS: LPS was used to induce the peritoneal macrophages to simulate the inflammatory environment in vitro. Different concentrations of Radix Sophorae Flavescentis-containing (medicated) serum were used for intervention. The peritoneal macrophages were identified by using hematoxylin-eosin and immunofluorescence staining. ELISA was used to measure the TNF-α and IL-6 expression to determine the concentration of LPS. ELISA and Western blot (WB) were used to detect the PGE2 and CFHR2 expression in each group, respectively. The lentiviral vector for interference and overexpression of the CFHR2 gene was constructed, packaged, and transfected into LPS-induced macrophages. The transfection efficiency was verified by WB. Then, ELISA was used to detect the TNF-α, PGE2, and IL-6 expression. WB was used to detect the CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression. RESULTS: The primary isolated cells were identified as macrophages. The LPS-treated macrophages exhibited significantly higher expression of PGE2 and CFHR2, and the inflammatory factors TNF-α and IL-6, as well as iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression compared with the control group (P < 0.05). The TNF-α, PGE2, and IL-6 levels, as well as CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression were considerably lower in the LPS-induced+10% medicated-serum group, LPS-induced+20% medicated-serum group, and shCFHR interference group compared with the LPS group (P < 0.05). CONCLUSION: Radix Sophorae Flavescentis might mediate CFHR2 expression and play an important role in inhibiting the LPS-induced pro-inflammatory response of macrophages. Radix Sophorae Flavescentis could be a potential treatment for LPS-induced related inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , Sophora , Animals , Sophora/chemistry , Anti-Inflammatory Agents/pharmacology , Mice , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Tumor Necrosis Factor-alpha/metabolism , Dinoprostone/metabolism , Plant Extracts/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Male , STAT1 Transcription Factor/metabolism , Plant Roots , Cells, Cultured , Macrophages/drug effects , Macrophages/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Sophora flavescens
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648901

ABSTRACT

Acne is a common chronic inflammatory disease of the pilosebaceous unit. Transient receptor potential vanilloid 3 (TRPV3) is an ion channel that is involved in inflammatory dermatosis development. However, the involvement of TRPV3 in acne-related inflammation remains unclear. Here, we used acne-like mice and human sebocytes to examine the role of TRPV3 in the development of acne. We found that TRPV3 expression increased in the skin lesions of Propionibacterium acnes (P. acnes)-injected acne-like mice and the facial sebaceous glands (SGs) of acne patients. TRPV3 promoted inflammatory cytokines and chemokines secretion in human sebocytes and led to neutrophil infiltration surrounding the SGs in acne lesions, further exacerbating sebaceous inflammation and participating in acne development. Mechanistically, TRPV3 enhanced TLR2 level by promoting transcriptional factor phosphorylated-FOS-like antigen-1 (p-FOSL1) expression and its binding to the TLR2 promoter, leading to TLR2 upregulation and downstream NF-κB signaling activation. Genetic or pharmacological inhibition of TRPV3 both alleviated acne-like skin inflammation in mice via the TLR2-NF-κB axis. Thus, our study revealed the critical role of TRPV3 in sebaceous inflammation and indicated its potential as an acne therapeutic target.


Subject(s)
Acne Vulgaris , Sebaceous Glands , TRPV Cation Channels , Toll-Like Receptor 2 , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Animals , Acne Vulgaris/metabolism , Acne Vulgaris/pathology , Acne Vulgaris/genetics , Acne Vulgaris/immunology , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Humans , Mice , Sebaceous Glands/metabolism , Sebaceous Glands/pathology , Sebaceous Glands/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Propionibacterium acnes , Male , NF-kappa B/metabolism , Signal Transduction , Mice, Inbred C57BL , Female
12.
J Immunol Res ; 2024: 9399524, 2024.
Article in English | MEDLINE | ID: mdl-38660059

ABSTRACT

Toll-like receptors (TLRs) have a critical role in recognizing pathogenic patterns and initiating immune responses against TB and HIV. Previously, studies described the gene expression of TLRs in patients with TB and HIV. Here, we demonstrated TLRs protein expressions and their association with clinical status and plasma markers in TB, HIV, and TB/HIV coinfection. The phenotyping of TLR2, TLR4, and TLR9 on CD14+ monocytes and their subsets were determined by multicolor flow cytometry. Host plasma biomarkers and microbial indices were measured using Luminex Multiplex assay and standard of care tools, respectively. TLR2 expression significantly enhanced in TB, slightly increased in HIV but slightly reduced in TB/HIV coinfection compared to apparently health controls (HC). On the other hand, TLR4 expression was significantly increased in TB, HIV, and TB/HIV compared to HC. Expression of TLR4 was equally enhanced on classical and intermediate monocytes while higher TLR2 expression on intermediate than classical monocytes. TLR4 had a positive correlation pattern with plasma biomarkers while TLR2 had an inverse correlation pattern. TLR4 is associated with disease severity while TLR2 is with the immune-competent status of patients. Our findings demonstrated that the pattern of TLR expression is disease as well as monocyte subset specific and distinct factors drive these differences.


Subject(s)
Biomarkers , Coinfection , HIV Infections , Monocytes , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Toll-Like Receptor 9 , Tuberculosis , Female , Humans , Male , Coinfection/immunology , HIV Infections/blood , HIV Infections/immunology , Monocytes/immunology , Monocytes/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 9/metabolism , Tuberculosis/immunology , Tuberculosis/blood
13.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629841

ABSTRACT

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Subject(s)
Epithelial Cells , Lipoproteins , Pneumococcal Infections , Streptococcus pneumoniae , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Humans , Lipoproteins/genetics , Lipoproteins/metabolism , Lipoproteins/immunology , Epithelial Cells/microbiology , Epithelial Cells/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Nasopharynx/microbiology , Mutation , Bacterial Adhesion
14.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674095

ABSTRACT

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Subject(s)
Cytokines , Dendritic Cells , Porphyromonas gingivalis , Th17 Cells , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Porphyromonas gingivalis/immunology , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Cell Differentiation , Th1 Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Cells, Cultured , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Tumor Necrosis Factor-alpha/metabolism
15.
J Clin Invest ; 134(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426494

ABSTRACT

Nuclear factor of activated T-cells 5 (NFAT5), an osmo-sensitive transcription factor, can be activated by isotonic stimuli, such as infection. It remains unclear, however, whether NFAT5 is required for damage-associated molecular pattern-triggered (DAMP-triggered) inflammation and immunity. Here, we found that several DAMPs increased NFAT5 expression in macrophages. In particular, serum amyloid A (SAA), primarily generated by the liver, substantially upregulated NFAT5 expression and activity through TLR2/4-JNK signalling pathway. Moreover, the SAA-TLR2/4-NFAT5 axis promoted migration and chemotaxis of macrophages in an IL-6- and chemokine ligand 2-dependent (CCL2-dependent) manner in vitro. Intraarticular injection of SAA markedly accelerated macrophage infiltration and arthritis progression in mice. By contrast, genetic ablation of NFAT5 or TLR2/4 rescued the pathology induced by SAA, confirming the SAA-TLR2/4-NFAT5 axis in vivo. Myeloid-specific depletion of NFAT5 also attenuated SAA-accelerated arthritis. Of note, inflammatory arthritis in mice strikingly induced SAA overexpression in the liver. Conversely, forced overexpression of the SAA gene in the liver accelerated joint damage, indicating that the liver contributes to bolstering chronic inflammation at remote sites by secreting SAA. Collectively, this study underscores the importance of the SAA-TLR2/4-NFAT5 axis in innate immunity, suggesting that acute phase reactant SAA mediates mutual interactions between liver and joints and ultimately aggravates chronic arthritis by enhancing macrophage activation.


Subject(s)
Arthritis , Serum Amyloid A Protein , Animals , Mice , Arthritis/metabolism , Inflammation/pathology , Liver/metabolism , Macrophage Activation , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transcription Factors/metabolism
16.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(3): 237-246, 2024 Mar 09.
Article in Chinese | MEDLINE | ID: mdl-38432655

ABSTRACT

Objective: To investigate the effects of Porphyromonas gingivalis derived outer membrane vesicles (Pg OMV) on osteoclast differentiation of macrophages and its underlying mechanisms. Methods: The morphology and the size distribution of Pg OMV were analyzed by transmission electron microscopy and nanoparticle tracing analysis, respectively. The osteoclast precursors were treated with 1, 3 and 10 mg/L Pg OMV (1, 3 and 10 mg/L OMV treatment group) or phosphate buffer solution (PBS)(control group). The formation of osteoclasts was analyzed by tartrate-resistant acid phosphase (TRAP) staining and F-actin staining and real-time quantitative PCR (RT-qPCR) were used to detect the expression of Fos and matrix metallopeptidase 9 (MMP9). Polymyxin B (PMB) was used to block lipopolysaccharide (LPS) and then Pg OMV was used to treat osteoclast precursor (PMB-OMV treatment group), and OMV treatment group was used as control. TRAP and F-actin staining were used to observe the formation of osteoclasts and actin rings. The effect of Pg OMV on the expression of Toll-like receptor (TLR) 2 and TLR4 in preosteoclasts was detected by Western blotting. The osteoclast precursors were pretreated with 10, 50, 100 and 200 µmol/L C29, an inhibitor of TLR2, and then treated with Pg OMV(OMV+10, 50, 100 and 200 µmol/L C29 treatment group) and OMV treatment group without C29 pretreatment was control. TRAP and F-actin staining were used to observe the formation of osteoclasts and actin rings. The osteoclast precursor cells were treated with OMV (OMV treatment group) and OMV incubated with PMB (PMB-OMV treatment group) and the expression of TLR2 in osteoclast precursor was detected by Western blotting. Results: Pg OMV showed classical vesicular structures, and the average particle size of Pg OMV were 179.2 nm. A large number of actin rings were observed in the 3 and 10 mg/L OMV treatment groups. The percentages of TRAP-positive osteoclast area in 3 mg/L OMV treatment group [(22.6±2.1)%] and 10 mg/L OMV treatment group [(32.0±2.3)%] were significantly increased compared with control group [(4.9±0.5)%] (P<0.001). Compared with the control group (1.000±0.029), the mRNA relative expression of Fos in 3 mg/L OMV treatment group (1.491±0.114) and 10 mg/L OMV treatment group (1.726±0.254) was significantly increased (P=0.013, P=0.001). Compared with the control group (1.007±0.148), the mRNA relative expression of MMP9 in the group of 10 mg/L OMV (2.232±0.097) was significantly increased (P<0.001). Actin ring formation was less in PMB-OMV treatment groups than in OMV treatment groups. The proportion of TRAP-positive osteoclasts area [(14.8±3.8)%] in PMB-OMV treatment group was significantly lower than OMV treatment group [(31.5±6.7) %] (P=0.004). The relative expression of TLR2 in OMV treatment group (1.359±0.134) was significantly higher than that in the control group (1.000±0.000) (t=4.62, P=0.044). Compared with the OMV treatment group [(29.4±1.7)%], 50, 100 and 200 µmol/L C29 significantly decreased the formation of osteoclasts [(24.0±1.7)%, (18.5±2.1)%, (9.1±1.3) %] (P=0.026, P<0.001, P<0.001). TLR2 protein expression in PMB-OMV group (0.780±0.046) was significantly lower than that in OMV group (1.000±0.000)(t=8.32, P=0.001). Conclusions: Pg OMV can promote osteoclast differentiation by carrying LPS, TLR2 plays an important role in Pg OMV mediated osteoclast differentiation.


Subject(s)
Lipopolysaccharides , Osteoclasts , Lipopolysaccharides/pharmacology , Porphyromonas gingivalis/chemistry , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Actins/metabolism , Actins/pharmacology , Matrix Metalloproteinase 9/metabolism , RNA, Messenger/metabolism , Cell Differentiation
17.
Sci Rep ; 14(1): 7261, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538656

ABSTRACT

Although intravenous immunoglobulin (IVIG)-resistant Kawasaki disease (KD) presents with persistent inflammatory stimulation of the blood vessels and an increased risk of coronary artery dilatation. However, the pathogenesis of this disease is unclear, with no established biomarkers to predict its occurrence. This study intends to explore the utility of S100A12/TLR2-related signaling molecules and clinical indicators in the predictive modeling of IVIG-resistant KD. The subjects were classified according to IVIG treatment response: 206 patients in an IVIG-sensitive KD group and 49 in an IVIG-resistant KD group. Real-time PCR was used to measure the expression of S100A12, TLR2, MYD88, and NF-κB in peripheral blood mononuclear cells of patients, while collecting demographic characteristics, clinical manifestations, and laboratory test results of KD children. Multi-factor binary logistic regression analysis identified procalcitonin (PCT) level (≥ 0.845 ng/mL), Na level (≤ 136.55 mmol/L), and the relative expression level of S100A12 (≥ 10.224) as independent risk factors for IVIG-resistant KD and developed a new scoring model with good predictive ability to predict the occurrence of IVIG-resistant KD.


Subject(s)
Immunoglobulins, Intravenous , Mucocutaneous Lymph Node Syndrome , Child , Humans , Infant , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/therapy , S100A12 Protein , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Leukocytes, Mononuclear/metabolism , Retrospective Studies
18.
Bull Exp Biol Med ; 176(4): 505-508, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38492105

ABSTRACT

The expression of the gene of pattern recognition receptor TLR2, proinflammatory cytokine IL-1ß, and anti-inflammatory cytokine IL-10 was analyzed in the peripheral blood of nonagenarians (n=219; mean age 92.1 years, 77 men and 142 women) in comparison with healthy young donors (n=24; mean age 22.5 years, 16 women and 8 men). Nonagenarians were interviewed, medical records were analyzed, and a comprehensive geriatric assessment was performed according to the Clinical Guidelines on Frailty. The level of gene expression was determined by real-time PCR. The participation of inflammatory mechanisms in the immunosenescence was revealed. It was shown that increased expression of IL1B and TLR2 genes is associated with the development of frailty in nonagenarians and can be a factor of pathological aging. Increased expression of IL10 gene can be considered as a factor of successful aging in nonagenarians.


Subject(s)
Frailty , Interleukin-10 , Interleukin-1beta , Toll-Like Receptor 2 , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Young Adult , Aging/genetics , Cytokines/metabolism , Interleukin-10/genetics , Interleukin-1beta/genetics , Nonagenarians , Toll-Like Receptor 2/genetics
19.
Eur J Immunol ; 54(5): e2350715, 2024 May.
Article in English | MEDLINE | ID: mdl-38446066

ABSTRACT

Although a role for TLR2 on T cells has been indicated in prior studies, in vivo stimulation of TLR2 on T cells by Mtb and its impact on Mtb infection has not been tested. Furthermore, it is not known if the enhanced susceptibility to Mtb of Tlr2 gene knockout mice is due to its role in macrophages, T cells, or both. To address TLR2 on T cells, we generated Tlr2fl/flxCd4cre/cre mice, which lack expression of TLR2 on both CD4 and CD8 T cells, to study the in vivo role of TLR2 on T cells after aerosol infection with virulent Mtb. Deletion of TLR2 in CD4+ and CD8+ T cells reduces their ability to be co-stimulated by TLR2 ligands for cytokine production. These include both pro- (IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-10). Deletion of TLR2 in T cells affected control of Mtb in the lungs and spleens of infected mice. This suggests that T-cell co-stimulation by mycobacterial TLR2 ligands in vivo contributes to the control of Mtb infection in the lung and spleen.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Mice, Knockout , Mycobacterium tuberculosis , Toll-Like Receptor 2 , Tuberculosis , Animals , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Mice, Inbred C57BL , Lung/immunology , Lung/microbiology , Spleen/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymphocyte Activation/immunology , Cytokines/metabolism , Cytokines/immunology
20.
Int Immunopharmacol ; 130: 111768, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38432149

ABSTRACT

Homograft rejection is the main cause of heart transplantation failure. The role of TLR2, a major member of the toll-like receptor (TLR) family, in transplantation rejection is has yet to be elucidated. In this study, we used a mouse model of acute cardiac transplantation rejection to investigate whether the TLR2 signalling pathway can regulate cardiac transplantation rejection by regulating alloreactive IL-17+γδT (γδT17) cells. We found that the expression of TLR2 on the surface of dendritic cells (DCs) and macrophages increased during acute transplantation rejection. In addition, our investigation revealed that γδT17 cells exert a significant influence on acute cardiac transplantation rejection. TLR2 gene knockout resulted in an increase in alloreactive γδT17 cells in the spleen and heart grafts of recipient mice compared with wild-type recipient mice and an increase in the mRNA expression of IL-17, IL-1ß, CCR6, and CCL20 in the heart grafts. In an in vitro experiment, a mixed lymphocyte reaction was conducted to assess the impact of TLR2 deficiency on the generation of γδT17 cells, which further substantiated a significant increase compared to that in wild-type controls. Furthermore, the mixed lymphocyte reaction showed that TLR2 regulated the production of γδT17 cells by regulating the ability of DCs to secrete IL-1ß. These results suggest that TLR2 signalling is important for regulating the generation of γδT17 cells after cardiac allograft transplantation.


Subject(s)
Heart Transplantation , Intraepithelial Lymphocytes , Toll-Like Receptor 2 , Animals , Mice , Graft Rejection , Interleukin-17/genetics , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transplantation, Homologous , Intraepithelial Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...