Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.695
Filter
1.
Nat Immunol ; 25(6): 969-980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831104

ABSTRACT

Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.


Subject(s)
Genetic Predisposition to Disease , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Lupus Erythematosus, Systemic/genetics , Humans , Animals , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Mice , Child , Female , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Male , Age of Onset , Genetic Variation , NF-kappa B/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Adolescent , THP-1 Cells , Interferon Type I/metabolism
2.
Sci Adv ; 10(18): eadn6537, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701219

ABSTRACT

In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.


Subject(s)
Autoimmunity , Macrophages , Toll-Like Receptor 7 , X Chromosome Inactivation , Animals , Female , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmunity/genetics , Mice , Male , Macrophages/metabolism , Macrophages/immunology , RNA, Long Noncoding/genetics , Signal Transduction , Dendritic Cells/immunology , Dendritic Cells/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology
3.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791389

ABSTRACT

The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Animals , Humans , Mice , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptors/metabolism , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 8/genetics , Disease Models, Animal , Genetic Predisposition to Disease
4.
J Med Chem ; 67(10): 8346-8360, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38741265

ABSTRACT

Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 µM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 µM for hTLR7 and 18.25 µM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.


Subject(s)
Adjuvants, Immunologic , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Structure-Activity Relationship , Animals , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/chemical synthesis , Mice , Female , Alum Compounds/pharmacology , Alum Compounds/chemistry , Mice, Inbred BALB C , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
5.
Chem Commun (Camb) ; 60(42): 5474-5485, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712400

ABSTRACT

Toll-like receptor 7/8 (TLR-7/8) agonists serve as a promising class of pattern recognition receptors that effectively evoke the innate immune response, making them promising immunomodulatory agents for tumor immunotherapy. However, the uncontrollable administration of TLR-7/8 agonists frequently leads to the occurrence of severe immune-related adverse events (irAEs). Thus, it is imperative to strategically design tumor-microenvironment-associated biomarkers or exogenous stimuli responsive TLR-7/8 agonists in order to accurately evaluate and activate innate immune responses. No comprehensive elucidation has been documented thus far regarding TLR-7/8 immune agonists that are specifically engineered to enhance immune activation. In this feature article, we provide an overview of the advancements in TLR-7/8 agonists, aiming to enhance the comprehension of their mechanisms and promote the clinical progression through nanomedicine strategies. The current challenges and future directions of cancer immunotherapy are also discussed, with the hope that this work will inspire researchers to explore innovative applications for triggering immune responses through TLR-7/8 agonists.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 8 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/immunology , Immunity, Innate/drug effects , Animals
6.
J Nanobiotechnology ; 22(1): 296, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811964

ABSTRACT

BACKGROUND: Combination therapy involving immune checkpoint blockade (ICB) and other drugs is a potential strategy for converting immune-cold tumors into immune-hot tumors to benefit from immunotherapy. To achieve drug synergy, we developed a homologous cancer cell membrane vesicle (CM)-coated metal-organic framework (MOF) nanodelivery platform for the codelivery of a TLR7/8 agonist with an epigenetic inhibitor. METHODS: A novel biomimetic codelivery system (MCM@UN) was constructed by MOF nanoparticles UiO-66 loading with a bromodomain-containing protein 4 (BRD4) inhibitor and then coated with the membrane vesicles of homologous cancer cells that embedding the 18 C lipid tail of 3M-052 (M). The antitumor immune ability and tumor suppressive effect of MCM@UN were evaluated in a mouse model of triple-negative breast cancer (TNBC) and in vitro. The tumor immune microenvironment was analyzed by multicolor immunofluorescence staining. RESULTS: In vitro and in vivo data showed that MCM@UN specifically targeted to TNBC cells and was superior to the free drug in terms of tumor growth inhibition and antitumor immune activity. In terms of mechanism, MCM@UN blocked BRD4 and PD-L1 to prompt dying tumor cells to disintegrate and expose tumor antigens. The disintegrated tumor cells released damage-associated molecular patterns (DAMPs), recruited dendritic cells (DCs) to efficiently activate CD8+ T cells to mediate effective and long-lasting antitumor immunity. In addition, TLR7/8 agonist on MCM@UN enhanced lymphocytes infiltration and immunogenic cell death and decreased regulatory T-cells (Tregs). On clinical specimens, we found that mature DCs infiltrating tumor tissues of TNBC patients were negatively correlated with the expression of BRD4, which was consistent with the result in animal model. CONCLUSION: MCM@UN specifically targeted to TNBC cells and remodeled tumor immune microenvironment to inhibit malignant behaviors of TNBC.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 8 , Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Triple Negative Breast Neoplasms/drug therapy , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Mice , Female , Humans , Cell Line, Tumor , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Transcription Factors/metabolism , Mice, Inbred BALB C , Cell Cycle Proteins/metabolism , Immunotherapy/methods , Epigenesis, Genetic/drug effects , Bromodomain Containing Proteins
7.
Int J Biol Macromol ; 270(Pt 1): 132258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735613

ABSTRACT

Covalently linking an adjuvant to an antigenic protein enhances its immunogenicity by ensuring a synergistic delivery to the immune system, fostering a more robust and targeted immune response. Most adjuvant-protein conjugate vaccines incorporate only one adjuvant due to the difficulties in its synthesis. However, there is a growing interest in developing vaccines with multiple adjuvants designed to elicit a more robust and targeted immune response by engaging different aspects of the immune system for complex diseases where traditional vaccines fall short. Here, we pioneer the synthesis of a dual-adjuvants protein conjugate Vaccine 1 by assembling a toll-like receptor 7/8 (TLR7/8) agonist, an invariant natural killer T cell (iNKT) agonist with a clickable bicyclononyne (BCN). The BCN group can bio-orthogonally react with azide-modified severe acute respiratory syndrome coronavirus-2 receptor-binding domain (SARS-CoV-2 RBD) trimer antigen to give the three-component Vaccine 1. Notably, with a mere 3 µg antigen, it elicited a balanced subclass of IgG titers and 20-fold more IgG2a than control vaccines, highlighting its potential for enhancing antibody-dependent cellular cytotoxicity. This strategy provides a practicable way to synthesize covalently linked dual immunostimulants. It expands the fully synthetic self-adjuvant protein vaccine that uses a single adjuvant to include two different types of adjuvants.


Subject(s)
Adjuvants, Immunologic , COVID-19 Vaccines , COVID-19 , Natural Killer T-Cells , SARS-CoV-2 , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/immunology , SARS-CoV-2/immunology , Animals , Natural Killer T-Cells/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/immunology , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Mice , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Female , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Immunoglobulin G/immunology
8.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38780621

ABSTRACT

Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.


Subject(s)
Autoimmunity , Animals , Humans , Mice , Autoimmunity/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , DNA Mutational Analysis , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Mutation , Female , Male , Mice, Inbred C57BL , HEK293 Cells , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology
9.
Dev Comp Immunol ; 157: 105197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763479

ABSTRACT

Toll-like receptors (TLRs) are pivotal pattern recognition receptors (PRRs) and key mediators of innate immunity. Despite the significance of channel catfish (Ictalurus punctatus) in comparative immunology and aquaculture, its 20 TLR genes remain largely functionally uncharacterized. In this study, our aim was to determine the catfish TLR7 agonists, signaling potential, and cellular localization. Using a mammalian reporter system, we identified imiquimod and resiquimod, typical ssRNA analogs, as potent catfish TLR7 agonists. Notably, unlike grass carp TLR7, catfish TLR7 lacks the ability to respond to poly (I:C). Confocal microscopy revealed predominant catfish TLR7 expression in lysosomes, co-localizing with the endosomal chaperone protein, UNC93B1. Furthermore, imiquimod stimulation elicited robust IFNb transcription in peripheral blood leukocytes isolated from adult catfish. These findings underscore the conservation of TLR7 signaling in catfish, reminiscent of mammalian TLR7 responses. Our study sheds light on the functional aspects of catfish TLR7 and contributes to a better understanding of its role in immune defense mechanisms.


Subject(s)
Fish Proteins , Ictaluridae , Imidazoles , Imiquimod , Immunity, Innate , Lysosomes , Toll-Like Receptor 7 , Animals , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Imidazoles/pharmacology , Ictaluridae/immunology , Lysosomes/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Signal Transduction , Humans , Aminoquinolines/pharmacology , Poly I-C/immunology
10.
BMC Complement Med Ther ; 24(1): 156, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605368

ABSTRACT

BACKGROUND: The clinical application of immune checkpoint inhibitors (ICIs) is limited by their drug resistance, necessitating the development of ICI sensitizers to improve cancer immunotherapy outcomes. Huang Lian Jie Du Decoction (HLJD, Oren-gedoku-to in Japanese, Hwangryunhaedok-tang in Korean), a famous traditional Chinese medicinal prescription, has exhibited potential in the field of cancer treatment. This study aims to investigate the impact of HLJD on the efficacy of ICIs in melanoma and elucidate the underlying mechanisms. METHODS: The potential synergistic effects of HLJD and ICIs were investigated on the tumor-bearing mice model of B16F10 melanoma, and the tumor infiltration of immune cells was tested by flow cytometry. The differential gene expression in tumors between HLJD and ICIs group and ICIs alone group were analyzed by RNA-seq. The effects of HLJD on oxidative stress, TLR7/8, and type I interferons (IFN-Is) signaling were further validated by immunofluorescence, PCR array, and immunochemistry in tumor tissue. RESULTS: HLJD enhanced the anti-tumor effect of ICIs, significantly inhibited tumor growth, and prolonged the survival duration in melanoma. HLJD increased the tumor infiltration of anti-tumor immune cells, especially DCs, CD4+ T cells and CD8+T cells. Mechanically, HLJD activated the oxidative stress and TLR7/8 signaling pathway and IFN-Is-related genes in tumors. CONCLUSIONS: HLJD enhanced the therapeutic benefits of ICIs in melanoma, through increasing reactive oxygen species (ROS), promoting the TLR7/8 pathway, and activating IFN-Is signaling, which in turn activated DCs and T cells.


Subject(s)
Drugs, Chinese Herbal , Immune Checkpoint Inhibitors , Melanoma , Mice , Animals , Immune Checkpoint Inhibitors/pharmacology , Coptis chinensis , Toll-Like Receptor 7 , Melanoma/drug therapy , Signal Transduction
11.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668900

ABSTRACT

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Subject(s)
Chemokine CCL2 , Chemokine CXCL10 , Imidazoles , Interleukin-8 , Toll-Like Receptor 7 , Transcription Factor RelA , Humans , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/biosynthesis , Chemokine CXCL10/genetics , Chemokine CXCL10/biosynthesis , Imidazoles/pharmacology , Interleukin-8/genetics , Interleukin-8/biosynthesis , Neuroblastoma , Neurons/drug effects , Neurons/metabolism , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
12.
Viral Immunol ; 37(3): 149-158, 2024 04.
Article in English | MEDLINE | ID: mdl-38573237

ABSTRACT

Hepatitis B Virus (HBV) is posing as a serious public health threat mainly due to its asymptomatic nature of infection in pregnancy and vertical transmission. Viral sensing toll-like receptors (TLR) and Interleukins (IL) are important molecules in providing an antiviral state. The study aimed to assess the role of TLR7-mediated immune modulation, which might have an impact in the intrauterine transmission of HBV leading to mother to child transmission of the virus. We investigated the expression pattern of TLR7, IL-3, and IL-6 by RT-PCR in the placentas of HBV-infected pregnant women to see their role in the intrauterine transmission of HBV. We further validated the expression of TLR7 in placentas using Immunohistochemistry. Expression analysis by RT-PCR of TLR7 revealed significant downregulation among the Cord blood (CB) HBV DNA positive and negative cases with mean ± standard deviation (SD) of 0.43 ± 0.22 (28) and 1.14 ± 0.57 (44) with p = 0.001. IL-3 and IL-6 expression revealed significant upregulation in the CB HBV DNA-positive cases with p = 0.001. Multinomial logistic regression analysis revealed that TLR7 and IL-3 fold change and mother HBeAg status are important predictors for HBV mother to child transmission. Immunohistochemistry revealed the decreased expression of TLR7 in CB HBV DNA-positive cases. This study reveals that the downregulation of TLR7 in the placenta along with CB HBV DNA-positive status may lead to intrauterine transmission of HBV, which may lead to vertical transmission of HBV.


Subject(s)
Hepatitis B , Pregnancy Complications, Infectious , Female , Humans , Pregnancy , DNA, Viral , Hepatitis B e Antigens , Hepatitis B Surface Antigens , Hepatitis B virus , Infectious Disease Transmission, Vertical , Interleukin-3 , Interleukin-6/genetics , Toll-Like Receptor 7/genetics , Infant, Newborn
13.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683377

ABSTRACT

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


Subject(s)
B-Lymphocytes , Interferon Type I , Signal Transduction , Spleen , TYK2 Kinase , Toll-Like Receptor 7 , Animals , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Interferon Type I/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Spleen/cytology , Spleen/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics
14.
Proc Natl Acad Sci U S A ; 121(19): e2319569121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683985

ABSTRACT

Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.


Subject(s)
Macrophages , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Humans , Macrophages/metabolism , Macrophages/immunology , Ligands , Mycobacterium tuberculosis/immunology , RNA, Transfer, His/metabolism , RNA, Transfer, His/genetics , Lipopolysaccharides
15.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675965

ABSTRACT

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


Subject(s)
DNA, Viral , Herpesvirus 4, Human , Inflammatory Bowel Diseases , Toll-Like Receptors , Animals , Female , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis/virology , Dextran Sulfate , Disease Models, Animal , DNA, Viral/adverse effects , DNA, Viral/pharmacology , Endosomes/drug effects , Endosomes/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/virology , Interleukin-17/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 3/antagonists & inhibitors , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/metabolism , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
16.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Subject(s)
Autoimmunity , Dendritic Cells , Integrin alphaVbeta3 , Lupus Erythematosus, Systemic , Mice, Knockout , Signal Transduction , Toll-Like Receptor 7 , Animals , Mice , Dendritic Cells/immunology , Integrin alphaVbeta3/immunology , Integrin alphaVbeta3/metabolism , Autoimmunity/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , B-Lymphocytes/immunology , Autoantibodies/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Lymphocyte Activation/immunology , Disease Models, Animal
17.
Cell Commun Signal ; 22(1): 220, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589923

ABSTRACT

Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.


Subject(s)
Lupus Nephritis , MicroRNAs , Humans , Mice , Animals , Lupus Nephritis/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Kidney/metabolism , Mice, Transgenic , MicroRNAs/genetics
18.
Exp Mol Med ; 56(5): 1164-1177, 2024 May.
Article in English | MEDLINE | ID: mdl-38689088

ABSTRACT

Recent evidence of gut microbiota dysbiosis in the context of psoriasis and the increased cooccurrence of inflammatory bowel disease and psoriasis suggest a close relationship between skin and gut immune responses. Using a mouse model of psoriasis induced by the Toll-like receptor (TLR) 7 ligand imiquimod, we found that psoriatic dermatitis was accompanied by inflammatory changes in the small intestine associated with eosinophil degranulation, which impaired intestinal barrier integrity. Inflammatory responses in the skin and small intestine were increased in mice prone to eosinophil degranulation. Caco-2 human intestinal epithelial cells were treated with media containing eosinophil granule proteins and exhibited signs of inflammation and damage. Imiquimod-induced skin and intestinal changes were attenuated in eosinophil-deficient mice, and this attenuation was counteracted by the transfer of eosinophils. Imiquimod levels and the distribution of eosinophils were positively correlated in the intestine. TLR7-deficient mice did not exhibit intestinal eosinophil degranulation but did exhibit attenuated inflammation in the skin and small intestine following imiquimod administration. These results suggest that TLR7-dependent bidirectional skin-to-gut communication occurs in psoriatic inflammation and that inflammatory changes in the intestine can accelerate psoriasis.


Subject(s)
Cell Degranulation , Disease Models, Animal , Eosinophils , Imiquimod , Intestine, Small , Psoriasis , Toll-Like Receptor 7 , Animals , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Psoriasis/pathology , Psoriasis/metabolism , Mice , Eosinophils/metabolism , Eosinophils/immunology , Humans , Intestine, Small/pathology , Intestine, Small/metabolism , Skin/pathology , Skin/metabolism , Inflammation/pathology , Inflammation/metabolism , Mice, Knockout , Caco-2 Cells , Membrane Glycoproteins
19.
Clin Immunol ; 262: 110194, 2024 May.
Article in English | MEDLINE | ID: mdl-38508295

ABSTRACT

Pathologic type I interferon (T1IFN) expression is a key feature in systemic lupus erythematosus (SLE) that associates with disease activity. When compared to adult-onset disease, juvenile-onset (j)SLE is characterized by increased disease activity and damage, which likely relates to increased genetic burden. To identify T1IFN-associated gene polymorphisms (TLR7, IRAK1, miR-3142/miR-146a, IRF5, IRF7, IFIH1, IRF8, TYK2, STAT4), identify long-range linkage disequilibrium and gene:gene interrelations, 319 jSLE patients were genotyped using panel sequencing. Coupling phenotypic quantitative trait loci (QTL) analysis identified 10 jSLE QTL that associated with young age at onset (<12 years; IRAK1 [rs1059702], TLR7 [rs3853839], IFIH1 [rs11891191, rs1990760, rs3747517], STAT4 [rs3021866], TYK2 [rs280501], IRF8 [rs1568391, rs6638]), global disease activity (SLEDAI-2 K >10; IFIH1 [rs1990760], STAT4 [rs3021866], IRF8 [rs903202, rs1568391, rs6638]), and mucocutaneous involvement (TLR7 [rs3853839], IFIH1 [rs11891191, rs1990760]). This study suggests T1IFN-associated polymorphisms and gene:gene interrelations in jSLE. Genotyping of jSLE patients may allow for individualized treatment and care.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , MicroRNAs , Adult , Humans , Child , Interferon-Induced Helicase, IFIH1 , Interferon Type I/genetics , Epistasis, Genetic , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/complications , Interferon Regulatory Factors/genetics
20.
Org Biomol Chem ; 22(14): 2764-2773, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38497199

ABSTRACT

Pattern recognition receptors (PRRs) play a critical role in the innate immune response, and toll-like receptor 7 (TLR7) is an important member of PRRs. Although several TLR7 agonists are available, most of them are being tested clinically, with only one available on the market. Thus, it is imperative to develop new TLR7 agonists. In this study, we designed and synthesized three kinds of quinazoline derivatives and five kinds of pyrrolo[3,2-d]pyrimidine derivatives targeting TLR7. The antiviral efficacy of these compounds was evaluated in vitro and in vivo. Our findings indicated that four kinds of compounds showed exceptional antiviral activity. Furthermore, molecular docking studies confirmed that compound 11 successfully positioned itself in the pocket of the TLR7 guanosine loading site with a binding energy of -4.45 kcal mol-1. These results suggested that these compounds might be potential antiviral agents.


Subject(s)
Quinazolines , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Quinazolines/chemistry , Molecular Docking Simulation , Adjuvants, Immunologic , Antiviral Agents/pharmacology , Pyrimidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...