Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Arch Virol ; 166(11): 3199-3205, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34387750

ABSTRACT

A novel virus, Paris virus 2 (ParV2), was isolated from diseased Paris polyphylla var. yunnanensis, and its complete genome sequence was determined and analyzed. ParV2 is a positive-sense single-stranded RNA (+ssRNA) virus with a genome size of 4,118 nucleotides. The ParV2 genome contains six putative open reading frames (ORFs) that encode proteins with predicted molecular weights of 40.14, 100.26, 7.31, 7.85, 26.09, and 8.77 kDa. The first ORF (ORF1) of ParV2 encodes a putative protein of 40.14 kDa (P40, nt: 20-1,096), whiles the second ORF (ORF2, 888 aa) containing the GDD motif encodes the highly conserved RNA-dependent RNA polymerase protein (RdRP, nt:20-2,683, P100, 100.26 kDa) of viruses in the family Tombusviridae. Multiple sequence alignments analysis showed that the complete genome sequence of ParV2 shares 31.7-55.5% nucleotide sequence identities with viruses in the family Tombusviridae. Ginger chlorotic fleck-associated tombusvirus (GCFaV-1, Accession No. QKE30557) had the highest sequence identity (55.5%) with ParV2. GCFaV-1 also shares 59.2% RdRP and 34.9% CP amino acid sequence identities with ParV2. Sequence comparisons and phylogenetic analysis of RdRP suggested that ParV2 is a novel member of the family Tombusviridae, and its closest known relative is GCFaV-1.


Subject(s)
Melanthiaceae/virology , Phylogeny , Plant Diseases/virology , Tombusviridae/genetics , Genome, Viral , Open Reading Frames , RNA-Dependent RNA Polymerase/genetics , Tombusviridae/isolation & purification , Viral Proteins/genetics
2.
Arch Virol ; 166(8): 2321-2324, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34046760

ABSTRACT

The complete sequence of a new viral RNA from babaco (Vasconcellea × heilbornii) was determined. The genome consisted of 4,584 nucleotides, containing two open reading frames (ORFs 1 and 2), a 9-nt-long noncoding region (NCR) at the 5' terminus, and an unusually long (1,843 nt) NCR at the 3' terminus. The presence of a potential heptameric slippery signal located 12 nt upstream the stop codon of ORF 1 suggests a -1 ribosomal frameshift mechanism for the translation of ORF 2. Sequence comparisons of ORF 2 revealed similarity to the RNA-dependent RNA polymerase (RdRp) of several umbra- and umbra-like viruses. Phylogenetic analysis of the RdRp placed the new virus in a well-supported and cohesive clade that includes umbra-like viruses reported in papaya, citrus, opuntia, maize, and sugarcane hosts. Viruses of this clade share a most recent ancestor with the umbraviruses but have different genomic features. The creation of a new genus within the family Tombusviridae is proposed for the classification of these novel viruses.


Subject(s)
Caricaceae/virology , Tombusviridae/classification , Whole Genome Sequencing/methods , Base Composition , Genome Size , Genome, Viral , Open Reading Frames , Phylogeny , Tombusviridae/genetics , Tombusviridae/isolation & purification
3.
Arch Virol ; 166(3): 961-965, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33410996

ABSTRACT

Many viral diseases of sugarcane negatively affect yield. A sugarcane accession originating from South Africa exhibiting mosaic symptoms was processed for high-throughput sequencing. Bioinformatic analysis revealed two known sugarcane viruses and a contig of around 2,800 nucleotides resembling umbra-like viruses of the family Tombusviridae. The sequence of the viral contig was confirmed by cloning and Sanger sequencing, and the ends of the virus sequence were determined. Open reading frame analysis revealed the presence of four ORFs. Phylogenetic analysis of the complete virus sequence showed that this virus clusters with other umbra-like viruses of the family Tombusviridae.


Subject(s)
Plant Diseases/virology , Saccharum/virology , Tombusviridae/classification , Tombusviridae/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames/genetics , RNA, Viral/genetics , South Africa , Tombusviridae/isolation & purification
4.
Virus Res ; 286: 198081, 2020 09.
Article in English | MEDLINE | ID: mdl-32663481

ABSTRACT

Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.


Subject(s)
Genetic Variation , Genome, Viral , Plant Diseases/virology , Potyvirus/genetics , Tombusviridae/genetics , Zea mays/virology , High-Throughput Nucleotide Sequencing , Kenya , Potyvirus/classification , Potyvirus/isolation & purification , Recombination, Genetic , Tombusviridae/classification , Tombusviridae/isolation & purification
5.
PLoS One ; 15(3): e0230023, 2020.
Article in English | MEDLINE | ID: mdl-32134962

ABSTRACT

Melon necrotic spot virus (MNSV) can cause significant economic losses due to decreased quality in cucurbit crops. The current study is the first to use reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of MNSV. A set of four LAMP primers was designed based on the coat protein gene sequence of MNSV, and a RT-LAMP reaction was successfully performed for 1 h at 62°C. The results of RT-LAMP showed high specificity for MNSV and no cross-reaction with other viruses. Compared to traditional reverse transcription-PCR (RT-PCR), the RT-LAMP assay was 103-fold more sensitive in detecting MNSV. Due to its sensitivity, speed and visual assessment, RT-LAMP is appropriate for detecting MNSV in the laboratory.


Subject(s)
Nucleic Acid Amplification Techniques , Reverse Transcription , Tombusviridae/genetics , Tombusviridae/isolation & purification , Time Factors
6.
Viruses ; 11(7)2019 06 28.
Article in English | MEDLINE | ID: mdl-31261652

ABSTRACT

In this paper we have characterized the lineage of two traits associated with the coat proteins (CPs) of the tombusvirids: Silencing suppression and HR elicitation in Nicotiana species. We considered that the tombusvirid CPs might collectively be considered an effector, with the CP of each CP-encoding species comprising a structural variant within the family. Thus, a phylogenetic analysis of the CP could provide insight into the evolution of a pathogen effector. The phylogeny of the CP of tombusvirids indicated that CP representatives of the family could be divided into four clades. In two separate clades the CP triggered a hypersensitive response (HR) in Nicotiana species of section Alatae but did not have silencing suppressor activity. In a third clade the CP had a silencing suppressor activity but did not have the capacity to trigger HR in Nicotiana species. In the fourth clade, the CP did not carry either function. Our analysis illustrates how structural changes that likely occurred in the CP effector of progenitors of the current genera led to either silencing suppressor activity, HR elicitation in select Nicotiana species, or neither trait.


Subject(s)
Capsid Proteins/genetics , Gene Silencing , Nicotiana/genetics , Plant Diseases/virology , Tombusviridae/genetics , Capsid Proteins/immunology , Genome, Viral , Phylogeny , Plant Diseases/genetics , Plant Diseases/immunology , Nicotiana/immunology , Nicotiana/virology , Tombusviridae/classification , Tombusviridae/immunology , Tombusviridae/isolation & purification
7.
Arch Virol ; 164(10): 2581-2584, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31359148

ABSTRACT

Maize chlorotic mottle virus (MCMV), an important quarantine virus, causes lethal necrosis in maize when coinfected with a potyvirid, which is seriously threatening the production of maize worldwide. In this study, recombinase polymerase amplification (RPA), a novel isothermal DNA amplification and detection technique, was developed to detect MCMV in maize crops. A pair of specific primers was designed based on the conserved sequences of the MCMV coat protein region. The RT-RPA assay was carried out as an isothermal reaction at 38 °C that was complete within 30 min, and no cross-reactivity was detected with other viruses infecting maize in China. The limit of detection of the RT-RPA assay was tenfold lower than that of ordinary RT-PCR. Moreover, this method was successfully applied to test field-collected samples. The newly developed RT-RPA assay offers a reliable, sensitive and efficient method for rapid detection of MCMV in maize in equipment-limited diagnostic laboratories and on-site facilities.


Subject(s)
Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Tombusviridae/isolation & purification , Capsid Proteins/genetics , China , DNA Primers/genetics , Sensitivity and Specificity , Temperature , Time Factors , Tombusviridae/classification , Tombusviridae/genetics
8.
Arch Virol ; 164(9): 2375-2378, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31183555

ABSTRACT

The complete genomic RNA sequence of a tentative new umbravirus from Patrinia scabiosaefolia, tentatively named "patrinia mild mottle virus" (PatMMoV), was determined. The genome of PatMMoV consists of 4,214 nucleotides and has a typical umbravirus genome organization with four open reading frames. BLAST searches showed that the complete nucleotide sequence of PatMMoV had the highest identity (72%; 50% query coverage) to Ixeridium yellow mottle-associated virus 2 (IxYMaV-2; an unclassified umbravirus). In addition, phylogenetic analysis and pairwise comparisons showed that PatMMoV and IxYMaV-2 were the most closely related and placed in the same clade within a group of umbraviruses. These results suggest that PatMMoV is a putative new member of the genus Umbravirus in the family Tombusviridae.


Subject(s)
Genome, Viral , Patrinia/virology , Plant Diseases/virology , Tombusviridae/genetics , Tombusviridae/isolation & purification , Base Sequence , Molecular Sequence Data , Open Reading Frames , Phylogeny , Tombusviridae/classification , Whole Genome Sequencing
9.
Viruses ; 11(1)2019 01 18.
Article in English | MEDLINE | ID: mdl-30669373

ABSTRACT

Three RNA viruses-Cucumis melo cryptic virus (CmCV), Cucumis melo amalgavirus 1 (CmAV1), and melon necrotic spot virus (MNSV)-were identified from a melon (Cucumis melo) transcriptome dataset. CmCV has two dsRNA genome segments; dsRNA-1 is 1592 bp in size, containing a conserved RNA-dependent RNA polymerase (RdRp), and dsRNA-2 is 1715 bp in size, and encodes a coat protein (CP). The sequence alignment and phylogenetic analyses of the CmCV RdRp and CP indicated CmCV clusters with approved or putative deltapartitiviruses in well-supported monophyletic clade. The RdRp of CmCV shared an amino acid sequence identity of 60.7% with the closest RdRp of beet cryptic virus 3, and is <57% identical to other partitiviruses. CmAV1 is a nonsegmented dsRNA virus with a genome of 3424 bp, including two partially overlapping open reading frames (ORFs) encoding a putative CP and RdRp. The sequence alignment and phylogenetic analyses of CmAV1 RdRp revealed that it belongs to the genus Amalgavirus in the family Amalgaviridae. The RdRp of CmAV1 shares 57.7% of its amino acid sequence identity with the most closely related RdRp of Phalaenopsis equestris amalgavirus 1, and is <47% identical to the other reported amalgaviruses. These analyses suggest that CmCV and CmAV1 are novel species in the genera Amalgavirus and Deltapartitivirus, respectively. These findings enrich our understanding of new plant dsRNA virus species.


Subject(s)
Cucumis melo/virology , Genome, Viral , Plant Viruses/genetics , RNA Viruses/classification , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phylogeny , Plant Diseases/virology , Plant Viruses/isolation & purification , RNA Viruses/isolation & purification , RNA, Double-Stranded , RNA, Viral/genetics , Sequence Alignment , Tombusviridae/genetics , Tombusviridae/isolation & purification , Viral Proteins/genetics
10.
Plant Dis ; 102(11): 2317-2323, 2018 11.
Article in English | MEDLINE | ID: mdl-30207899

ABSTRACT

A viral metagenomics study of the sugarcane virome in Florida was carried out in 2013 to 2014 to analyze occurrence of known and potentially new viruses. In total, 214 sugarcane leaf samples were collected from different commercial sugarcane (Saccharum interspecific hybrids) fields in Florida and from other Saccharum and related species taken from two local germplasm collections. Virion-associated nucleic acids (VANA) metagenomics was used for detection and identification of viruses present within the collected leaf samples. VANA sequence reads were obtained for 204 leaf samples and all four previously reported sugarcane viruses occurring in Florida were detected: Sugarcane yellow leaf virus (SCYLV, 150 infected samples out of 204), Sugarcane mosaic virus (1 of 204), Sugarcane mild mosaic virus (13 of 204), and Sugarcane bacilliform virus (54 of 204). High prevalence of SCYLV in Florida commercial fields and germplasm collections was confirmed by reverse-transcription polymerase chain reaction. Sequence analyses revealed the presence of SCYLV isolates belonging to two different phylogenetic clades (I and II), including a new genotype of this virus. This viral metagenomics approach also resulted in the detection of a new sugarcane-infecting mastrevirus (recently described and named Sugarcane striate virus), and two potential new viruses in the genera Chrysovirus and Umbravirus.


Subject(s)
Geminiviridae/isolation & purification , Genome, Viral/genetics , Metagenomics , Plant Diseases/virology , Plant Viruses/isolation & purification , Saccharum/virology , Tombusviridae/isolation & purification , Badnavirus/genetics , Badnavirus/isolation & purification , Geminiviridae/genetics , Genetic Variation , Genotype , Luteoviridae/genetics , Luteoviridae/isolation & purification , Phylogeny , Plant Viruses/genetics , Potyvirus/genetics , Potyvirus/isolation & purification , Tombusviridae/genetics
11.
PLoS One ; 13(8): e0200506, 2018.
Article in English | MEDLINE | ID: mdl-30114234

ABSTRACT

A novel virus infecting elderberry was identified by high-throughput Illumina sequencing of double strand RNAs isolated form elderberry leaves. The complete genome sequence obtained (4512 nucleotides in length) shows an organization typical for aureusviruses, with five open reading frames (ORFs) and the typical ORF1-RT expression by the readthrough of an amber stop codon. The analysis of the RNA-dependent RNA polymerase (RdRp) and coat protein (CP) sequences showed the highest identity (respectively 75.7% and 55%) with the corresponding amino acid sequences of Pothos latent virus. These two values, below the species demarcation criteria for the genus, indicate that the detected virus is a new member of genus Aureusvirus, family Tombusviridae, with the proposed name Elderberry aureusvirus 1 (ElAV1). A survey confirmed the wide distribution of ElAV1 in elderberry in the Czech Republic. Phylogenetic analyses of RdRp and CP sequences showed distinct microevolution of geographically separated isolates, with a tendency for isolates coming from close localities or from the same region to cluster together but heterogeneity of viral populations down to a local scale was also observed. The symptomatology of the new virus is not fully clear, but many infected trees were either asymptomatic or showed mild chlorotic mosaics. More severe symptoms, potentially impacting yields of flowers or berries, were observed in plants with mixed infections of ElAV1 and other elderberry viruses. Further efforts are now needed to determine ElAV1 prevalence outside the Czech Republic and to unravel its epidemiology.


Subject(s)
Genome, Viral , Plant Diseases/virology , Sambucus nigra/virology , Tombusviridae/genetics , Tombusviridae/isolation & purification , Phylogeny , Tombusviridae/classification
12.
Arch Virol ; 163(11): 3051-3058, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30069855

ABSTRACT

Star jasmine (Jasminum multiflorum) plants growing in Hawaii expressing a diverse array of virus-like foliar symptoms were examined for the presence of a causal agent. Symptomatic tissues collected from three locations on the island of Oahu, Hawaii consistently harbored double-stranded (ds)RNAs approximately 4.2 and 1.7 kbp in size. Sanger and high-throughput sequencing approaches revealed these dsRNAs were from two distinct virus species co-infecting the same host plant. One of these two viruses was the recently characterized Jasmine virus H (JaVH), and the second we designated as Jasmine mosaic-associated virus (JMaV). Both viruses were subsequently found, by high-throughput sequencing, in a single angelwing jasmine (J. nitidum) plant exhibiting similar ringspot symptoms and growing at the U.S. National Arboretum in Washington, DC. Phylogenetic placement, genome organization, and sequence comparisons indicate these two viruses are classifiable as members of the genus Pelarspovirus (family Tombusviridae). To determine if either of these viruses were associated with the observed symptoms, a PCR-based detection assay was developed to detect and distinguish these two viruses in several Hawaii-grown plants. All 32 samples collected from four Oahu locations displayed symptoms. All 32 samples were positive for JaVH, and 16 were positive for JMaV. An asymptomatic star jasmine plant from the island of Hawaii was negative for both JaVH and JMaV. Both viruses were also found in a symptomatic J. sambac sample from Maryland while only JMaV was detected in a symptomatic Jasminum sp. sample from California.


Subject(s)
Jasminum/virology , Plant Diseases/virology , Tombusviridae/isolation & purification , Genome, Viral , Hawaii , High-Throughput Nucleotide Sequencing , Phylogeny , Tombusviridae/classification , Tombusviridae/genetics , Washington
13.
Arch Virol ; 163(6): 1585-1594, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29492653

ABSTRACT

A novel virus was discovered in a freeze-dried collection held at SASA, UK, originating from potato (Solanum tuberosum) cv. Nadine. The complete sequence of the viral RNA was determined to be 3674 nucleotides in length encoding five predicted proteins. Based on the deduced genome organization and phylogenetic analysis, this virus represents a putative new member of the genus Alphanecrovirus, family Tombusviridae, most closely related to isolates of Olive mild mosaic virus. The virus was easily transmitted to indicator plants with symptoms that were slower to develop and less severe than those of related viruses. To distinguish this virus, the clearest symptom differences occurred with Nicotiana debneyi, Chenopodium amaranticolor and Ch. quinoa. The virus was detected with antisera to the related viruses tobacco necrosis virus A and tobacco necrosis virus D. The close association to the tobacco necrosis viruses would suggest this virus is not a new introduction to potato but in the past has been misidentified as one of these viruses. The virus isolate has been named potato necrosis virus.


Subject(s)
Genome, Viral , Phylogeny , RNA, Viral/genetics , Solanum tuberosum/virology , Tombusviridae/genetics , Chenopodium/virology , Chenopodium quinoa/virology , Founder Effect , Open Reading Frames , Plant Diseases/virology , Nicotiana/virology , Tombusviridae/classification , Tombusviridae/isolation & purification , Tombusviridae/pathogenicity , United Kingdom
14.
Arch Virol ; 163(3): 731-735, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29214362

ABSTRACT

Jasmine virus H (JaVH) is a novel virus associated with symptoms of yellow mosaic on jasmine. The JaVH genome is 3,867 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on genomic and phylogenetic analysis, JaVH is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.


Subject(s)
Genome, Viral , Jasminum/virology , Phylogeny , RNA, Viral/genetics , Tombusviridae/genetics , Base Sequence , Capsid Proteins/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames , RNA-Dependent RNA Polymerase/genetics , Tombusviridae/classification , Tombusviridae/isolation & purification
15.
Arch Virol ; 162(12): 3893-3897, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28905257

ABSTRACT

Two novel viruses, isolated in Bonghwa, Republic of Korea, from an Ixeridium dentatum plant with yellowing mottle symptoms, have been provisionally named Ixeridium yellow mottle-associated virus 1 (IxYMaV-1) and Ixeridium yellow mottle-associated virus 2 (IxYMaV-2). IxYMaV-1 has a genome of 6,017 nucleotides sharing a 56.4% sequence identity with that of cucurbit aphid-borne yellows virus (genus Polerovirus). The IxYMaV-2 genome of 4,196 nucleotides has a sequence identity of less than 48.3% with e other species classified within the genus Umbravirus. Genome properties and phylogenetic analysis suggested that IxYMaV-1 and -2 are representative isolates of new species classifiable within the genus Polerovirus and Umbravirus, respectively.


Subject(s)
Asteraceae/virology , Genome, Viral , Luteoviridae/classification , Luteoviridae/isolation & purification , Tombusviridae/classification , Tombusviridae/isolation & purification , Luteoviridae/genetics , Phylogeny , Plant Diseases/virology , Republic of Korea , Sequence Analysis, DNA , Sequence Homology , Tombusviridae/genetics
16.
Virus Res ; 240: 87-93, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28673868

ABSTRACT

Over six decades ago, panicum mosaic virus (PMV) was identified as the first viral pathogen of cultivated switchgrass (Panicum virgatum). Subsequently, PMV was demonstrated to support the replication of both a satellite RNA virus (SPMV) and satellite RNA (satRNA) agents during natural infections of host grasses. In this study, we report the isolation and full-length sequences of two PMV satRNAs identified in 1988 from St. Augustinegrass (Stenotaphrum secundatum) and centipedegrass (Eremochloa ophiuroides) hosts. Each of these satellites have sequence relatedness at their 5'- and 3'-ends. In addition, satC has a region of ∼100 nt complementary to the 3'-end of the PMV genome. These agents are associated with purified virions of SPMV infections. Additionally, satS and satC RNAs contain conserved in-frame open reading frames in the complementary-sense sequences that could potentially generate 6.6- and 7.9-kDa proteins, respectively. In protoplasts and plants satS is infectious, when co-inoculated with the PMV RNA alone or PMV+SPMV RNAs, and negatively affects their accumulation.


Subject(s)
Panicum/virology , Pennisetum/virology , Plant Diseases/virology , RNA, Satellite/genetics , RNA, Viral/genetics , Tombusviridae/genetics , Virion/genetics , Amino Acid Sequence , Base Sequence , Genome, Viral , Molecular Sequence Data , Open Reading Frames , RNA, Satellite/metabolism , RNA, Viral/metabolism , Tombusviridae/classification , Tombusviridae/isolation & purification , Virion/classification , Virion/isolation & purification
17.
Sci Rep ; 7(1): 4213, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28646195

ABSTRACT

To identify the molecular effects of Tobacco bushy top virus (TBTV) evolution on the degeneration of tobacco bushy top disease, three TBTV isolates with mild virulence were compared with wild-type TBTV to assess the translation of p35, which relies on a BYDV-like translation element (BTE) in a cap-independent manner. The in vitro expression of p35 in the mild isolates was only 20% to 40% of the expression observed in wt TBTV. Based on translation data from chimeric TBTV RNA, low-level p35 expression in the three mild isolates was associated with two regions: the 5' terminal 500 nt region (RI) and the 3' internal region (RV), which included the BTE. For the RV region, low level p35 expression was mainly associated with structural alterations of the BTE instead of specific sequence mutations within the BTE based on SHAPE structural probing and mutation analysis. Additionally, structural alteration of the TBTV BTE resulted from mutations outside of the BTE, implying structural complexity of the local region surrounding the BTE. This study is the first report on the structural alteration of the 3' cap-independent translation element among different isolates of a given RNA virus, which is associated with variations in viral virulence.


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation, Viral , Nicotiana/virology , Protein Biosynthesis , Tombusviridae/genetics , Tombusviridae/isolation & purification , Base Sequence , Genes, Reporter , Luciferases/metabolism , Mutation/genetics , Nucleic Acid Conformation , Nucleotides/genetics , RNA Caps/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Tombusviridae/pathogenicity , Viral Proteins , Virulence/genetics
18.
Phytopathology ; 107(10): 1095-1108, 2017 10.
Article in English | MEDLINE | ID: mdl-28535127

ABSTRACT

Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with large holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Subject(s)
Models, Theoretical , Plant Diseases/prevention & control , Potyvirus/isolation & purification , Tombusviridae/isolation & purification , Zea mays/virology , Agriculture , Coinfection , Insect Control , Kenya , Plant Diseases/statistics & numerical data , Plant Diseases/virology , Seeds/virology
19.
J Virol Methods ; 240: 49-53, 2017 02.
Article in English | MEDLINE | ID: mdl-27899288

ABSTRACT

Maize chlorotic mottle virus (MCMV) is spreading in many regions worldwide, causing maize lethal necrosis when co-infected with a potyvirid. In this study, one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect MCMV in maize. A set of four specific primers was designed based on the conserved coat protein gene sequences of MCMV. The RT-LAMP could be completed within 60min under isothermal condition at 63°C. The sensitivity test showed that the RT-LAMP was about 10-fold more sensitive than RT-PCR and no cross-reactivity was detected with other viral pathogens infecting maize in China. Moreover, the results of RT-LAMP could be visually inspected by SYBR Green I staining in a closed-tube, facilitating high-throughput application of MCMV detection. This method was further verified by testing field-collected samples. These results suggested that the developed MCMV RT-LAMP technique is a rapid, efficient and sensitive method which could be used as a routine screen for MCMV infection.


Subject(s)
Nucleic Acid Amplification Techniques/methods , Reverse Transcription , Tombusviridae/genetics , Zea mays/virology , China , DNA Primers , Plant Diseases/virology , RNA, Viral/genetics , Sensitivity and Specificity , Temperature , Tombusviridae/isolation & purification
20.
Arch Virol ; 162(4): 1099-1102, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27995336

ABSTRACT

Bermuda grass samples were examined by transmission electron microscopy and 28-30 nm spherical virus particles were observed. Total RNA from these plants was subjected to high-throughput sequencing (HTS). The nearly full genome sequence of a panicovirus was identified from one HTS scaffold. Sanger sequencing was used to confirm the HTS results and complete the genome sequence of 4404 nt. This virus was provisionally named Bermuda grass latent virus (BGLV). Its predicted open reading frames follow the typical arrangement of the genus Panicovirus. Based on sequence comparisons and phylogenetic analyses BGLV differs from other viruses and therefore taxonomically it is a new member of the genus Panicovirus, family Tombusviridae.


Subject(s)
Genome, Viral , Poaceae/virology , Tombusviridae/genetics , Base Sequence , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Open Reading Frames , Phylogeny , Plant Diseases/virology , RNA, Viral , Tombusviridae/classification , Tombusviridae/isolation & purification , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...