Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.705
Filter
1.
J Biomed Opt ; 29(6): 066006, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846677

ABSTRACT

Significance: Photoacoustic computed tomography (PACT) is a promising non-invasive imaging technique for both life science and clinical implementations. To achieve fast imaging speed, modern PACT systems have equipped arrays that have hundreds to thousands of ultrasound transducer (UST) elements, and the element number continues to increase. However, large number of UST elements with parallel data acquisition could generate a massive data size, making it very challenging to realize fast image reconstruction. Although several research groups have developed GPU-accelerated method for PACT, there lacks an explicit and feasible step-by-step description of GPU-based algorithms for various hardware platforms. Aim: In this study, we propose a comprehensive framework for developing GPU-accelerated PACT image reconstruction (GPU-accelerated photoacoustic computed tomography), to help the research community to grasp this advanced image reconstruction method. Approach: We leverage widely accessible open-source parallel computing tools, including Python multiprocessing-based parallelism, Taichi Lang for Python, CUDA, and possible other backends. We demonstrate that our framework promotes significant performance of PACT reconstruction, enabling faster analysis and real-time applications. Besides, we also described how to realize parallel computing on various hardware configurations, including multicore CPU, single GPU, and multiple GPUs platform. Results: Notably, our framework can achieve an effective rate of ∼ 871 times when reconstructing extremely large-scale three-dimensional PACT images on a dual-GPU platform compared to a 24-core workstation CPU. In this paper, we share example codes via GitHub. Conclusions: Our approach allows for easy adoption and adaptation by the research community, fostering implementations of PACT for both life science and medicine.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Photoacoustic Techniques , Photoacoustic Techniques/methods , Photoacoustic Techniques/instrumentation , Image Processing, Computer-Assisted/methods , Animals , Computer Graphics , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation , Humans
2.
Med Phys ; 51(6): 4447-4457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709978

ABSTRACT

BACKGROUND: The use of Computed Tomography (CT) imaging data to create 3D printable patient-specific devices for radiation oncology purposes is already well established in the literature and has shown to have superior conformity than conventional methods. Using non-ionizing radiation imaging techniques such as photogrammetry or laser scanners in-lieu of a CT scanner presents many desirable benefits including reduced imaging dose and fabrication of the device can be completed prior to simulation. With recent advancements in smartphone-based technology, photographic and LiDAR-based technologies are more readily available than ever before and to a high level of quality. As a result, these non-ionizing radiation imaging methods are now able to generate patient-specific devices that can be acceptable for clinical use. PURPOSE: In this work, we aim to determine if smartphones can be used by radiation oncologists or other radiation oncology staff to generate bolus or brachytherapy surface moulds instead of conventional CT with equivalent or comparable accuracy. METHODS: This work involved two separate studies: a phantom and participant study. For the phantom study, a RANDO anthropomorphic phantom (limited to the nose region) was used to generate 3D models based on three different imaging techniques: conventional CT, photogrammetry & LiDAR which were both acquired on a smartphone. Virtual boli were designed in Blender and 3D printed from PLA plastic material. The conformity of each printed boli was assessed by measuring the air gap volume and approximate thickness between the phantom & bolus acquired together on a CT. For the participant study, photographs, and a LiDAR scan of four volunteers were captured using an iPhone 13 Pro™ to assess their feasibility for generating human models. Each virtual 3D model was visually assessed to identify any issues in their reconstruction. The LiDAR models were registered to the photogrammetry models where a distance to agreement analysis was performed to assess their level of similarity. Additionally, a 3D virtual bolus was designed and printed using ABS material from all models to assess their conformity onto the participants skin surface using a verbal feedback method. RESULTS: The photogrammetry derived bolus showed comparable conformity to the CT derived bolus while the LiDAR derived bolus showed poorer conformity as shown by their respective air gap volume and thickness measurements. The reconstruction quality of both the photogrammetry and LiDAR models of the volunteers was inadequate in regions of facial hair and occlusion, which may lead to clinically unacceptable patient-specific device that are created from these areas. All participants found the photogrammetry 3D printed bolus to conform to their nose region with minimal room to move while three of the four participants found the LiDAR was acceptable and could be positioned comfortably over their entire nose. CONCLUSIONS: Smartphone-based photogrammetry and LiDAR software show great potential for future use in generating 3D reference models for radiation oncology purposes. Further investigations into whether they can be used to fabricate clinically acceptable patient-specific devices on a larger and more diverse cohort of participants and anatomical locations is required for a thorough validation of their clinical usefulness.


Subject(s)
Radiation Oncology , Smartphone , Radiation Oncology/instrumentation , Humans , Phantoms, Imaging , Printing, Three-Dimensional , Brachytherapy/instrumentation , Tomography, X-Ray Computed/instrumentation
3.
Med Phys ; 51(5): 3322-3333, 2024 May.
Article in English | MEDLINE | ID: mdl-38597897

ABSTRACT

BACKGROUND: The development of a new imaging modality, such as 4D dynamic contrast-enhanced dedicated breast CT (4D DCE-bCT), requires optimization of the acquisition technique, particularly within the 2D contrast-enhanced imaging modality. Given the extensive parameter space, cascade-systems analysis is commonly used for such optimization. PURPOSE: To implement and validate a parallel-cascaded model for bCT, focusing on optimizing and characterizing system performance in the projection domain to enhance the quality of input data for image reconstruction. METHODS: A parallel-cascaded system model of a state-of-the-art bCT system was developed and model predictions of the presampled modulation transfer function (MTF) and the normalized noise power spectrum (NNPS) were compared with empirical data collected in the projection domain. Validation was performed using the default settings of 49 kV with 1.5 mm aluminum filter and at 65 kV and 0.257 mm copper filter. A 10 mm aluminum plate was added to replicate the breast attenuation. Air kerma at the isocenter was measured at different tube current levels. Discrepancies between the measured projection domain metrics and model-predicted values were quantified using percentage error and coefficient of variation (CoV) for MTF and NNPS, respectively. The optimal filtration was for a 5 mm iodine disk detection task at 49, 55, 60, and 65 kV. The detectability index was calculated for the default aluminum filtration and for copper thicknesses ranging from 0.05 to 0.4 mm. RESULTS: At 49 kV, MTF errors were +5.1% and -5.1% at 1 and 2 cycles/mm, respectively; NNPS CoV was 5.3% (min = 3.7%; max = 8.5%). At 65 kV, MTF errors were -0.8% and -3.2%; NNPS CoV was 13.1% (min = 11.4%; max = 16.9%). Air kerma output was linear, with 11.67 µGy/mA (R2 = 0.993) and 19.14 µGy/mA (R2 = 0.996) at 49 and 65 kV, respectively. For iodine detection, a 0.25 mm-thick copper filter at 65 kV was found optimal, outperforming the default technique by 90%. CONCLUSION: The model accurately predicts bCT system performance, specifically in the projection domain, under varied imaging conditions, potentially contributing to the enhancement of 2D contrast-enhanced imaging in 4D DCE-bCT.


Subject(s)
Breast , Contrast Media , Contrast Media/chemistry , Breast/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Phantoms, Imaging , Humans , Mammography/methods , Mammography/instrumentation , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio
4.
Phys Med Biol ; 69(11)2024 May 14.
Article in English | MEDLINE | ID: mdl-38604190

ABSTRACT

Objective. Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a commercial DLR algorithm across a wide range of radiation dose levels.Method. The lung phantom used in this study is based on a patient chest CT scan containing ground glass opacities and was fabricated using PixelPrint 3D-printing technology. The phantom was placed inside two different size extension rings to mimic a small- and medium-sized patient and was scanned on a conventional CT scanner at exposures between 0.5 and 20 mGy. Each scan was reconstructed using filtered back projection (FBP), iterative reconstruction, and DLR at five levels of denoising. Image noise, contrast to noise ratio (CNR), root mean squared error, structural similarity index (SSIM), and multi-scale SSIM (MS SSIM) were calculated for each image.Results.DLR demonstrated superior performance compared to FBP and iterative reconstruction for all measured metrics in both phantom sizes, with better performance for more aggressive denoising levels. DLR was estimated to reduce dose by 25%-83% in the small phantom and by 50%-83% in the medium phantom without decreasing image quality for any of the metrics measured in this study. These dose reduction estimates are more conservative compared to the estimates obtained when only considering noise and CNR.Conclusion. DLR has the capability of producing diagnostic image quality at up to 83% lower radiation dose, which can improve the clinical utility and viability of lower dose CT scans. Furthermore, the PixelPrint phantom used in this study offers an improved testing environment with more realistic tissue structures compared to traditional CT phantoms, allowing for structure-based image quality evaluation beyond noise and contrast-based assessments.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/instrumentation , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Signal-To-Noise Ratio , Radiation Dosage , Algorithms
5.
Phys Med Biol ; 69(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38648795

ABSTRACT

Objective. Photon-counting detector (PCD) CT enables routine virtual-monoenergetic image (VMI) reconstruction. We evaluated the performance of an automatic VMI energy level (keV) selection tool on a clinical PCD-CT system in comparison to an automatic tube potential (kV) selection tool from an energy-integrating-detector (EID) CT system from the same manufacturer.Approach.Four torso-shaped phantoms (20-50 cm width) containing iodine (2, 5, and 10 mg cc-1) and calcium (100 mg cc-1) were scanned on PCD-CT and EID-CT. Dose optimization techniques, task-based VMI energy level and tube-potential selection on PCD-CT (CARE keV) and task-based tube potential selection on EID-CT (CARE kV), were enabled. CT numbers, image noise, and dose-normalized contrast-to-noise ratio (CNRd) were compared.Main results. PCD-CT produced task-specific VMIs at 70, 65, 60, and 55 keV for non-contrast, bone, soft tissue with contrast, and vascular settings, respectively. A 120 kV tube potential was automatically selected on PCD-CT for all scans. In comparison, EID-CT used x-ray tube potentials from 80 to 150 kV based on imaging task and phantom size. PCD-CT achieved consistent dose reduction at 9%, 21% and 39% for bone, soft tissue with contrast, and vascular tasks relative to the non-contrast task, independent of phantom size. On EID-CT, dose reduction factor for contrast tasks relative to the non-contrast task ranged from a 65% decrease (vascular task, 70 kV, 20 cm phantom) to a 21% increase (soft tissue with contrast task, 150 kV, 50 cm phantom) due to size-specific tube potential adaptation. PCD-CT CNRdwas equivalent to or higher than those of EID-CT for all tasks and phantom sizes, except for the vascular task with 20 cm phantom, where 70 kV EID-CT CNRdoutperformed 55 keV PCD-CT images.Significance. PCD-CT produced more consistent CT numbers compared to EID-CT due to standardized VMI output, which greatly benefits standardization efforts and facilitates radiation dose reduction.


Subject(s)
Image Processing, Computer-Assisted , Phantoms, Imaging , Photons , Radiation Dosage , Tomography, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Image Processing, Computer-Assisted/methods , Automation , Humans , Signal-To-Noise Ratio
6.
Phys Med Biol ; 69(11)2024 May 20.
Article in English | MEDLINE | ID: mdl-38657632

ABSTRACT

Six decades after its conception, proton computed tomography (pCT) and proton radiography have yet to be used in medical clinics. However, good progress has been made on relevant detector technologies in the past two decades, and a few prototype pCT systems now exist that approach the performance needed for a clinical device. The tracking and energy-measurement technologies in common use are described, as are the few pCT scanners that are in routine operation at this time. Most of these devices still look like detector R&D efforts as opposed to medical devices, are difficult to use, are at least a factor of five slower than desired for clinical use, and are too small to image many parts of the human body. Recommendations are made for what to consider when engineering a pre-clinical pCT scanner that is designed to meet clinical needs in terms of performance, cost, and ease of use.


Subject(s)
Protons , Tomography, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Humans
7.
Radiol Phys Technol ; 17(2): 561-568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668938

ABSTRACT

The purpose of this study was to investigate the risk of overexposure associated with automatic tube current modulation (ATCM) and automatic couch height positioning compensation mechanism (AHC) in computed tomography (CT) systems, particularly in scenarios involving a gap between the subject and the couch. Results revealed that when AHC was enabled, CT dose index volume (CTDIvol) increased by approximately 10% at 2.5 cm, 20% at 5.0 cm, and 40% at 10.0 cm gaps compared to close contact conditions. While the AHC function ensures consistent exposure doses and image quality regardless of subject positioning relative to the CT gantry isocenter, the study highlights a potential risk of overexposure when a gap exists between the subject and the couch. These findings offer valuable insights for optimizing CT imaging protocols and underscore the importance of carefully considering subject positioning in clinical practice.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Humans , Radiation Dosage , Patient Positioning , Risk , Radiation Exposure/analysis
8.
J Appl Clin Med Phys ; 25(5): e14340, 2024 May.
Article in English | MEDLINE | ID: mdl-38605540

ABSTRACT

BACKGROUND: Global shortages of iodinated contrast media (ICM) during COVID-19 pandemic forced the imaging community to use ICM more strategically in CT exams. PURPOSE: The purpose of this work is to provide a quantitative framework for preserving iodine CNR while reducing ICM dosage by either lowering kV in single-energy CT (SECT) or using lower energy virtual monochromatic images (VMI) from dual-energy CT (DECT) in a phantom study. MATERIALS AND METHODS: In SECT study, phantoms with effective diameters of 9.7, 15.9, 21.1, and 28.5 cm were scanned on SECT scanners of two different manufacturers at a range of tube voltages. Statistical based iterative reconstruction and deep learning reconstruction were used. In DECT study, phantoms with effective diameters of 20, 29.5, 34.6, and 39.7 cm were scanned on DECT scanners from three different manufacturers. VMIs were created from 40 to 140 keV. ICM reduction by lowering kV levels for SECT or switching from SECT to DECT was calculated based on the linear relationship between iodine CNR and its concentration under different scanning conditions. RESULTS: On SECT scanner A, while matching CNR at 120 kV, ICM reductions of 21%, 58%, and 72% were achieved at 100, 80, and 70 kV, respectively. On SECT scanner B, 27% and 80% ICM reduction was obtained at 80 and 100 kV. On the Fast-kV switch DECT, with CNR matched at 120 kV, ICM reductions were 35%, 30%, 23%, and 15% with VMIs at 40, 50, 60, and 68 keV, respectively. On the dual-source DECT, ICM reductions were 52%, 48%, 42%, 33%, and 22% with VMIs at 40, 50, 60, 70, and 80 keV. On the dual-layer DECT, ICM reductions were 74%, 62%, 45%, and 22% with VMIs at 40, 50, 60, and 70 keV. CONCLUSIONS: Our work provided a quantitative baseline for other institutions to further optimize their scanning protocols to reduce the use of ICM.


Subject(s)
COVID-19 , Contrast Media , Phantoms, Imaging , Tomography, X-Ray Computed , Humans , Contrast Media/chemistry , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation , SARS-CoV-2 , Adult , Child , Signal-To-Noise Ratio , Radiation Dosage , Image Processing, Computer-Assisted/methods , Radiography, Dual-Energy Scanned Projection/methods
9.
Rev. Ciênc. Plur ; 10 (1) 2024;10(1): 34798, 2024 abr. 30. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1553615

ABSTRACT

Introdução: A saúde bucal é um aspecto que não deve ser subestimado pelos pacientes, principalmente se considerar que as infecções odontogênicas podem levar a quadros graves, incluindo complicações cervicotorácicas, como Mediastinite e cervicofaciais, como Angina de Ludwig. Para tanto, é imprescindível que os profissionais da odontologia saibam reconhecer os principais sinais e sintomas dessas infecções, sua evolução, conhecer as complicações associadas e qual o manejo adequado. Objetivo: Assim, é objetivo deste trabalho, relatar, discutir um caso clínico de uma infecção odontogênica grave que acarretou em complicação cervical, com trajeto em direção ao mediastino, necessitando manejo multidisciplinar, e explorar os principais aspectos desse quadro e a conduta necessária, que exige, no mínimo, intervenção cirúrgica, antibioticoterapia e manutenção das vias aéreas. Relato de caso: O caso trata de um paciente com infecção odontogênica, iniciada como uma pericoronarite do dente 38 semieruptado, que evoluiu para a área cervical, demandando imediata drenagem nesta região pois encaminhava-se para uma mediastinite. Após a drenagem cervical e antibioticoterapia e, assim que houve redução do trismo, foi removido o dente 38, evoluindo para a cura.Conclusões:As infecções odontogênicas, principalmente as que acometem os espaços fasciais e cervicais profundos, são potencialmente graves e devem ter suas principais manifestações clínicas entre os domínios de conhecimento dos profissionais Bucomaxilofaciais, pois necessitam de diagnóstico preciso, manejo rápido e tratamento adequado e precoce, considerando a velocidade com que podem evoluir (AU).


Introduction: Oral healthis an aspect that should not be underestimated by patients, especially considering that dental infections can lead to serious symptoms, including cervicothoracic complications, such as Mediastinitis and cervicofacial complications, such as Ludwig's Angina. Therefore, it is essential that dental professionals know how to recognize the main signs and symptoms of these infections, their evolution, know the associated complications and appropriate management.Objective: Thus, this work aims to report and discuss a clinical case of a serious odontogenic infection that resulted in a cervical complication, with a path towards the mediastinum, requiring multidisciplinary management, and to explore the main aspects of this condition and the necessary conduct, which requires, at least, surgical intervention, antibiotic therapy and airway maintenance.Case report: The case concerns a patient with odontogenic infection, which began as pericoronitis of semi-erupted tooth 38, which progressed to the cervical area, requiring immediate drainage in this region as it was heading towards mediastinitis. After cervical drainage and antibiotic therapy and, as soon as the trismus was reduced, tooth 38 was removed, progressing towards healing.Conclusions: Odontogenic infections, especially those that affect the fascial and deep cervical spaces, are potentially serious and should have their main clinical manifestations among the domains of knowledge ofOral and Maxillofacial professionals, as they require accurate diagnosis, rapid management and adequate and early treatment, considering the speed at which they can evolve (AU).


Introducción: La salud bucal es un aspecto que los pacientes no deben subestimar, especialmente considerando que las infecciones odontógenas pueden derivar en afecciones graves, incluidas complicaciones cervicotorácicas, como la mediastinitis, y complicaciones cervicofaciales, como la angina de Ludwig.Para ello, es fundamental que los profesionales odontológicos sepan reconocer las principales señalesy síntomas de estas infecciones, su evolución, conocer las complicaciones asociadas y el manejo adecuado.Objetivo: Así,el objetivo de este trabajo es reportar y discutir un caso clínico de infección odontogénica grave que resultó en una complicación cervical, con trayecto hacia el mediastino, que requirió manejo multidisciplinario, y explorar los principales aspectos de esta condicióny las medidas necesarias, que requiere, como mínimo, intervención quirúrgica, terapia con antibióticos y mantenimiento de las vías respiratorias.Reporte de caso: El caso se trata de un paciente con una infección odontogénica, que comenzó como pericoronaritis del diente 38 semi-erupcionado, la cual progresó hacia la zona cervical, requiriendo drenaje inmediato en esta región ya que se encaminaba para una mediastinitis.Después del drenaje cervical y la terapia antibiótica y, una vez reducido el trismo, se extrajo el diente 38, evolucijjonando hacia la cura.Conclusiones: Las infecciones odontogénicas, especialmente aquellas que afectan los espacios fasciales y cervicales profundos, son potencialmente graves y deben tener sus principales manifestaciones clínicas entre los dominios del conocimiento de los profesionales Orales y Maxilofaciales, pues requieren de un diagnóstico certero, un manejo rápido y un tratamiento adecuado y temprano, considerando la velocidad a la que pueden evolucionar (AU).


Subject(s)
Humans , Male , Adult , Drainage/instrumentation , Infection Control, Dental , Ludwig's Angina/pathology , Mediastinitis , Osteomyelitis , Radiography, Dental/instrumentation , Tomography, X-Ray Computed/instrumentation , Oral and Maxillofacial Surgeons
10.
Phys Med Biol ; 69(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38537305

ABSTRACT

Objective. Personalized dose monitoring and risk management are of increasing significance with the growing number of computer tomography (CT) examinations. These require high-quality Monte Carlo (MC) simulations that are of the utmost importance for the new developments in personalized CT dosimetry. This work aims to extend the MC framework EGSnrc source code with a new particle source. This, in turn, allows CT-scanner-specific dose and image calculations for any CT scanner. The novel method can be used with all modern EGSnrc user codes, particularly for the simulation of the effective dose based on DICOM images and the calculation of CT images.Approach. The new particle source can be used with input data derived by the user. The input data can be generated by the user based on a previously developed method for the experimental characterization of any CT scanner (doi.org/10.1016/j.ejmp.2015.09.006). Furthermore, the new particle source was benchmarked by air kerma measurements in an ionization chamber at a clinical CT scanner. For this, the simulated angular distribution and attenuation characteristics were compared to measurements to verify the source output free in air. In a second validation step, simulations of air kerma in a homogenous cylindrical and an anthropomorphic thorax phantom were performed and validated against experimentally determined results. A detailed uncertainty evaluation of the simulated air kerma values was developed.Main results. We successfully implemented a new particle source class for the simulation of realistic CT scans. This method can be adapted to any CT scanner. For the attenuation characteristics, there was a maximal deviation of 6.86% between the measurement and the simulation. The mean deviation for all tube voltages was 2.36% (σ= 1.6%). For the phantom measurements and simulations, all the values agreed within 5.0%. The uncertainty evaluation resulted in an uncertainty of 5.5% (k=1).


Subject(s)
Monte Carlo Method , Tomography, X-Ray Computed , Uncertainty , Tomography, X-Ray Computed/instrumentation , Humans , Radiometry/instrumentation , Radiometry/methods , Phantoms, Imaging , Radiation Dosage
11.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 80(5): 530-538, 2024 May 20.
Article in Japanese | MEDLINE | ID: mdl-38494722

ABSTRACT

PURPOSE: In X-ray computed tomography (CT), noise distribution within images is nonuniform and thought to vary with imaging conditions. This study aimed to evaluate noise nonuniformity by altering specific imaging conditions, such as tube voltage, bow-tie filter (BTF), and phantom size. METHODS: Using four tube voltages (80, 100, 120, and 135 kV), two BTF types (L and M), and circular water phantoms with diameters of 240, 320, and 400 mm, we employed filtered back projection (FBP) for reconstruction. Noise nonuniformity was assessed by defining six regions of interest (ROI) from the image center to the periphery, and the noise nonuniformity index (NNI) was calculated based on the standard deviation (SD) values within these ROIs. RESULTS: Results showed consistently larger noise SD values in the central region compared to the peripheral region under all imaging conditions, with the maximum NNI reaching 32.1%. Variations in NNI were observed, reaching up to 5.5 points for tube voltage, 7.8 points for BTF, and 8.2 points for phantom size. CONCLUSION: In conclusion, our quantitative assessment revealed moderate dependence of noise nonuniformity on imaging conditions in CT images.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation
12.
Radiography (Lond) ; 30(2): 431-439, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199159

ABSTRACT

INTRODUCTION: Mobile Imaging Trailers enable moving diagnostic imaging equipment between locations requiring very little setup and configuration, example given CT-scanners and MRI-scanners. However, despite the apparent benefits of utilising these imaging capabilities, very little research on the subject exists. This study aims at gaining an overview of the current state of the literature, using the scoping review methodology. METHODS: The systematic literature search was conducted in three databases: Scopus, Embase and PubMed. Included sources were extracted based on the objectives of the scoping review, and inspired by the by PRISMA-ScR. RESULTS: 29 papers were included. CONCLUSION: The results of the review showed that three general categories of research on this subject exist - trailers used in research, trailers as the object of research and trailers as an element or tool of the research. Of these, the most prevalent one used is the latter - trailers used as an element or tool of the research. This; however, is an issue for the use of trailers in a clinical setting, as very little research has been conducted on how they might be used and how they compare to fixed installations. As seen during the recent COVID-19 pandemic, the potentials for the use of MITs are immense; however, with the current lack of knowledge and understanding, the full potential has not been realised, suggesting further research should be focused in this area. IMPLICATIONS FOR PRACTICE: This study has shown that the limited research in the area does point towards a few benefits of MITs; however, there is a clear lack of sufficient research on the field to say this with confidence.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Magnetic Resonance Imaging/instrumentation , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation
13.
Radiología (Madr., Ed. impr.) ; 65(4): 352-361, Jul-Ago. 2023. ilus
Article in Spanish | IBECS | ID: ibc-222512

ABSTRACT

La TC torácica en espiración es una técnica complementaria de la inspiración que aporta valiosa información fisiológica y puede ser más sensible que las pruebas de función respiratoria para detectar atrapamiento aéreo. Tiene múltiples indicaciones, entre las más frecuentes están la enfermedad obstructiva de la vía aérea producida por bronquiolitis obliterante, asma, síndrome de Swyer-James, traqueomalacia, neumonitis por hipersensibilidad o sarcoidosis. En alguna de ellas, como la bronquiolitis obliterante, la TC espiratoria puede ser la única técnica de imagen que detecta alteraciones en las fases iniciales. Si queremos que sea de utilidad diagnóstica, hay que asegurarse de que el estudio tenga calidad suficiente. Para ello se recomienda explicar al paciente en qué consiste la prueba, emplear instrucciones precisas y realizar un breve entrenamiento antes de iniciar la adquisición. En este trabajo sugerimos estrategias para optimizar la técnica y proponemos un algoritmo para interpretar los hallazgos radiológicos en el contexto de la patología obstructiva pulmonar.(AU)


Expiratory CT scan is a complementary technique of inspiratory CT that provide valuable physiological information and may be more sensitive to detect air trapping than pulmonary function tests. It is useful in many obstructive airway diseases, including obliterative bronchiolitis, asthma, Swyer-James syndrome, tracheomalacia, hypersensitivity pneumonitis and sarcoidosis. In obliterative bronchiolitis, expiratory CT scan may be the only imaging technique that shows abnormalities in the early phase of disease. In order to obtain a good quality study, we should explain the procedure to the patient, use precise instructions and do some practice before image acquisition. Here we describe strategies to optimize the technique and propose an algorithm that help in interpretation of imaging findings in patients with obstructive airway disease.(AU)


Subject(s)
Humans , Male , Female , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Exhalation , Lung Diseases, Obstructive , Bronchiolitis Obliterans , Radiology , Radiology Department, Hospital
14.
IEEE Trans Med Imaging ; 42(4): 1210-1224, 2023 04.
Article in English | MEDLINE | ID: mdl-36449587

ABSTRACT

Photoacoustic computed tomography (PACT) images optical absorption contrast by detecting ultrasonic waves induced by optical energy deposition in materials such as biological tissues. An ultrasonic transducer array or its scanning equivalent is used to detect ultrasonic waves. The spatial distribution of the transducer elements must satisfy the spatial Nyquist criterion; otherwise, spatial aliasing occurs and causes artifacts in reconstructed images. The spatial Nyquist criterion poses different requirements on the transducer elements' distributions for different locations in the image domain, which has not been studied previously. In this research, we elaborate on the location dependency through spatiotemporal analysis and propose a location-dependent spatiotemporal antialiasing method. By applying this method to PACT in full-ring array geometry, we effectively mitigate aliasing artifacts with minimal effects on image resolution in both numerical simulations and in vivo experiments.


Subject(s)
Photoacoustic Techniques , Tomography, X-Ray Computed , Artifacts , Spatio-Temporal Analysis , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards , Breast/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Algorithms , Photoacoustic Techniques/methods , Photoacoustic Techniques/standards , Computer Simulation , Phantoms, Imaging , Female , Reproducibility of Results
15.
Phys Med Biol ; 67(11)2022 05 23.
Article in English | MEDLINE | ID: mdl-35472761

ABSTRACT

Objective.Metal artifacts are a persistent problem in CT and cone-beam CT. In this work, we propose to reduce or even eliminate metal artifacts by providing better sampling of data using non-circular orbits.Approach.We treat any measurements intersecting metal as missing data, and aim to design a universal orbit that can generally accommodate arbitrary metal shapes and locations. We adapted a local sampling completeness metric based on Tuy's condition to quantify the extent of sampling in the presence of metal. A maxi-min objective over all possible metal locations was used for orbit design. A simple class of sinusoidal orbits was evaluated as a function of frequencies, maximum tilt angles, and orbital extents. Experimental implementation of these orbits were performed on an imaging bench and evaluated on two phantoms, one containing metal balls and the other containing a pedicle screw assembly for spine fixation. Metal artifact reduction (MAR) performance was compared amongst three approaches: non-circular orbits only, algorithmic correction only, and a combined approach.Main results.Theoretical evaluations of the objective favor sinusoidal orbits with large tilt angles and large orbital extents. Furthermore, orbits that leverage redundant azimuthal angles to sample non-redundant data have better performance, e.g. even or non-integer frequency sinusoids for a 360° acquisition. Experimental data support the trends observed in theoretical evaluations. Reconstructions using even or non-integer frequency orbits present less streaking artifacts and background details with finer resolution, even when multiple metal objects are present and even in the absence of MAR algorithms. The combined approach of non-circular orbits and MAR algorithm yields the best performance. The observed trend in image quality is supported by quantitative measures of sampling and severity of streaking artifact.Significance.This work demonstrates that sinusoidal orbits are generally robust against metal artifacts and can provide an avenue for improved image quality in interventional imaging.


Subject(s)
Algorithms , Artifacts , Phantoms, Imaging , Tomography, X-Ray Computed , Cone-Beam Computed Tomography/instrumentation , Metals , Tomography, X-Ray Computed/instrumentation
16.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131900

ABSTRACT

X-ray computed tomography (CT) is one of the most commonly used three-dimensional medical imaging modalities today. It has been refined over several decades, with the most recent innovations including dual-energy and spectral photon-counting technologies. Nevertheless, it has been discovered that wave-optical contrast mechanisms-beyond the presently used X-ray attenuation-offer the potential of complementary information, particularly on otherwise unresolved tissue microstructure. One such approach is dark-field imaging, which has recently been introduced and already demonstrated significantly improved radiological benefit in small-animal models, especially for lung diseases. Until now, however, dark-field CT could not yet be translated to the human scale and has been restricted to benchtop and small-animal systems, with scan durations of several minutes or more. This is mainly because the adaption and upscaling to the mechanical complexity, speed, and size of a human CT scanner so far remained an unsolved challenge. Here, we now report the successful integration of a Talbot-Lau interferometer into a clinical CT gantry and present dark-field CT results of a human-sized anthropomorphic body phantom, reconstructed from a single rotation scan performed in 1 s. Moreover, we present our key hardware and software solutions to the previously unsolved roadblocks, which so far have kept dark-field CT from being translated from the optical bench into a rapidly rotating CT gantry, with all its associated challenges like vibrations, continuous rotation, and large field of view. This development enables clinical dark-field CT studies with human patients in the near future.


Subject(s)
Scattering, Small Angle , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Algorithms , Animals , Humans , Imaging, Three-Dimensional , Interferometry/methods , Phantoms, Imaging , Radiography , Tomography Scanners, X-Ray Computed , X-Rays
17.
Neuroimage ; 250: 118965, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35122965

ABSTRACT

Localising accurate brain regions needs careful evaluation in each experimental species due to their individual variability. However, the function and connectivity of brain areas is commonly studied using a single-subject cranial landmark-based stereotactic atlas in animal neuroscience. Here, we address this issue in a small primate, the common marmoset, which is increasingly widely used in systems neuroscience. We developed a non-invasive multi-modal neuroimaging-based targeting pipeline, which accounts for intersubject anatomical variability in cranial and cortical landmarks in marmosets. This methodology allowed creation of multi-modal templates (MarmosetRIKEN20) including head CT and brain MR images, embedded in coordinate systems of anterior and posterior commissures (AC-PC) and CIFTI grayordinates. We found that the horizontal plane of the stereotactic coordinate was significantly rotated in pitch relative to the AC-PC coordinate system (10 degrees, frontal downwards), and had a significant bias and uncertainty due to positioning procedures. We also found that many common cranial and brain landmarks (e.g., bregma, intraparietal sulcus) vary in location across subjects and are substantial relative to average marmoset cortical area dimensions. Combining the neuroimaging-based targeting pipeline with robot-guided surgery enabled proof-of-concept targeting of deep brain structures with an accuracy of 0.2 mm. Altogether, our findings demonstrate substantial intersubject variability in marmoset brain and cranial landmarks, implying that subject-specific neuroimaging-based localization is needed for precision targeting in marmosets. The population-based templates and atlases in grayordinates, created for the first time in marmoset monkeys, should help bridging between macroscale and microscale analyses.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Callithrix/anatomy & histology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Anatomic Landmarks , Animals , Brain/surgery , Callithrix/surgery , Equipment Design , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/instrumentation , Reproducibility of Results , Surgery, Computer-Assisted , Tomography, X-Ray Computed/instrumentation
18.
Sci Rep ; 12(1): 2374, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149727

ABSTRACT

Measurements of visceral adipose tissue cross-sectional area and radiation attenuation from computed tomography (CT) scans provide useful information about risk and mortality. However, scan protocols vary, encompassing differing vertebra levels and utilizing differing phases of contrast enhancement. Furthermore, fat measurements have been extracted from CT using different Hounsfield Unit (HU) ranges. To our knowledge, there have been no large studies of healthy cohorts that reported reference values for visceral fat area and radiation attenuation at multiple vertebra levels, for different contrast phases, and using different fat HU ranges. Two-phase CT scans from 1,677 healthy, adult kidney donors (age 18-65) between 1999 and 2017, previously studied to determine healthy reference values for skeletal muscle measures, were utilized. Visceral adipose tissue cross-sectional area (VFA) and radiation attenuation (VFRA) measures were quantified using axial slices at T10 through L4 vertebra levels. T-tests were used to compare males and females, while paired t-tests were conducted to determine the effect (magnitude and direction) of (a) contrast enhancement and (b) different fat HU ranges on each fat measure at each vertebra level. We report the means, standard deviations, and effect sizes of contrast enhancement and fat HU range. Male and female VFA and VFRA were significantly different at all vertebra levels in both contrast and non-contrast scans. Peak VFA was observed at L4 in females and L2 in males, while peak VFRA was observed at L1 in both females and males. In general, non-contrast scans showed significantly greater VFA and VFRA compared to contrast scans. The average paired difference due to contrast ranged from 1.6 to - 8% (VFA) and 3.2 to - 3.0% (VFRA) of the non-contrast value. HU range showed much greater differences in VFA and VFRA than contrast. The average paired differences due to HU range ranged from - 5.3 to 22.2% (VFA) and - 5.9 to 13.6% (VFRA) in non-contrast scans, and - 4.4 to 20.2% (VFA) and - 4.1 to 12.6% (VFRA) in contrast scans. The - 190 to - 30 HU range showed the largest differences in both VFA (10.8% to 22.2%) and VFRA (7.6% to 13.6%) compared to the reference range (- 205 to - 51 HU). Incidentally, we found that differences in lung inflation result in very large differences in visceral fat measures, particularly in the thoracic region. We assessed the independent effects of contrast presence and fat HU ranges on visceral fat cross-sectional area and mean radiation attenuation, finding significant differences particularly between different fat HU ranges. These results demonstrate that CT measurements of visceral fat area and radiation attenuation are strongly dependent upon contrast presence, fat HU range, sex, breath cycle, and vertebra level of measurement. We quantified contrast and non-contrast reference values separately for males and females, using different fat HU ranges, for lumbar and thoracic CT visceral fat measures at multiple vertebra levels in a healthy adult US population.


Subject(s)
Contrast Media/administration & dosage , Intra-Abdominal Fat/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Adolescent , Adult , Aged , Cohort Studies , Contrast Media/analysis , Female , Healthy Volunteers , Humans , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , United States , Young Adult
19.
Phys Eng Sci Med ; 45(1): 157-166, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35015205

ABSTRACT

Dual-energy computed tomography (DECT) has appeared as a novel approach with the aim of evaluating artery-related diseases. With the advent of DECT, concerns have been raised about the induction of diseases such as cancer due to high radiation exposure of patients. Therefore, the dose received by patients in DECT should be considered. The parameter most commonly used for patient dosimetry is the effective dose (ED). The purpose of this study is to model and validate a DECT scanner by a developed MCNP Monte Carlo code and to calculate the organ doses, the ED, and the conversion factor (k-factor) used in determining ED in the cardiac imaging protocol. To validate the DECT scanner simulation, a standard dosimetry body phantom was modeled in two radiation modes of single energy CT and DECT. The results of simulated CT dose index (CTDI) were compared with those of ImPACT or measurement data. Then dosimetry phantom was replaced by the male and female ORNL phantoms and the organ doses were calculated. The organ doses were also calculated by ImPACT dose software. In the initial validation stage, the minimum and maximum observed relative differences between results of MNCP simulation and measured were 2.77% and 5.79% for the central CTDI and 1.91% and 5.83% for the averaged peripheral CTDI, respectively. The mean ED of simulation and the ImPACT were 3.23 and 5.55 mSv/100 mAs, and the mean k-factor was 0.016 and 0.032 mSv mGy-1 cm-1 in the male and female phantoms, respectively. The k-factor obtained for males is close to the currently used k-factor, but the k-factor for females is almost twice.


Subject(s)
Heart , Tomography, X-Ray Computed , Female , Heart/diagnostic imaging , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiometry , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods
20.
Acta Radiol ; 63(4): 458-466, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33709794

ABSTRACT

BACKGROUND: The low-tube-voltage scan generally needs a higher tube current than the conventional 120 kVp to maintain the image noise. In addition, the low-tube-voltage scan increases the photoelectric effect, which increases the radiation absorption in organs. PURPOSE: To compare the organ radiation dose caused by iodine contrast medium between low tube voltage with low contrast medium and that of conventional 120-kVp protocol with standard contrast medium. MATERIAL AND METHODS: After the propensity-matching analysis, 66 patients were enrolled including 33 patients with 120 kVp and 600 mgI/kg and 33 patients with 80 kVp and 300 mgI/kg (50% iodine reduction). The pre- and post-contrast phases were assessed in all patients. The Monte Carlo simulation tool was used to simulate the radiation dose. The computed tomography (CT) numbers for 10 organs and the organ doses were measured. The organ doses were normalized by the volume CT dose index, and the 120-kVp protocol was compared with the 80-kVp protocol. RESULTS: On contrast-enhanced CT, there were no significant differences in the mean CT numbers of the organs between 80-kVp and 120-kVp protocols except for the pancreas, kidneys, and small intestine. The normalized organ doses at 80 kVp were significantly lower than those of 120 kVp in all organs (e.g. liver, 1.6 vs. 1.9; pancreas, 1.5 vs. 1.8; spleen, 1.7 vs. 2.0) on contrast-enhanced CT. CONCLUSION: The low tube voltage with low-contrast-medium protocol significantly reduces organ doses at the same volume CT dose index setting compared with conventional 120-kVp protocol with standard contrast medium on contrast-enhanced CT.


Subject(s)
Contrast Media , Radiation Dosage , Radiographic Image Enhancement/methods , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Whole Body Imaging/instrumentation , Whole Body Imaging/methods , Adult , Female , Humans , Iodine , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...