Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.127
Filter
1.
Pathol Oncol Res ; 30: 1611768, 2024.
Article in English | MEDLINE | ID: mdl-38807857

ABSTRACT

Background: Gardner syndrome is a rare genetic cancer predisposition disorder characterized by intestinal polyposis, multiple osteomas, and soft and hard tissue tumors. Dental anomalies are present in approximately 30%-70% of patients with Gardner syndrome and can be discovered during routine dental examinations. However, sometimes the diagnosis is challenging due to the high clinical variability and incomplete clinical picture. Herein, we report a family with various dental and bone anomalies, in which the definitive diagnosis was established with the help of a comprehensive genetic analysis based on state-of-the-art next-generation sequencing technology. Case presentation: A 17-year-old female index patient presented with dental (caries, impacted, retained and anteriorly located teeth) and atypical bone anomalies not resembling Gardner syndrome. She was first referred to our Genetic Counselling Unit at the age of 11 due to an atypical bone abnormality identified by a panoramic X-ray. Tooth 3.6 was surgically removed and the histopathology report revealed a Paget's disease-like bone metabolic disorder with mixed osteoblastic and osteoclastic activity of the mandible. A small lumbar subcutaneous tumor was discovered by physical examination. Ultrasound examination of the tumor raised the possibility of a soft tissue propagation of chondromatosis. Her sister, 2 years younger at the age of 14, had some benign tumors (multiple exostoses, odontomas, epidermoid cysts) and impacted teeth. Their mother had also skeletal symptoms. Her lower teeth did not develop, the 9th-10th ribs were fused, and she complained of intermittent jaw pain. A cranial CT scan showed fibrous dysplasia on the cranial bones. Whole exome sequencing identified a heterozygous pathogenic nonsense mutation (c.4700C>G; p.Ser1567*) in the APC gene in the index patient's DNA. Targeted sequencing revealed the same variant in the DNA of the other affected family members (the sister and the mother). Conclusion: Early diagnosis of this rare, genetically determined syndrome is very important, because of the potentially high malignant transformation of intestinal polyps. Dentists should be familiar with the typical maxillofacial features of this disorder, to be able to refer patients to genetic counseling. Dental anomalies often precede the intestinal polyposis and facilitate the early diagnosis, thereby increasing the patients' chances of survival. Genetic analysis may be necessary in patients with atypical phenotypic signs.


Subject(s)
Gardner Syndrome , Genetic Testing , Humans , Gardner Syndrome/genetics , Gardner Syndrome/diagnosis , Gardner Syndrome/pathology , Female , Adolescent , Tooth Abnormalities/genetics , Tooth Abnormalities/pathology , Tooth Abnormalities/diagnosis , Early Diagnosis , Pedigree
2.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791218

ABSTRACT

KCTD1 plays crucial roles in regulating both the SHH and WNT/ß-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on ß-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.


Subject(s)
Tooth Abnormalities , Humans , Tooth Abnormalities/genetics , Female , Male , Wnt Signaling Pathway/genetics , Pedigree , Child , Exome Sequencing , Adolescent , Genetic Variation , beta Catenin/genetics , beta Catenin/metabolism , Adult , Co-Repressor Proteins
5.
Am J Med Genet A ; 194(4): e63473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37964495

ABSTRACT

Ophthalmological conditions are underreported in patients with KBG syndrome, which is classically described as presenting with dental, developmental, intellectual, skeletal, and craniofacial abnormalities. This study analyzed the prevalence of four ophthalmological conditions (strabismus, astigmatism, myopia, hyperopia) in 43 patients with KBG syndrome carrying variants in ANKRD11 or deletions in 16q24.3 and compared it to the literature. Forty-three patients were recruited via self-referral or a private Facebook group hosted by the KBG Foundation, with 40 of them having pathogenic or likely pathogenic variants. Virtual interviews were conducted to collect a comprehensive medical history verified by medical records. From these records, data analysis was performed to calculate the prevalence of ophthalmological conditions. Out of the 40 participants with pathogenic or likely pathogenic variants, strabismus was reported in 9 (22.5%) participants, while astigmatism, myopia, and hyperopia were reported in 11 (27.5%), 6 (15.0%), and 8 (20.0%) participants, respectively. Other reported conditions include anisometropia, amblyopia, and nystagmus. When compared to the literature, the prevalence of strabismus and refractive errors is higher than other studies. However, more research is needed to determine if variants in ANKRD11 play a role in abnormal development of the visual system. In patients with established KBG syndrome, screening for misalignment or refractive errors should be done, as interventions in patients with these conditions can improve functioning and quality of life.


Subject(s)
Abnormalities, Multiple , Astigmatism , Bone Diseases, Developmental , Hyperopia , Intellectual Disability , Myopia , Refractive Errors , Strabismus , Tooth Abnormalities , Humans , Abnormalities, Multiple/diagnosis , Intellectual Disability/diagnosis , Bone Diseases, Developmental/diagnosis , Tooth Abnormalities/epidemiology , Tooth Abnormalities/genetics , Tooth Abnormalities/diagnosis , Facies , Hyperopia/epidemiology , Hyperopia/genetics , Quality of Life , Refractive Errors/epidemiology , Refractive Errors/genetics , Refractive Errors/diagnosis , Transcription Factors , Myopia/diagnosis , Myopia/epidemiology , Myopia/genetics
6.
Pediatr Neurol ; 151: 138-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157719

ABSTRACT

BACKGROUND: KBG syndrome is a genetic disorder characterized by short stature, dysmorphic features, macrodontia, cognitive impairment, and limb anomalies. Epilepsy is an important comorbidity associated with KBG syndrome, although the entire phenotypic spectrum may not be fully appreciated. METHODS: We identified five new patients with KBG syndrome-related epilepsy and compared their phenotype to previously reported cases in the literature. RESULTS: Five patients with KBG syndrome-related epilepsy were identified. Three patients (60%) were male. Median age of seizure onset was 18 months (interquartile range 5, 32). The epilepsy type was generalized in three patients (60%); in two, the epilepsy type was combined (40%), with focal and generalized seizures. In one patient (20%), the epilepsy syndrome was classifiable and the child was diagnosed with myoclonic-atonic epilepsy. All five patients had pathogenic variants in the ANKRD11 gene. Epilepsy was refractory in two patients (40%). No specific antiseizure medication (ASM) was found to be superior. Literature review yielded 134 cases, median age of seizure onset was 4 years, and seizures were generalized (n = 60, 44%), focal (n = 26, 19%), or combined (n = 13, 10%). An epilepsy syndrome was diagnosed in 12 patients (8.8%). In those with documented response to ASM (n = 49), 22.4% were refractory (n = 11). CONCLUSIONS: Our study confirms that few patients with epilepsy and KBG syndrome have an identifiable epilepsy syndrome and generalized seizures are most common. We highlight that epilepsy associated with KBG syndrome may occur before age one year and should be an important diagnostic consideration in this age group.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Epilepsies, Myoclonic , Epilepsy , Intellectual Disability , Tooth Abnormalities , Child , Humans , Male , Infant , Child, Preschool , Female , Abnormalities, Multiple/diagnosis , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Bone Diseases, Developmental/diagnosis , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Facies , Repressor Proteins/genetics , Epilepsy/complications , Epilepsy/drug therapy , Seizures/genetics , Phenotype
7.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37586838

ABSTRACT

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/diagnostic imaging , Bone Diseases, Developmental/genetics , Tooth Abnormalities/diagnostic imaging , Tooth Abnormalities/genetics , Facies , Phenotype , Repressor Proteins/genetics , Transcription Factors , Neuroimaging
8.
Arch Oral Biol ; 154: 105759, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422997

ABSTRACT

OBJECTIVE: Variants in wingless-type MMTV integration site family member 10A (WNT10A) have been proposed to be the most common cause of non-syndromic oligodontia (NSO). The goal of the present study was to identify the novel WNT10A variants in Chinese families with NSO. DESIGN: Clinical data were collected from 39 families with oligodontia admitted to the Hospital of Stomatology Hebei Medical University (China) from 2016 to 2022. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify WNT10A variants in three families with non-syndromic oligodontia. Amino acid conservation analysis and protein conformational analysis were conducted for the WNT10A variant. Genotype-phenotype analysis was performed on the previously reported WNT10A variants related to NSO. RESULTS: We found a novel heterozygous WNT10A variant c.1127 G>A (p.Cys376Tyr) and two reported heterozygous variants c.460 C>A (p.Leu154Met) and c.511 C>T (p.Arg171Cys). Structural modeling showed that the novel WNT10A variant was located in a highly conserved domain, which led to structural damage of WNT10A protein. In addition, we found that the phenotype of the WNT10A variants affected the maxillary second premolars, followed by the mandibular second premolars, and rarely affected the maxillary central incisor. Herein, it is the first time to report that NSO patients with WNT10A monoallele mutation carry taurodontism phenotype and 6.1% prevalence of taurodontism in WNT10A-related NSO patients. CONCLUSIONS: Our results demonstrated that the novel variant c.1127 G>A (p.Cys376Tyr) of WNT10A causes NSO. The present study expanded the known variation spectrum of WNT10A and provided valuable information for genetic counseling of families.


Subject(s)
Anodontia , Tooth Abnormalities , Humans , Anodontia/genetics , Anodontia/epidemiology , Tooth Abnormalities/genetics , Phenotype , Mutation , Pedigree , Wnt Proteins/genetics
9.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37501353

ABSTRACT

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Epilepsy, Generalized , Intellectual Disability , Tooth Abnormalities , Humans , Infant , Abnormalities, Multiple/etiology , Abnormalities, Multiple/genetics , Intellectual Disability/complications , Intellectual Disability/diagnosis , Bone Diseases, Developmental/etiology , Bone Diseases, Developmental/genetics , Tooth Abnormalities/etiology , Tooth Abnormalities/genetics , Facies , Repressor Proteins/genetics , Transcription Factors
10.
Int J Pediatr Otorhinolaryngol ; 171: 111606, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336020

ABSTRACT

OBJECTIVES: Our objective was to reinforce clinical knowledge of hearing impairment in KBG syndrome. KBG syndrome is a rare genetic disorder due to monoallelic pathogenic variations of ANKRD11.The typical phenotype includes facial dysmorphism, costal and spinal malformation and developmental delay. Hearing loss in KBG patients has been reported for many years, but no study has evaluated audiological phenotyping from a clinical and an anatomical point of view. METHODS: This French multicenter study included 32 KBG patients with retrospective collection of data on audiological features, ear imaging and genetic investigations. RESULTS: We identified a typical audiological profil in KBG syndrome: conductive (71%), bilateral (81%), mild to moderate (84%) and stable (69%) hearing loss, with some audiological heterogeneity. Among patients with an abnormality on CT imaging (55%), ossicular chain impairment (67%), fixation of the stapes footplate (33%) and inner-ear malformations (33%) were the most common abnormalities. CONCLUSION: We recommend a complete audiological and radiological evaluation and an ENT-follow up in all patients presenting with KBG Syndrome. Imaging evaluation is necessary to determine the nature of lesions in the middle and inner ear.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Deafness , Intellectual Disability , Tooth Abnormalities , Humans , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Retrospective Studies , Repressor Proteins/genetics , Phenotype
11.
Am J Med Genet A ; 191(9): 2364-2375, 2023 09.
Article in English | MEDLINE | ID: mdl-37226940

ABSTRACT

Ankyrin Repeat Domain 11 (ANKRD11) gene mutations are associated with KBG syndrome, a developmental disability that affects multiple organ systems. The function of ANKRD11 in human growth and development is not clear, but gene knockout or mutation are lethal in mice embryos and/or pups. In addition, it plays a vital role in chromatin regulation and transcription. Individuals with KBG syndrome are often misdiagnosed or remain undiagnosed until later in life. This is largely due to KBG syndrome's varying and nonspecific phenotypes as well as a lack of accessible genetic testing and prenatal screening. This study documents perinatal outcomes for individuals with KBG syndrome. We obtained data from 42 individuals through videoconferences, medical records, and emails. 45.2% of our cohort was born by C-section, 33.3% had a congenital heart defect, 23.8% were born prematurely, 23.8% were admitted to the NICU, 14.3% were small for gestational age, and 14.3% of the families had a history of miscarriage. These rates were higher in our cohort compared to the overall population, including non-Hispanic and Hispanic populations. Other reports included feeding difficulties (21.4%), neonatal jaundice (14.3%), decreased fetal movement (7.1%), and pleural effusions in utero (4.7%). Comprehensive perinatal studies about KBG syndrome and updated documentation of its phenotypes are important in ensuring prompt diagnosis and can facilitate correct management.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Humans , Animals , Mice , Adolescent , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Prevalence , Chromosome Deletion , Repressor Proteins/genetics , Phenotype , Documentation
12.
Am J Med Genet A ; 191(5): 1222-1226, 2023 05.
Article in English | MEDLINE | ID: mdl-36722669

ABSTRACT

Tethered cord syndrome (TCS) is characterized by leg pain and weakness, bladder and bowel dysfunction, orthopedic malformations such as scoliosis, and motor deficits caused by the fixation of the spinal cord to surrounding tissues. TCS is surgically treatable and often found in conjunction with other syndromic conditions. KBG syndrome is caused by variants in the ANKRD11 gene and is characterized by short stature, developmental delay, macrodontia, and a triangular face. The current study explores the prevalence of TCS in pediatric KBG patients and their associated signs and symptoms. Patients with KBG were surveyed for signs and symptoms associated with TCS and asked if they had been diagnosed with the syndrome. We found a high proportion of patients diagnosed with (11%) or being investigated for TCS (24%), emphasizing the need to further characterize the comorbid syndromes. No signs or symptoms clearly emerged as indicative of TCS in KBG patients, but some the prevalence of some signs and symptoms varied by sex. Male KBG patients with diagnosed TCS were more likely to have coordination issues and global delay/brain fog than their female counterparts. Understanding the presentation of TCS in KBG patients is critical for timely diagnosis and treatment.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Neural Tube Defects , Tooth Abnormalities , Humans , Male , Child , Female , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Phenotype , Repressor Proteins/genetics , Neural Tube Defects/complications , Neural Tube Defects/diagnosis , Neural Tube Defects/epidemiology , Syndrome
14.
Am J Med Genet A ; 191(4): 1044-1049, 2023 04.
Article in English | MEDLINE | ID: mdl-36628575

ABSTRACT

Phenotypic features of KBG syndrome include craniofacial anomalies, short stature, cognitive disability and behavioral findings. The syndrome is caused by heterozygous pathogenic single nucleotide variants and indels in ANKRD11, or a heterozygous deletion of 16q24.3 that includes ANKRD11. We performed genome sequencing on a patient with clinical manifestations of KBG syndrome including distinct craniofacial features as well as a history of mild intellectual disability and attention-deficit hyperactivity disorder. This led to the identification of a 43 kb intragenic deletion of ANKRD11 affecting the first noncoding exon while leaving the coding regions intact. Review of the literature shows that this is the smallest 5' deletion affecting only the noncoding exons of ANKRD11. Real-time polymerase chain reaction demonstrated that the copy number variant was not present in either of the proband's parents, suggesting it occurred de novo. RNA expression analysis demonstrated significantly decreased transcript abundance compared to controls. This provides new evidence for haploinsufficiency as a mechanism of disease in KBG syndrome.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Humans , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Repressor Proteins/genetics , Chromosome Deletion , Transcription Factors/genetics , Phenotype
15.
J Med Genet ; 60(7): 644-654, 2023 07.
Article in English | MEDLINE | ID: mdl-36446582

ABSTRACT

BACKGROUND: KBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involving ANKRD11 cause KBG syndrome, but no genotype-phenotype correlation has been reported. METHODS: 67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a 'phenotypical score' were used to perform a genotype-phenotype correlation in 340 patients from our cohort and the literature. RESULTS: Neurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions. CONCLUSION: We present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype-phenotype correlation between some KBG features and specific ANKRD11 variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.


Subject(s)
Abnormalities, Multiple , Autism Spectrum Disorder , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Male , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Abnormalities, Multiple/diagnosis , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Autism Spectrum Disorder/genetics , DNA Copy Number Variations , Repressor Proteins/genetics , Chromosome Deletion , Phenotype , Transcription Factors/genetics
16.
Hum Mol Genet ; 32(9): 1429-1438, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36440975

ABSTRACT

Pathogenic variants in ANKRD11 or microdeletions at 16q24.3 are the cause of KBG syndrome (KBGS), a neurodevelopmental syndrome characterized by intellectual disability, dental and skeletal anomalies, and characteristic facies. The ANKRD11 gene encodes the ankyrin repeat-containing protein 11A transcriptional regulator, which is expressed in the brain and implicated in neural development. Syndromic conditions caused by pathogenic variants in epigenetic regulatory genes show unique patterns of DNA methylation (DNAm) in peripheral blood, termed DNAm signatures. Given ANKRD11's role in chromatin modification, we tested whether pathogenic ANKRD11 variants underlying KBGS are associated with a DNAm signature. We profiled whole-blood DNAm in 21 individuals with ANKRD11 variants, 2 individuals with microdeletions at 16q24.3 and 28 typically developing individuals, using Illumina's Infinium EPIC array. We identified 95 differentially methylated CpG sites that distinguished individuals with KBGS and pathogenic variants in ANKRD11 (n = 14) from typically developing controls (n = 28). This DNAm signature was then validated in an independent cohort of seven individuals with KBGS and pathogenic ANKRD11 variants. We generated a machine learning model from the KBGS DNAm signature and classified the DNAm profiles of four individuals with variants of uncertain significance (VUS) in ANKRD11. We identified an intermediate classification score for an inherited missense variant transmitted from a clinically unaffected mother to her affected child. In conclusion, we show that the DNAm profiles of two individuals with 16q24.3 microdeletions were indistinguishable from the DNAm profiles of individuals with pathogenic variants in ANKRD11, and we demonstrate the diagnostic utility of the new KBGS signature by classifying the DNAm profiles of individuals with VUS in ANKRD11.


Subject(s)
Abnormalities, Multiple , Repressor Proteins , Child , Female , Humans , Abnormalities, Multiple/blood , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/blood , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Chromosome Deletion , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Facies , Intellectual Disability/blood , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Machine Learning , Mutation , Phenotype , Repressor Proteins/genetics , Tooth Abnormalities/blood , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Transcription Factors/genetics
17.
Mol Genet Genomic Med ; 11(4): e2127, 2023 04.
Article in English | MEDLINE | ID: mdl-36564961

ABSTRACT

BACKGROUND: KBG syndrome is a rare genetic disorder involving macrodontia of the upper central incisors, craniofacial, skeletal, and neurologic symptoms, caused either by a heterozygous variant in ANKRD11 or deletion of 16q24.3, including ANKRD11. Diagnostic criteria were proposed in 2007 based on 50 cases, but KBG syndrome remains underdiagnosed. METHODS: Whole exome sequencing (WES) and array comparative genomic hybridization (array CGH) were conducted for genetic analysis and patient phenotypes were characterized based on medical records. RESULTS: Eight patients from seven unrelated families were confirmed with KBG syndrome. All patients (8/8, 100%) had some degree of craniofacial dysmorphism and developmental delay or intellectual disabilities. Triangular face, synophrys, anteverted nostril, prominent ears, long philtrum, and tented upper lip, which are typical facial dysmorphism findings in patients with KBG syndrome, were uniformly identified in the eight patients participating in this study, with co-occurrence rates of 4/8 (50%), 4/8 (50%), 4/8 (50%), 4/8 (50%), 5/8 (62.5%), and 5/8 (62.5%), respectively. Various clinical manifestations not included in the diagnostic criteria were observed. Six patients had point mutations in ANKRD11, one had an exonic deletion of ANKRD11, and one had a 16q24.3 microdeletion. According to the ACMG guidelines, all mutations were classified as pathogenic. The c.2454dup (p.Asn819fs*1) mutation in Pt 4 was reported previously. The remaining variants (c.397 + 1G>A, c.226 + 1G>A, c.2647del (p.Glu883Argfs*94), and c.4093C>T (p.Arg1365Ter)) were novel. CONCLUSION: The clinical and molecular features of eight patients from seven unrelated Korean families with KBG syndrome described here will assist physicians in understanding this rare genetic condition.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Humans , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Tooth Abnormalities/diagnosis , Facies , Comparative Genomic Hybridization , Chromosome Deletion , Repressor Proteins/genetics , Transcription Factors/genetics , Republic of Korea
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(1): 1-6, 2023 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-36584991

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of three children with KBG syndrome. METHODS: Clinical data of the three children from two families who have presented at the First Affiliated Hospital of Zhengzhou University between October 2019 and September 2020 and their family members were collected. Trio-whole exome sequencing (trio-WES) and Sanger sequencing were carried out. RESULTS: All children had feeding difficulties, congenital heart defects and facial dysmorphism. The sib- pair from family 1 was found to harbor a novel de novo heterozygous c.6270delT (p.Q2091Rfs*84) variant of the ANKRD11 gene, whilst the child from family 2 was found to harbor a novel heterozygous c.6858delC (p.D2286Efs*51) variant of the ANKRD11 gene, which was inherited from his mother who had a mild clinical phenotype. CONCLUSION: The heterozygous frameshift variants of the ANKRD11 gene probably underlay the disease in the three children. Above findings have enriched the spectrum of the ANKRD11 gene variants.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Female , Child , Humans , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Repressor Proteins/genetics , Mothers , Mutation
19.
Article in English | MEDLINE | ID: mdl-36396593

ABSTRACT

Oculodentodigital dysplasia (ODDD; MIM #164200), a rare genetic disorder characterized by abnormal craniofacial, dental, ocular, and digital features, is caused by mutations in GJA1 (gap junction alpha-1) gene and inherited in an autosomal dominant pattern. However, an autosomal recessive pattern is also reported. Here we described 2 families with members affected by ODDD. In the first family, the c.752G>C (p.S251T) and c.848C>T (p.P283L) heterozygous missense mutations and the c.825C>T (p.T275T) silent mutation were identified in the proband, which showed mild ODDD phenotypes, and in his mother, which displayed hemolytic anemia and thrombocytopenia. In the second family, the patients displayed typical features of ODDD, and Sanger sequencing identified a novel homozygous c.604C>T (p.R202C) missense mutation, whereas the parents carried the mutation. Together, these findings suggest that homozygous mutation in GJA1 induces a more severe ODDD phenotype, though interfamilial phenotype variability was observed, whereas compound heterozygous mutations in GJA1 cause a mild phenotype.


Subject(s)
Craniofacial Abnormalities , Tooth Abnormalities , Humans , Connexin 43/genetics , Craniofacial Abnormalities/genetics , Mutation , Tooth Abnormalities/genetics
20.
Dev Med Child Neurol ; 65(5): 712-720, 2023 05.
Article in English | MEDLINE | ID: mdl-36196002

ABSTRACT

AIM: To illustrate the epileptological and electroencephalographic (EEG) characteristics of a cohort of patients with KBG syndrome and epilepsy. METHOD: Clinical history, age at epilepsy onset, seizure types, EEG findings, duration of epilepsy, and response to therapies were retrospectively reviewed in 11 patients (three females, eight males) with KBG syndrome. RESULTS: All detected genetic mutations were pathogenic and affected the C-terminal region at exon 9 of ANKRD11. One patient had 16q24.3 microdeletion including the ANKRD11 gene. Mean age at onset was 67 months. Epilepsy type was focal in five patients and generalized in four. Two patients had developmental and epileptic encephalopathies. Seizure freedom was obtained after a period varying between 15 days and 6 years. INTERPRETATION: In our patients, epilepsy appeared to respond well to treatment and, in some cases, to be self-limiting. The molecular characteristics of our patients' genetic abnormalities did not point towards any specific epilepsy hot spot. Epilepsy should be considered in the diagnostic work-up of patients with KBG syndrome. WHAT THIS PAPER ADDS: Some of the epilepsy types of KBG syndrome appear to be self-remitting. The epilepsy phenotypes associated with KBG syndrome are quite variable.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Epilepsy, Generalized , Intellectual Disability , Tooth Abnormalities , Male , Female , Humans , Abnormalities, Multiple/diagnosis , Intellectual Disability/diagnosis , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Facies , Retrospective Studies , Repressor Proteins/genetics , Chromosome Deletion , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...