Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.888
Filter
1.
Narra J ; 4(1): e303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798840

ABSTRACT

Trunk muscles maintain steady effort with adequate strength and endurance. When the muscle performance is subpar, it might cause lower back discomfort. No reference for trunk strength and endurance has been established previously. The aim of this study was to determine the normative reference values for dynamometric and non-dynamometric tests in people with various body fat percentages. Two hundred sixty-four participants aged 19-40 years old were recruited in this cross-sectional study. The Siri equation was used to calculate the individuals body fat proportions, which were divided into normal, high, and very high body fat for men and women. The Modified Sorenson's and the Back-Leg-Chest Dynamometric tests were utilized to measure muscular performance. The means of strength in females with normal, high, and very high body fat percentages were 27.39, 25.75, and 25.37 N/m2, respectively. The males in the same category had the means of 56.48, 51.79, and 60.17 N/m2, respectively. The highest mean of endurance in females was in those with normal body fat percentage (42.28), so did males (71.02). Our findings suggest that males had higher trunk muscle strength and endurance than females, and normal-body-fat individuals had the greatest endurance regardless of gender.


Subject(s)
Muscle Strength , Humans , Female , Male , Adult , Cross-Sectional Studies , Muscle Strength/physiology , Reference Values , Sex Factors , Adipose Tissue , Muscle Strength Dynamometer , Torso/physiology , Physical Endurance/physiology , Young Adult
2.
PLoS One ; 19(5): e0301529, 2024.
Article in English | MEDLINE | ID: mdl-38743734

ABSTRACT

African elephants have a wide range of abilities using their trunk. As a muscular hydrostat, and thanks to the two finger-like processes at its tip, this proboscis can both precisely grasp and exert considerable force by wrapping. Yet few studies have attempted to quantify its distal grasping force. Thus, using a device equipped with force sensors and an automatic reward system, the trunk tip pinch force has been quantified in five captive female African savanna elephants. Results showed that the maximum pinch force of the trunk was 86.4 N, which may suggest that this part of the trunk is mainly dedicated to precision grasping. We also highlighted for the first time a difference in force between the two fingers of the trunk, with the dorsal finger predominantly stronger than the ventral finger. Finally, we showed that the position of the trunk, particularly the torsion, influences its force and distribution between the two trunk fingers. All these results are discussed in the light of the trunk's anatomy, and open up new avenues for evolutionary reflection and soft robot grippers.


Subject(s)
Elephants , Animals , Elephants/physiology , Female , Torso/physiology , Torso/anatomy & histology , Fingers/physiology , Fingers/anatomy & histology , Hand Strength/physiology , Biomechanical Phenomena
3.
Radiat Oncol ; 19(1): 56, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745333

ABSTRACT

BACKGROUND: Oncologic surgical resection is the standard of care for extremity and truncal soft tissue sarcoma (STS), often accompanied by the addition of pre- or postoperative radiation therapy (RT). Preoperative RT may decrease the risk of joint stiffness and fibrosis at the cost of higher rates of wound complications. Hypofractionated, preoperative RT has been shown to provide acceptable outcomes in prospective trials. Proton beam therapy (PBT) provides the means to decrease dose to surrounding organs at risk, such as the skin, bone, soft tissues, and adjacent joint(s), and has not yet been studied in patients with extremity and truncal sarcoma. METHODS: Our study titled "PROspective phase II trial of preoperative hypofractionated protoN therapy for extremity and Truncal soft tissue sarcOma (PRONTO)" is a non-randomized, prospective phase II trial evaluating the safety and efficacy of preoperative, hypofractionated PBT for patients with STS of the extremity and trunk planned for surgical resection. Adult patients with Eastern Cooperative Group Performance Status ≤ 2 with resectable extremity and truncal STS will be included, with the aim to accrue 40 patients. Treatment will consist of 30 Gy radiobiological equivalent of PBT in 5 fractions delivered every other day, followed by surgical resection 2-12 weeks later. The primary outcome is rate of major wound complications as defined according to the National Cancer Institute of Canada Sarcoma2 (NCIC-SR2) Multicenter Trial. Secondary objectives include rate of late grade ≥ 2 toxicity, local recurrence-free survival and distant metastasis-free survival at 1- and 2-years, functional outcomes, quality of life, and pathologic response. DISCUSSION: PRONTO represents the first trial evaluating the use of hypofractionated PBT for STS. We aim to prove the safety and efficacy of this approach and to compare our results to historical outcomes established by previous trials. Given the low number of proton centers and limited availability, the short course of PBT may provide the opportunity to treat patients who would otherwise be limited when treating with daily RT over several weeks. We hope that this trial will lead to increased referral patterns, offer benefits towards patient convenience and clinic workflow efficiency, and provide evidence supporting the use of PBT in this setting. TRIAL REGISTRATION: NCT05917301 (registered 23/6/2023).


Subject(s)
Extremities , Proton Therapy , Radiation Dose Hypofractionation , Sarcoma , Humans , Proton Therapy/methods , Sarcoma/radiotherapy , Sarcoma/pathology , Prospective Studies , Adult , Female , Male , Soft Tissue Neoplasms/radiotherapy , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/surgery , Preoperative Care , Torso
4.
Phys Med Biol ; 69(12)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38759675

ABSTRACT

Objective.The objective of this work is to: (1) demonstrate fluorine-19 (19F) MRI on a 3T clinical system with a large field of view (FOV) multi-channel torso coil (2) demonstrate an example parameter selection optimization for a19F agent to maximize the signal-to-noise ratio (SNR)-efficiency for spoiled gradient echo (SPGR), balanced steady-state free precession (bSSFP), and phase-cycled bSSFP (bSSFP-C), and (3) validate detection feasibility inex vivotissues.Approach.Measurements were conducted on a 3.0T Discovery MR750w MRI (GE Healthcare, USA) with an 8-channel1H/19F torso coil (MRI Tools, Germany). Numerical simulations were conducted for perfluoropolyether to determine the theoretical parameters to maximize SNR-efficiency for the sequences. Theoretical parameters were experimentally verified, and the sensitivity of the sequences was compared with a 10 min acquisition time with a 3.125 × 3.125 × 3 mm3in-plane resolution. Feasibility of a bSSFP-C was also demonstrated in phantom andex vivotissues.Main Results. Flip angles (FAs) of 12 and 64° maximized the signal for SPGR and bSSFP, and validation of optimal FA and receiver bandwidth showed close agreement with numerical simulations. Sensitivities of 2.47, 5.81, and 4.44ms-0.5mM-1 and empirical detection limits of 20.3, 1.5, and 6.2 mM were achieved for SPGR, bSSFP, and bSSFP-C, respectively. bSSFP and bSSFP-C achieved 1.8-fold greater sensitivity over SPGR (p< 0.01).Significance.bSSFP-C was able to improve sensitivity relative to simple SPGR and reduce both bSSFP banding effects and imaging time. The sequence was used to demonstrate the feasibility of19F MRI at clinical FOVs and field strengths withinex-vivotissues.


Subject(s)
Feasibility Studies , Signal-To-Noise Ratio , Torso , Humans , Torso/diagnostic imaging , Phantoms, Imaging , Fluorine-19 Magnetic Resonance Imaging/instrumentation , Fluorine-19 Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation
5.
Turk J Med Sci ; 54(1): 175-184, 2024.
Article in English | MEDLINE | ID: mdl-38812624

ABSTRACT

Background/aim: Trunk control, which plays a key role in balance and mobility, decreases in patients with multiple sclerosis (PwMS) and many parameters such as sensory, motor, and musculoskeletal systems affect trunk control. The aim of this study was to compare trunk control, spinal mobility, and spinal posture in PwMS with healthy controls and investigate the relationship between trunk control with spinal posture and spinal mobility in PwMS. Materials and methods: The study was completed with 38 PwMS and 38 healthy controls with matched age and sex. Trunk control was evaluated with the Trunk Impairment Scale (TIS). Spinal posture and mobility were evaluated in sagittal and frontal planes using an IDIAG M360 Spinal Mouse. Spinal posture was evaluated in upright, maximum flexion, extension, left and right lateral flexion positions, and spinal mobility was evaluated from upright to flexion, extension, right and left flexion positions in sagittal and frontal planes. Results: TIS scores, thoracic mobility angles (from upright to flexion and left lateral flexion), lumbar mobility angles (from upright to extension and right lateral flexion) and lumbar posture angle (maximum right lateral flexion) were lower, and thoracic posture angles (upright and maximum extension) were higher in PwMS than healthy controls (p < 0.05). No significant difference was found between other spinal postures and mobility values. In addition, there was only a negative relationship between thoracic spinal mobility from upright to extension and trunk control in PwMS (r = -0.349; p = 0.032). Conclusion: These findings indicate the importance of early detection of trunk disturbances in PwMS. Thus, even in the early stages of multiple sclerosis, detailed trunk assessment will guide the implementation of comprehensive exercise programs.


Subject(s)
Multiple Sclerosis , Posture , Torso , Humans , Cross-Sectional Studies , Multiple Sclerosis/physiopathology , Female , Male , Posture/physiology , Adult , Torso/physiopathology , Range of Motion, Articular/physiology , Middle Aged , Spine/physiopathology , Spine/physiology , Postural Balance/physiology , Case-Control Studies
6.
J Sports Sci ; 42(7): 599-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38734986

ABSTRACT

Unanticipated trunk perturbation is commonly observed when anterior cruciate ligament (ACL) injuries occur during direction-changing manoeuvres. This study aimed to quantify the effect of mid-flight medial-lateral external trunk perturbation directions/locations on ACL loading variables during sidestep cuttings. Thirty-two recreational athletes performed sidestep cuttings under combinations of three perturbation directions (no-perturbation, ipsilateral-perturbation, and contralateral-perturbation relative to the cutting leg) and two perturbation locations (upper-trunk versus lower-trunk). The pushing perturbation was created by customised devices releasing a slam ball to contact participants near maximum jump height prior to cutting. Perturbation generally resulted in greater peak vertical ground reaction force and slower cutting velocity. Upper-trunk contralateral perturbation showed the greatest lateral trunk bending away from the travel direction, greatest peak knee flexion and abduction angles, and greatest peak internal knee adduction moments compared to other conditions. Such increased ACL loading variables were likely due to the increased lateral trunk bending and whole-body horizontal velocity away from the cutting direction caused by the contralateral perturbation act at the upper trunk. The findings may help understand the mechanisms of indirect contact ACL injuries and develop effective cutting techniques for ACL injury prevention.


Subject(s)
Anterior Cruciate Ligament Injuries , Torso , Humans , Torso/physiology , Biomechanical Phenomena , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/prevention & control , Male , Young Adult , Female , Anterior Cruciate Ligament/physiology , Movement/physiology , Knee/physiology , Adult
7.
J Sports Sci ; 42(7): 611-620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38752925

ABSTRACT

Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: -1.3%).


Subject(s)
Torso , Wheelchairs , Humans , Biomechanical Phenomena , Male , Adult , Female , Young Adult , Torso/physiology , Machine Learning , Equipment Design , Weight-Bearing/physiology , Exercise Test/methods
8.
J Pak Med Assoc ; 74(5): 848-851, 2024 May.
Article in English | MEDLINE | ID: mdl-38783428

ABSTRACT

OBJECTIVE: To compare the effects of core muscle strengthening exercises with and without routine physical therapy on trunk balance in chronic stroke patients. METHODS: The randomised controlled trial was conducted at Mubarak Medical Complex, Sargodha, Pakistan, from October 28, 2021, to April 28, 2022, and comprised patients of either gender with chronic stroke aged 40-60 years. The subjects were randomised using the lottery method into group A that was managed with routine physical therapy, and group B which was further managed with core strengthening exercises. The intervention comprised 4 sessions per week for 8 weeks. Outcome was measured using Trunk Impairment Scale and Time Up and Go test. Data was collected at baseline, week 4 and post-intervention. Data was analysed using SPSS 23. RESULTS: Of the 80 individuals screened, 74(92.5%) were included. There were 37(50%) patients in group A; 30(81%) males and 7(19%) females with mean age 56.73±2.37 years. The remaining 37(50%) patients were in group B; 27(73%) males and 10(27%) females with mean age 55.65±2.88 years. Trunk balance and functional mobility improved significantly post-intervention in both groups (p<0.05), but group B values were significantly better compared to group A values (p<0.05). CONCLUSIONS: Core muscle strengthening exercises combined with routine physical therapy were found to be more effective compared to routine physical therapy alone in chronic stroke patients for improving trunk balance and functional mobility. Registration Number: IRCT20211116053070N1.


Subject(s)
Muscle Strength , Postural Balance , Stroke Rehabilitation , Humans , Male , Female , Middle Aged , Stroke Rehabilitation/methods , Postural Balance/physiology , Muscle Strength/physiology , Adult , Resistance Training/methods , Exercise Therapy/methods , Stroke/physiopathology , Stroke/therapy , Physical Therapy Modalities , Pakistan , Torso/physiopathology
9.
Med Probl Perform Art ; 39(2): 64-71, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814125

ABSTRACT

BACKGROUND: Ballet dancers are expected to use their bodies symmetrically during training, because dance movements are performed on both sides. However, there is a general belief that ballet training encourages the use of one side of the body more than the other. Frequent repetition of a particular exercise can lead to body asymmetries and musculoskeletal injuries. The aim of this cross-sectional study was to investigate the presence of lower limbs and trunk muscle strength asymmetries in ballet dancers and secondly to assess whether there is a difference between professional dancers and ballet students. METHODS: Ballet students (n=19) and professional ballet dancers (n=23) performed maximal voluntary isometric contractions of the trunk (flexion, extension, lateral flexion), hip (flexion, extension, adduction, abduction, external and internal rotation), knee (flexion, extension) and ankle (flexion, extension) on isometric dynamometer. RESULTS: The results showed that the percentage of ballet dancers with contralateral muscle strength asymmetries >10% ranged from 22.5% (ballet students) to 31.6% (professional dancers). The percentage of ballet dancers deviating by >10% from the normative maximum torque agonist/antagonist ratio ranged from 56.5% to 100%. A statistically significant difference between ballet students and professional ballet dancers was found in the trunk flexion/extension ratio (t(40) = -3 .55; p = 0.001; d = 0.55). CONCLUSION: This study revealed strength asymmetries in the lower limbs and trunk in ballet dancers, both professionals and students. Further research is needed to develop appropriate complementary exercise to address and eliminate asymmetries in muscle strength in ballet dancers.


Subject(s)
Dancing , Isometric Contraction , Lower Extremity , Muscle Strength , Muscle, Skeletal , Humans , Dancing/physiology , Muscle Strength/physiology , Female , Cross-Sectional Studies , Young Adult , Male , Lower Extremity/physiology , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Torso/physiology , Adult , Range of Motion, Articular/physiology
10.
J Bodyw Mov Ther ; 38: 150-154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763554

ABSTRACT

BACKGROUND: Vojta method improves motor function by inducing a response by pressing the stimulus zones. PURPOSE: To determine the effect of the stimulus zones on trunk muscle thickness, trunk control, trunk angle, and gross motor function in children with spastic-type cerebral palsy. METHODS: A quasi-experimental pilot study was conducted with 19 children with spastic-type cerebral palsy divided into two groups: Vojta method group (n = 10) and general physical therapy group (n = 9). Each group underwent a 6-week intervention, and assessments were conducted to evaluate abdominal muscle thickness, trunk control, trunk angle, and gross motor function. RESULTS: In the Vojta method group, the change rate in the thickness of the internal oblique and transversus abdominis increased significantly within the group (P < 0.05) and the difference (post-pre) of the transversus abdominis was higher (P < 0.05). The trunk angle increased significantly within the group when thoracic 7 and 11, lumbar 3, and sacrum 1 were supported (P < 0.05). There was a significant difference in trunk angle difference (post-pre) between groups when thoracic 11 and sacrum 1 were supported (P < 0.05). Segmental assessment of trunk control and gross motor function measure-88 scores were significantly increased within the group in all groups (P < 0.05). CONCLUSION: The stimulus zones of the Vojta method could improve trunk control in children with spastic-type cerebral palsy through intra-abdominal pressure and anti-gravity movement.


Subject(s)
Abdominal Muscles , Cerebral Palsy , Torso , Humans , Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Pilot Projects , Male , Child , Female , Abdominal Muscles/physiopathology , Abdominal Muscles/physiology , Torso/physiopathology , Torso/physiology , Child, Preschool , Physical Therapy Modalities
12.
Pediatr Med Chir ; 46(1)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625064

ABSTRACT

Dysphagia lusoria is a rare pediatric condition caused by extrinsic compression of the esophagus by an abnormal subclavian artery. The most common congenital abnormality in aortic arch development is an aberrant right subclavian artery. The retroesophageal right subclavian artery is typically symptomatic in 10-33% of cases. The patient, an 8-month-old girl with a history of early dysphagia and stridor, was diagnosed with an abnormal right subclavian artery. She was admitted to the pneumology service multiple times due to stridor, vomiting, and failure to thrive. During hospitalization at the gastroenterology service, a barium swallow and an upper digestive endoscopy indicated an abnormal right subclavian artery, which was confirmed by an Angiography CT scan. She underwent surgery at the age of sixteen months. All symptoms are resolved following surgical intervention, and the patient is still asymptomatic and in good clinical condition 12 months later. Every physician should be aware of abnormal right subclavian arteries and their clinical symptoms in children and adults in order to recognize and diagnose them early. Only an early evaluation may reduce complications such as delayed physical growth, dysphagia, and recurrent respiratory infections.


Subject(s)
Cardiovascular Abnormalities , Deglutition Disorders , Subclavian Artery/abnormalities , Adult , Female , Humans , Child , Infant , Deglutition Disorders/etiology , Subclavian Artery/diagnostic imaging , Respiratory Sounds , Torso
13.
PeerJ ; 12: e17188, 2024.
Article in English | MEDLINE | ID: mdl-38650644

ABSTRACT

Objectives: This study aimed to assess the effects of different magnification systems on the angular deviations of the neck and trunk and the muscle activities of the upper back and neck during preclinical cavity preparation. Methods: This was an experimental laboratory study, with the angular deviations from the neutral positions of the neck and trunk and the activities of the bilateral upper back (the descending and ascending trapezius) and neck (sternocleidomastoid) muscles as the dependent variables. The independent variables were the different magnification systems used (Simple, Galilean, and Keplerian loupes, with direct vision as the control) and prepared teeth (teeth 16, 26, 36, and 46). A dental mannequin phantom head with artificial resin teeth was used, and Class I cavity preparations for composite resin were performed on teeth 16, 26, 36, and 46 using a 1012 round diamond bur at low speed. To analyze the angular deviations, the postures adopted during the procedure were recorded using a tripod-mounted camera positioned to provide a lateral view of the operator. A trained researcher measured the angular deviations using the software entitled "Software for Postural Assessment"-SAPO (version 0.69). Bilateral muscle activity was assessed using surface electromyography. Descriptive statistical analysis was performed, and after verifying the assumptions of normality and homoscedasticity, two-way analysis of variance and the Tukey and Games-Howell post-hoc tests were used to compare the data (α=0.05). Results: The angular deviation from the neutral position of the neck was found to be significantly higher during cavity preparations performed with the naked eye and the Simple loupe, irrespective of the prepared tooth. With regard to tooth location, the angular deviation of the neck was significantly greater during cavity preparation on teeth 16 and 26, and the angular deviation of the trunk was significantly greater during cavity preparation on tooth 26, regardless of the magnification system used. There were significant differences in right sternocleidomastoid muscle activity between the Simple, Galilean, and Keplerian loupes, with activity being the lowest for the Galilean loupe (p = 0.008). There were no significant differences in left sternocleidomastoid muscle activity between the loupes, regardless of the prepared tooth (p = 0.077). The activities of the bilateral descending trapezius and the right ascending trapezius muscles were significantly lower when the Galilean loupe was used (p < 0.010). Conclusion: These results suggest that the Galilean loupe resulted in lower muscle activity in the neck and back regions and that the Galilean and Keplerian loupes resulted in less angular deviations of the neck and trunk during cavity preparation.


Subject(s)
Electromyography , Manikins , Neck Muscles , Humans , Neck Muscles/physiology , Posture/physiology , Neck , Torso/physiology , Male
14.
Traffic Inj Prev ; 25(4): 631-639, 2024.
Article in English | MEDLINE | ID: mdl-38578254

ABSTRACT

OBJECTIVE: Large passenger vehicles have consistently demonstrated an outsized injury risk to pedestrians they strike, particularly those with tall, blunt front ends. However, the specific injuries suffered by pedestrians in these crashes as well as the mechanics of those injuries remain unclear. The current study was conducted to explore how a variety of vehicle measurements affect pedestrian injury outcomes using crash reconstruction and detailed injury attribution. METHODS: We analyzed 121 pedestrian crashes together with a set of vehicle measurements for each crash: hood leading edge height, bumper lead angle, hood length, hood angle, and windshield angle. RESULTS: Consistent with past research, having a higher hood leading edge height increased pedestrian injury severity, especially among vehicles with blunt front ends. The poor crash outcomes associated with these vehicles stem from greater injury risk and severity to the torso and hip from these vehicles' front ends and a tendency for them to throw pedestrians forward after impact. CONCLUSIONS: The combination of vehicle height and a steep bumper lead angle may explain the elevated pedestrian crash severity typically observed among large vehicles.


Subject(s)
Craniocerebral Trauma , Pedestrians , Wounds and Injuries , Humans , Accidents, Traffic , Walking/injuries , Torso , Wounds and Injuries/epidemiology
15.
Medicina (Kaunas) ; 60(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674180

ABSTRACT

Background and Objectives: Lean body mass loss after bariatric surgery (BS) is remarkable, despite an effective long-term mass reduction and significant declines in comorbidities. A person's functional capacity is adversely affected when their skeletal muscle strength declines by up to 30%. This study aimed to assess the isokinetic trunk muscle strength and fatigue rate in individuals after BS. Materials and Methods: This study included fifty-eight patients, both male and female, ranging in age from 19 to 45. Twenty-seven individuals had BS and twenty-seven healthy people served as the control group. The primary outcomes were the measurement of the concentric and eccentric isokinetic muscle strength of the trunk flexor and extensor muscles. An isokinetic dynamometer (Biodex Rehabilitation and Testing System 3) was used for the assessment of the isokinetic muscle strength. Noraxon EMG was used to determine a secondary outcome, which was the median frequency slop (MF/time) and root mean square slop (RMS/time) of the lumbar erector spinea muscle at 50% of the Maximum Voluntary Isometric Contraction (MVIC). Outcome measures were assessed for both groups. Results: Compared to the control group, the bariatric group showed a lower mean value of both concentric and eccentric isokinetic muscle strength for the flexor and extensor trunk muscles (p < 0.05). In terms of the EMG fatigue rate, the RMS slope increased significantly more than that of the control group, while the MF slope decreased (p > 0.05). Conclusions: The current study found that, in comparison to the healthy subjects, the BS group showed reduced levels of fatigue and isokinetic strength in the trunk muscles. Based on these results, it is recommended that individuals who underwent BS take part in tailored rehabilitation programs to avoid potential musculoskeletal issues in the future.


Subject(s)
Bariatric Surgery , Muscle Fatigue , Muscle Strength , Humans , Male , Female , Adult , Bariatric Surgery/adverse effects , Bariatric Surgery/methods , Muscle Strength/physiology , Middle Aged , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Torso/physiology , Torso/physiopathology , Electromyography/methods , Isometric Contraction/physiology , Young Adult , Muscle Strength Dynamometer
16.
J Sports Sci ; 42(5): 404-414, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38602304

ABSTRACT

The purpose was to compare two non-laboratory based running retraining programs on lower limb and trunk kinematics in recreational runners. Seventy recreational runners (30 ± 7.3 years old, 40% female) were randomised to a barefoot running group (BAR), a group wearing a digital metronome with their basal cadence increased by 10% (CAD), and a control group (CON). BAR and CAD groups included intervals from 15 to 40 min over 10 weeks and 3 days/week. 3D sagittal kinematics of the ankle, knee, hip, pelvis, and trunk were measured before and after the retraining program, at comfortable and high speeds. A 3 × 2 mixed ANOVA revealed that BAR and CAD groups increased knee and hip flexion at footstrike, increased peak hip flexion during stance and flight phase, decreased peak hip extension during flight phase, and increased anterior pelvic tilt at both speeds after retraining. In addition, BAR increased ankle plantar flexion at footstrike and increased anterior trunk tilt. Both retraining programs demonstrated significant moderate to large effect size changes in parameters that could reduce the mechanical risks of injury associated with excessive knee stress, which is of interest to coaches, runners and those prescribing rehabilitation and injury prevention programs.


Subject(s)
Lower Extremity , Pelvis , Running , Torso , Humans , Running/physiology , Biomechanical Phenomena , Female , Male , Torso/physiology , Adult , Lower Extremity/physiology , Pelvis/physiology , Foot/physiology , Young Adult , Knee/physiology , Ankle/physiology , Hip/physiology , Gait/physiology
17.
Percept Mot Skills ; 131(3): 687-706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657202

ABSTRACT

Our purpose in this study was to determine the effects of a virtual reality intervention delivering specific motivational motor learning manipulations of either autonomy support (AS) or enhanced expectancies (EE) on frontal plane single-leg squatting kinematics. We allocated 45 participants (21 male, 24 female) demonstrating knee, hip, and trunk frontal plane mechanics associated with elevated anterior cruciate ligament injury risk to one of three groups (control, AS, or EE). Participants mimicked an avatar performing five sets of eight repetitions of exemplary single-leg squats. AS participants were given the added option of choosing the color of their avatar. EE participants received real-time biofeedback in the form of green highlights on the avatar that remained on as long as the participant maintained pre-determined 'safe' frontal plane mechanics. We measured peak frontal plane knee, hip, and trunk angles before (baseline) and immediately following (post) the intervention. The control group demonstrated greater increases in knee abduction angle (Δ = +2.3°) than did the AS (Δ = +0.1°) and EE groups (Δ = -0.4°) (p = .003; η2p = .28). All groups demonstrated increased peak hip adduction (p = .01, ηp2 = .18) (control Δ = +1.5°; AS Δ = +3.2°; EE Δ = +0.7°). Hip adduction worsened in all groups. AS and EE motivation strategies appeared to mitigate maladaptive frontal plane knee mechanics.


Subject(s)
Motivation , Virtual Reality , Humans , Male , Female , Biomechanical Phenomena/physiology , Young Adult , Adult , Motivation/physiology , Anterior Cruciate Ligament Injuries/physiopathology , Torso/physiology , Biofeedback, Psychology/physiology , Biofeedback, Psychology/methods
18.
J Biomech ; 168: 112039, 2024 May.
Article in English | MEDLINE | ID: mdl-38657434

ABSTRACT

Musculoskeletal simulations with muscle optimization aim to minimize muscle effort, hence are considered unable to predict the activation of antagonistic muscles. However, activation of antagonistic muscles might be necessary to satisfy the dynamic equilibrium. This study aims to elucidate under which conditions coactivation can be predicted, to evaluate factors modulating it, and to compare the antagonistic activations predicted by the lumbar spine model with literature data. Simple 2D and 3D models, comprising of 2 or 3 rigid bodies, with simple or multi-joint muscles, were created to study conditions under which muscle coactivity is predicted. An existing musculoskeletal model of the lumbar spine developed in AnyBody was used to investigate the effects of modeling intra-abdominal pressure (IAP), linear/cubic and load/activity-based muscle recruitment criterion on predicted coactivation during forward flexion and lateral bending. The predicted antagonist activations were compared to reported EMG data. Muscle coactivity was predicted with simplified models when multi-joint muscles were present or the model was three-dimensional. During forward flexion and lateral bending, the coactivation ratio predicted by the model showed good agreement with experimental values. Predicted coactivation was negligibly influenced by IAP but substantially reduced with a force-based recruitment criterion. The conditions needed in multi-body models to predict coactivity are: three-dimensionality or multi-joint muscles, unless perfect antagonists. The antagonist activations are required to balance 3D moments but do not reflect other physiological phenomena, which might explain the discrepancies between model predictions and experimental data. Nevertheless, the findings confirm the ability of the multi-body trunk models to predict muscle coactivity and suggest their overall validity.


Subject(s)
Models, Biological , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Torso/physiology , Lumbar Vertebrae/physiology , Muscle Contraction/physiology , Electromyography , Computer Simulation , Biomechanical Phenomena
19.
Gait Posture ; 110: 122-128, 2024 05.
Article in English | MEDLINE | ID: mdl-38569401

ABSTRACT

BACKGROUND: Landing from heights is a common movement for active-duty military personnel during training. And the additional load they carry while performing these tasks can affect the kinetics and ankle kinematic of the landing. Traditional motion capture techniques are limited in accurately capturing the in vivo kinematics of the talus. This study aims to investigate the effect of additional trunk load on the kinematics of the talocrural and subtalar joints during landing, using a dual fluoroscopic imaging system (DFIS). METHODS: Fourteen healthy male participants were recruited. Magnetic resonance imaging was performed on the right ankle of each participant to create three-dimensional (3D) models of the talus, tibia, and calcaneus. High-speed DFIS was used to capture the images of participants performing single-leg landing jumps from a height of 40 cm. A weighted vest was used to apply additional load, with a weight of 16 kg. Fluoroscopic images were acquired with or without additional loading condition. Kinematic data were obtained by importing the DFIS data and the 3D models in virtual environment software for 2D-3D registration. The kinematics and kinetics were compared between with or without additional loading conditions. RESULTS: During added trunk loading condition, the medial-lateral translation range of motion (ROM) at the talocrural joint significantly increased (p < 0.05). The subtalar joint showed more extension at 44-56 ms (p < 0.05) after contact. The subtalar joint was more eversion at 40-48 ms (p < 0.05) after contact under the added trunk load condition. The peak vertical ground reaction force (vGRF) significantly increased (p < 0.05). CONCLUSIONS: With the added trunk load, there is a significant increase in peak vGRF during landing. The medial-lateral translation ROM of the talocrural joint increases. And the kinematics of the subtalar joint are affected. The observed biomechanical changes may be associated with the high incidence of stress fractures in training with added load.


Subject(s)
Subtalar Joint , Weight-Bearing , Humans , Male , Biomechanical Phenomena , Subtalar Joint/physiology , Subtalar Joint/diagnostic imaging , Weight-Bearing/physiology , Young Adult , Fluoroscopy , Adult , Magnetic Resonance Imaging , Talus/physiology , Talus/diagnostic imaging , Imaging, Three-Dimensional , Torso/physiology , Range of Motion, Articular/physiology , Ankle Joint/physiology
20.
Neurol Res ; 46(6): 553-560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565199

ABSTRACT

OBJECTIVES: Inadequate trunk function is the underlying cause of many problems such as impaired balance and mobility. Although there have been trunk-based physiotherapy approaches in recent years, almost all of these approaches focus on motor problems. This study aims to investigate the effects of sensory training combined with trunk-centered Bobath exercises on trunk control and proprioception, balance, gait, and the activity of daily living (ADL). MATERIALS AND METHODS: This study is a randomized controlled trial included with twenty-seven stroke patients. Participants were separated into two groups, Group 1; 'sensory training combined with trunk-centered Bobath exercises' and Group 2; 'trunk-centered Bobath exercises'. Trunk-centered Bobath exercises were used for motor training. Sensory training included transcutaneous electric nerve stimulation and a set of exercises that provide tactile and proprioceptive stimulation. Trunk Impairment Scale, Trunk Reposition Error, Berg Balance Scale, 2-minute walk test, and Barthel Index were used to assess trunk control, trunk proprioception, balance, gait, and ADL respectively. RESULTS: Intra-group analysis results showed that trunk control, trunk proprioception, balance, gait, and ADL improved in both groups after treatment (p < 0.05). The changes in the Trunk Reposition Error values of the participants in Group 1 before and after treatment was found to be significantly higher than Group 2 (p < 0.05). CONCLUSIONS: The findings indicated that the application of trunk-centered motor training is effective in improving trunk proprioception and trunk control, balance, gait, and ADL in stroke patients. Also, sensory training combined with trunk-centered motor training was found more effective in improving trunk proprioception than solely motor training.


Subject(s)
Exercise Therapy , Postural Balance , Proprioception , Stroke Rehabilitation , Stroke , Torso , Humans , Male , Female , Proprioception/physiology , Stroke Rehabilitation/methods , Middle Aged , Single-Blind Method , Stroke/physiopathology , Stroke/therapy , Stroke/complications , Torso/physiopathology , Exercise Therapy/methods , Postural Balance/physiology , Aged , Activities of Daily Living , Adult , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...