Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(20): 11606-11616, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722802

ABSTRACT

In this work, three MP extracts obtained from Torulaspora delbrueckii were added to red wine, and the changes in phenolic composition, color, and astringency were evaluated by HPLC-DAD-ESI-MS, tristimulus colorimetry, and sensory analysis, respectively. The MP extracts modified wine phenolic composition differently depending on the type of MP. Moreover, two MP extracts were able to reduce wine astringency. The fact that the MP-treated wines showed an increased flavanol content suggests the formation of MP-flavanol aggregates that remain in solution. Furthermore, the formation of these aggregates may hinder the interaction of flavanols with salivary proteins in the mouth. The effect of these MPs might be associated with their larger size, which could influence their ability to bind flavanols and salivary proteins. However, one of the astringent-modulating MPs also produced a loss of color, highlighting the importance of assessing the overall impact of MPs on the organoleptic properties of wine.


Subject(s)
Taste , Torulaspora , Wine , Wine/analysis , Humans , Torulaspora/metabolism , Torulaspora/chemistry , Phenols/metabolism , Phenols/chemistry , Color , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Chromatography, High Pressure Liquid , Female , Male , Membrane Glycoproteins
2.
Food Chem ; 453: 139625, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754349

ABSTRACT

Simultaneous inoculation of non-Saccharomyces cerevisiae during the alcoholic fermentation process has been found to be an effective strategy for enhancing wine flavor. This study aimed to investigate the effect of Torulaspora delbrueckii NCUF305.2 on the flavor of navel orange original brandy (NOOB) using E-nose combined with HS-SPME-GC-MS. The results showed a significant increase (p < 0.05) in the sensitivity of NOOB to W5C, W3C, W1S, and W3S sensors by mixed fermentation (MF). Esters in NOOB increased by 4.13%, while higher alcohols increased by 21.93% (p < 0.001), terpenes and others increased by 52.07% and 40.99% (p < 0.01), respectively. Notably, several important volatile compounds with relative odor activity values above 10 showed an increase. Sensory analysis revealed that a more pronounced citrus-like flavor and higher overall appearance scores were found in MF than in pure fermentation (PF). These findings offer valuable theoretical guidance for enhancing the quality of fruit brandies.


Subject(s)
Citrus sinensis , Electronic Nose , Fermentation , Gas Chromatography-Mass Spectrometry , Odorants , Solid Phase Microextraction , Taste , Torulaspora , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Citrus sinensis/chemistry , Odorants/analysis , Torulaspora/metabolism , Torulaspora/chemistry , Flavoring Agents/chemistry , Wine/analysis , Fruit/chemistry , Fruit/microbiology , Humans
3.
J Agric Food Chem ; 67(28): 7942-7953, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31264861

ABSTRACT

Tryptophan, phenylalanine, and tyrosine play an important role as nitrogen sources in yeast metabolism. They regulate biomass production and fermentation rate, and their catabolites contribute to wine health benefits and sensorial character through the yeast biotransformation of grape juice constitutes into biologically active and flavor-impacting components. A UHPLC-MS/MS method was applied to monitor 37 tryptophan/phenylalanine/tyrosine yeast metabolites both in extra- and intracellular extracts produced by the fermentation of two Saccharomyces cerevisiae strains and one Torulaspora delbrueckii. The results shed light on the intra- and extra-cellular metabolomic dynamics, by combining metabolic needs, stimuli, and signals. Among others, the results indicated (a) the production of 2-aminoacetophenone by yeasts, mainly by the two Saccharomyces cerevisiae; (b) the deactivation and/or detoxification of tryptophol via sulfonation reaction; and (c) the deacetylation of N-acetyl tryptophan ethyl ester and N-acetyl tyrosine ethyl ester by producing the corresponding ethyl esters.


Subject(s)
Amino Acids, Aromatic/metabolism , Saccharomyces cerevisiae/metabolism , Torulaspora/metabolism , Amino Acids, Aromatic/chemistry , Chromatography, High Pressure Liquid , Nitrogen/metabolism , Saccharomyces cerevisiae/chemistry , Tandem Mass Spectrometry , Torulaspora/chemistry
4.
Yeast ; 33(4): 129-44, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26647111

ABSTRACT

This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties.


Subject(s)
Beer/microbiology , Torulaspora/metabolism , Amino Acids/analysis , Beer/analysis , Beer/standards , Carbohydrate Metabolism , DNA Fingerprinting , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , Fermentation , Hydrogen-Ion Concentration , Models, Biological , Odorants , Random Amplified Polymorphic DNA Technique , Real-Time Polymerase Chain Reaction , Taste , Temperature , Torulaspora/chemistry , Torulaspora/cytology , Torulaspora/genetics
5.
Yeast ; 27(12): 1061-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20824888

ABSTRACT

We cloned a genomic DNA fragment of the yeast Torulaspora delbrueckii by complementation of a Saccharomyces cerevisiae snf1Δ mutant strain. DNA sequence analysis revealed that the fragment contained a complete open reading frame (ORF), which shares a high similarity with the S. cerevisiae energy sensor protein kinase Snf1. The cloned TdSNF1 gene was able to restore growth of the S. cerevisiae snf1Δ mutant strain on media containing nonfermentable carbon sources. Furthermore, cells of the Tdsnf1Δ mutant were unable to proliferate under nonfermenting conditions. Finally, protein domain analysis showed that TdSnf1p contains a typical catalytic protein kinase domain (positions 41-293), which is also present in other Snf1p homologues. Within this region we identified a protein kinase ATP-binding region (positions 48-71) and a consensus Ser/Thr protein kinase active site (positions 160-172).


Subject(s)
Carbon/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Torulaspora/enzymology , Amino Acid Sequence , Cloning, Molecular , Fungal Proteins/metabolism , Molecular Sequence Data , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Stress, Physiological , Torulaspora/chemistry , Torulaspora/genetics , Torulaspora/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...