Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.399
Filter
1.
Nat Commun ; 15(1): 3792, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710711

ABSTRACT

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Subject(s)
Protozoan Proteins , Toxoplasma , Toxoplasma/enzymology , Toxoplasma/genetics , Glycosylation , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Humans , Crystallography, X-Ray , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Cell Wall/metabolism , Animals
2.
Nat Commun ; 15(1): 4278, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778039

ABSTRACT

Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism.


Subject(s)
Genome, Protozoan , Phylogeny , Toxoplasma , Toxoplasma/genetics , Toxoplasma/classification , Humans , North America , Genome, Protozoan/genetics , Toxoplasmosis/parasitology , China , Central America , Japan , Haplotypes , Genetic Variation , Recombination, Genetic
3.
PLoS Biol ; 22(5): e3002634, 2024 May.
Article in English | MEDLINE | ID: mdl-38713739

ABSTRACT

Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.


Subject(s)
Endoplasmic Reticulum , Protozoan Proteins , Secretory Pathway , Toxoplasma , rab2 GTP-Binding Protein , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab2 GTP-Binding Protein/metabolism , rab2 GTP-Binding Protein/genetics , Protein Domains , Protein Transport , Lipid Droplets/metabolism , Animals , Humans
4.
BMC Infect Dis ; 24(1): 490, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741041

ABSTRACT

BACKGROUND: Toxoplasma gondii (T. gondii) is capable of infecting nearly all warm-blooded animals and approximately 30% of the global population. Though most infections are subclinical in immunocompetent individuals, congenital contraction can lead to severe consequences such as spontaneous abortion, stillbirth, and a range of cranio-cerebral and/or ocular abnormalities. Previous studies reported that T. gondii-infected pregnancy mice unveiled a deficit in both the amount and suppressive functions of regulatory T (Treg) cells, accompanied with reduced levels of forkhead box p3 (Foxp3). Recently, accumulative studies have demonstrated that microRNAs (miRNAs) are, to some extent, relevant to T. gondii infection. However, the link between alterations in miRNAs and downregulation of Foxp3 triggered by T. gondii has been only sporadically studied. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR), protein blotting and immunofluorescence were employed to evaluate the impact of T. gondii infection and antigens on miRNA transcription and Foxp3 expression. Dual-luciferase reporter gene assays were performed to examine the fluorescence activity in EL4 cells, which were transfected with recombinant plasmids containing full-length/truncated/mutant microRNA-142a-3p (miR-142a) promoter sequence or wild type/mutant of Foxp3 3' untranslated region (3' UTR). RESULTS: We found a pronounced increase in miR-142a transcription, concurrent with a decrease in Foxp3 expression in T. gondii-infected mouse placental tissue. Similarly, comparable findings have been experimentally confirmed through the treatment of EL4 cells with T. gondii antigens (TgAg) in vitro. Simultaneously, miR-142a mimics attenuated Foxp3 expression, whereas its inhibitors markedly augmented Foxp3 expression. miR-142a promoter activity was elevated upon the stimulation of T. gondii antigens, which mitigated co-transfection of mutant miR-142a promoter lacking P53 target sites. miR-142a mimics deceased the fluorescence activity of Foxp3 3' untranslated region (3' UTR), but it did not affect the fluorescence activity upon the co-transfection of mutant Foxp3 3' UTR lacking miR-142a target site. CONCLUSION: In both in vivo and in vitro studies, a negative correlation was discovered between Foxp3 expression and miR-142a transcription. TgAg enhanced miR-142a promoter activity to facilitate miR-142a transcription through a P53-dependent mechanism. Furthermore, miR-142a directly targeted Foxp3 3' UTR, resulting in the downregulation of Foxp3 expression. Therefore, harnessing miR-142a may be a possible therapeutic approach for adverse pregnancy caused by immune imbalances, particularly those induced by T. gondii infection.


Subject(s)
Down-Regulation , Forkhead Transcription Factors , MicroRNAs , Toxoplasma , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Animals , Pregnancy , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice , Toxoplasma/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Pregnancy Outcome , T-Lymphocytes, Regulatory/immunology , Mice, Inbred C57BL , 3' Untranslated Regions
5.
Comp Immunol Microbiol Infect Dis ; 109: 102184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691874

ABSTRACT

BACKGROUND: Toxoplasma gondii is an apicomplexan protozoan parasite that infects one-third of the population of the world, including humans, animals, birds, and other vertebrates. The present investigation is the first molecular attempt in the Malakand Division of Pakistan to determine the epidemiology and phylogenetic study of Toxoplasma gondii infecting small ruminants. METHODOLOGY: A total of (N = 450) blood samples of sheep were randomly collected during the study period (December 2020 to November 2021), and DNA detection was done using PCR by amplifying ITS-1 genes. SPSS.20 and MEGA-11 software were used for statistical significance and phylogenetic analysis. RESULTS: The overall prevalence of T. gondii infection among sheep was 14.44 % (65/450). A high infection rate was found in more than five-year-olds at 18.33 % (11/60). Sequencing and BLAST analysis of PCR-positive samples confirmed the presence of T. gondii. Randomly, three isolates were sequenced and submitted to GenBank under accession numbers (PP028089-PP028091), respectively. The BLAST analysis of the obtained sequences based on the ITS-1 gene showed 99 % similarities with reported genotypes found in goats of Malakand, Pakistan (PP028089) and dogs of Brazil (MF766454). The study concludes that T. gondii is notably prevalent among the sheep population in the region, emphasizing the significant role of risk factors in disease transmission across animals and potentially to humans. Further research, zoonotic potential analysis, and targeted control measures are warranted to address and manage this parasitic infection effectively.


Subject(s)
DNA, Protozoan , Phylogeny , Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Toxoplasma/genetics , Toxoplasma/isolation & purification , Toxoplasma/classification , Pakistan/epidemiology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Prevalence , DNA, Protozoan/genetics , Genotype , Polymerase Chain Reaction
6.
Nat Commun ; 15(1): 4385, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782906

ABSTRACT

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasma/metabolism , Toxoplasma/genetics , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Mice , Mutation , Ribosomes/metabolism , Protein Biosynthesis , Female , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Differentiation , Humans
7.
Sci Rep ; 14(1): 12027, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797747

ABSTRACT

Increasing Arctic temperatures are facilitating the northward expansion of more southerly hosts, vectors, and pathogens, exposing naïve populations to pathogens not typical at northern latitudes. To understand such rapidly changing host-pathogen dynamics, we need sensitive and robust surveillance tools. Here, we use a novel multiplexed magnetic-capture and droplet digital PCR (ddPCR) tool to assess a sentinel Arctic species, the polar bear (Ursus maritimus; n = 68), for the presence of five zoonotic pathogens (Erysipelothrix rhusiopathiae, Francisella tularensis, Mycobacterium tuberculosis complex, Toxoplasma gondii and Trichinella spp.), and observe associations between pathogen presence and biotic and abiotic predictors. We made two novel detections: the first detection of a Mycobacterium tuberculosis complex member in Arctic wildlife and the first of E. rhusiopathiae in a polar bear. We found a prevalence of 37% for E. rhusiopathiae, 16% for F. tularensis, 29% for Mycobacterium tuberculosis complex, 18% for T. gondii, and 75% for Trichinella spp. We also identify associations with bear age (Trichinella spp.), harvest season (F. tularensis and MTBC), and human settlements (E. rhusiopathiae, F. tularensis, MTBC, and Trichinella spp.). We demonstrate that monitoring a sentinel species, the polar bear, could be a powerful tool in disease surveillance and highlight the need to better characterize pathogen distributions and diversity in the Arctic.


Subject(s)
Ursidae , Zoonoses , Ursidae/microbiology , Ursidae/parasitology , Animals , Arctic Regions , Zoonoses/parasitology , Zoonoses/microbiology , Zoonoses/epidemiology , Canada/epidemiology , Toxoplasma/genetics , Toxoplasma/isolation & purification , Trichinella/isolation & purification , Trichinella/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Francisella tularensis/isolation & purification , Francisella tularensis/genetics , Female , Male
8.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Article in English | MEDLINE | ID: mdl-38720960

ABSTRACT

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Subject(s)
Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Protozoan Proteins , Serotyping , Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Sheep , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/classification , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology , Swine , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Serotyping/methods , Antibodies, Protozoan/blood , Peptides/immunology , Swine Diseases/parasitology , Swine Diseases/diagnosis , Genotype
9.
Commun Biol ; 7(1): 596, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762629

ABSTRACT

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Subject(s)
Endoplasmic Reticulum , GTPase-Activating Proteins , Protozoan Proteins , Toxoplasma , rab GTP-Binding Proteins , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Golgi Apparatus/metabolism , Protein Transport , Animals , Transport Vesicles/metabolism
10.
Indian J Ophthalmol ; 72(6): 772-774, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38804796

ABSTRACT

A 33-year-old male presented with unilateral painless vision loss with a history of sub-tenon steroid for the same. The fundus showed an elevated focus of retinochoroiditis with vitritis. On investigating for the cause, polymerase chain reaction test on the anterior chamber tap was found to be positive for Toxoplasma. Such confusing and atypical cases usually produce a clinical dilemma and should be managed in a stepwise manner. Ancillary investigations usually provide a clue to the clinician and should be performed without any hesitation.


Subject(s)
Toxoplasma , Toxoplasmosis, Ocular , Humans , Male , Adult , Toxoplasmosis, Ocular/diagnosis , Toxoplasmosis, Ocular/drug therapy , Toxoplasma/isolation & purification , Toxoplasma/genetics , Polymerase Chain Reaction , Chorioretinitis/diagnosis , Chorioretinitis/parasitology , Fundus Oculi , Eye Infections, Parasitic/diagnosis , Eye Infections, Parasitic/parasitology , DNA, Protozoan/analysis , Diagnosis, Differential , Fluorescein Angiography/methods
11.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791568

ABSTRACT

Toxoplasma gondii is an intracellular parasite that is important in medicine and veterinary science and undergoes distinct developmental transitions in its intermediate and definitive hosts. The switch between stages of T. gondii is meticulously regulated by a variety of factors. Previous studies have explored the role of the microrchidia (MORC) protein complex as a transcriptional suppressor of sexual commitment. By utilizing immunoprecipitation and mass spectrometry, constituents of this protein complex have been identified, including MORC, Histone Deacetylase 3 (HDAC3), and several ApiAP2 transcription factors. Conditional knockout of MORC or inhibition of HDAC3 results in upregulation of a set of genes associated with schizogony and sexual stages in T. gondii tachyzoites. Here, our focus extends to two primary ApiAP2s (AP2XII-1 and AP2XI-2), demonstrating their significant impact on the fitness of asexual tachyzoites and their target genes. Notably, the targeted disruption of AP2XII-1 and AP2XI-2 resulted in a profound alteration in merozoite-specific genes targeted by the MORC-HDAC3 complex. Additionally, considerable overlap was observed in downstream gene profiles between AP2XII-1 and AP2XI-2, with AP2XII-1 specifically binding to a subset of ApiAP2 transcription factors, including AP2XI-2. These findings reveal an intricate cascade of ApiAP2 regulatory networks involved in T. gondii schizogony development, orchestrated by AP2XII-1 and AP2XI-2. This study provides valuable insights into the transcriptional regulation of T. gondii growth and development, shedding light on the intricate life cycle of this parasitic pathogen.


Subject(s)
Histone Deacetylases , Protozoan Proteins , Toxoplasma , Toxoplasma/genetics , Toxoplasma/metabolism , Toxoplasma/growth & development , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Animals , Gene Expression Regulation , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Toxoplasmosis/metabolism
12.
Parasit Vectors ; 17(1): 195, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671515

ABSTRACT

BACKGROUND: Toxoplasma gondii and Neospora caninum are closely related protozoan parasites that are considered important causes of abortion in livestock, causing huge economic losses. Hunan Province ranks 12th in the production of beef and mutton in China. However, limited data are available on the seroprevalence, risk factors and molecular characterization of T. gondii and N. caninum in beef cattle and goats in Hunan province, China. METHODS: Sera of 985 beef cattle and 1147 goats were examined for the presence of specific antibodies against T. gondii using indirect hemagglutination test (IHAT) and anti-N. caninum IgG using competitive-inhibition enzyme-linked immunoassay assay (cELISA). Statistical analysis of possible risk factors was performed using PASW Statistics. Muscle samples of 160 beef cattle and 160 goats were examined for the presence of T. gondii DNA (B1 gene) and N. caninum DNA (Nc-5 gene) by nested PCR. The B1 gene-positive samples were genotyped at 10 genetic markers using the multilocus nested PCR-RFLP (Mn-PCR-RFLP). RESULTS: Specific IgG against T. gondii were detected in 8.3% (82/985) and 13.3% (153/1147) and against N. caninum in 2.1% (21/985) and 2.0% (23/1147) of the beef cattle and goats, respectively. Based on statistical analysis, the presence of cats, semi-intensive management mode and gender were identified as significant risk factors for T. gondii infection in beef cattle. Age was a significant risk factor for T. gondii infection in goats (P < 0.05), and age > 3 years was a significant risk factor for N. caninum infection in beef cattle (P < 0.05). PCR positivity for T. gondii was observed in three beef samples (1.9%; 3/160) and seven chevon samples (4.4%; 7/160). Genotyping of PCR positive samples identified one to be ToxoDB#10. The N. caninum DNA was observed in one beef sample (0.6%; 1/160) but was negative in all chevon samples. CONCLUSIONS: To our knowledge, this is the first large-scale serological and molecular investigation of T. gondii and N. caninum and assessment of related risk factors in beef cattle and goats in Hunan Province, China. The findings provide baseline data for executing prevention and control of these two important parasites in beef cattle and goats in China.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Goat Diseases , Goats , Neospora , Toxoplasma , Toxoplasmosis, Animal , Animals , Goats/parasitology , Neospora/genetics , Neospora/immunology , Neospora/isolation & purification , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , China/epidemiology , Cattle , Seroepidemiologic Studies , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Antibodies, Protozoan/blood , Female , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Male , Risk Factors , Immunoglobulin G/blood , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Genotype , Polymerase Chain Reaction/veterinary
13.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673969

ABSTRACT

This study presents an evaluation of seventeen newly produced recombinant trivalent chimeric proteins (containing the same immunodominant fragment of SAG1 and SAG2 of Toxoplasma gondii antigens, and an additional immunodominant fragment of one of the parasite antigens, such as AMA1, GRA1, GRA2, GRA5, GRA6, GRA7, GRA9, LDH2, MAG1, MIC1, MIC3, P35, and ROP1) as a potential alternative to the whole-cell tachyzoite lysate (TLA) used in the detection of infection in small ruminants. These recombinant proteins, obtained by genetic engineering and molecular biology methods, were tested for their reactivity with specific anti-Toxoplasma IgG antibodies contained in serum samples of small ruminants (192 samples of sheep serum and 95 samples of goat serum) using an enzyme-linked immunosorbent assay (ELISA). The reactivity of six recombinant trivalent chimeric proteins (SAG1-SAG2-GRA5, SAG1-SAG2-GRA9, SAG1-SAG2-MIC1, SAG1-SAG2-MIC3, SAG1-SAG2-P35, and SAG1-SAG2-ROP1) with IgG antibodies generated during T. gondii invasion was comparable to the sensitivity of TLA-based IgG ELISA (100%). The obtained results show a strong correlation with the results obtained for TLA. This suggests that these protein preparations may be a potential alternative to TLA used in commercial tests and could be used to develop a cheaper test for the detection of parasite infection in small ruminants.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Goats , Immunoglobulin G , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Sheep , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Sheep Diseases/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Goat Diseases/parasitology , Goat Diseases/diagnosis , Goat Diseases/immunology
14.
J Biotechnol ; 387: 69-78, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38582406

ABSTRACT

Banana, a globally popular fruit, is widely cultivated in tropical and sub-tropical regions. After fruit harvest, remaining banana plant materials are low-value byproducts, mostly composted or used as fibre or for food packaging. As an aim to potentially increase farmer income, this study explored underutilised banana biomass as a novel plant tissue for production of a high-value product. Protein scFvTG130 used in this study, is an anti-toxoplasma single chain variable fragment antibody that can be used in diagnostics and neutralising the Toxoplasma gondii pathogen. Using detached banana leaves, we investigated the factors influencing the efficacy of a transient expression system using reporter genes and recombinant protein, scFvTG130. Transient expression was optimal at 2 days after detached banana leaves were vacuum infiltrated at 0.08 MPa vacuum pressure for a duration of 3 min with 0.01% (v/v) Tween20 using Agrobacterium strain GV3101 harbouring disarmed virus-based vector pIR-GFPscFvTG130. The highest concentration of anti-toxoplasma scFvTG130 antibody obtained using detached banana leaves was 22.8 µg/g fresh leaf tissue. This first study using detached banana leaf tissue for the transient expression of a recombinant protein, successfully demonstrated anti-toxoplasma scFvTG130 antibody expression, supporting the potential application for other related proteins using an underutilised detached banana leaf tissue.


Subject(s)
Musa , Plant Leaves , Single-Chain Antibodies , Musa/genetics , Musa/immunology , Plant Leaves/metabolism , Plant Leaves/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Recombinant Proteins/genetics , Toxoplasma/genetics , Agrobacterium/genetics , Plants, Genetically Modified/genetics , Agriculture/methods
15.
Trends Parasitol ; 40(5): 416-426, 2024 May.
Article in English | MEDLINE | ID: mdl-38637184

ABSTRACT

The micropore, a mysterious structure found in apicomplexan species, was recently shown to be essential for nutrient acquisition in Plasmodium falciparum and Toxoplasma gondii. However, the differences between the micropores of these two parasites questions the nature of a general apicomplexan micropore structure and whether the formation process model from Plasmodium can be applied to other apicomplexans. We analyzed the literature on different apicomplexan micropores and found that T. gondii probably harbors a more representative micropore type than the more widely studied ones in Plasmodium. Using recent knowledge of the Kelch 13 (K13) protein interactome and gene depletion phenotypes in the T. gondii micropore, we propose a model of micropore formation, thus enriching our wider understanding of micropore protein function.


Subject(s)
Apicomplexa , Plasmodium falciparum , Toxoplasma , Apicomplexa/physiology , Apicomplexa/genetics , Toxoplasma/genetics , Toxoplasma/physiology , Plasmodium falciparum/physiology , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
16.
Rev Bras Parasitol Vet ; 33(2): e003624, 2024.
Article in English | MEDLINE | ID: mdl-38656050

ABSTRACT

Toxoplasma gondii and Neospora caninum are two closely related protozoans that infect a wide range of animals, including birds. However, the occurrence of N. caninum and T. gondii in seabirds is unknown. Therefore, this study aimed to determine the presence of T. gondii and N. caninum DNA in tissue samples of seabirds. Tissue samples of the pectoral muscles, heart, and brain were collected from 47 birds along the coastline of Santa Catarina State, SC, Brazil. The DNA was extracted from the tissues and screened using nested-PCR (nPCR) targeting internal transcribed spacer 1 (ITS1). T. gondii DNA was detected in tissues from seven seabirds (7/47, 14.8%), kelp gull (Larus dominicanus) (5/21), and Manx shearwater (Puffinus puffinus) (2/8). N. caninum DNA was detected in tissues of nine seabirds (9/47, 19.1%), the kelp gull (L. dominicanus) (4/21), Manx shearwater (P. puffinus) (2/8), neotropic cormorant (Phalacrocorax brasilianus) (1/4), brown booby (Sula leucogaster) (1/5), and white-chinned petrel (Procellaria aequinoctialis) (1/1); however, no co-infection was observed. In conclusion, this study showed the circulation of N. caninum and T. gondii in seabirds along the coastline of Santa Catarina State. Further studies are required to clarify the role of these birds in the epidemiology of neosporosis and toxoplasmosis.


Subject(s)
Bird Diseases , Coccidiosis , DNA, Protozoan , Neospora , Toxoplasma , Toxoplasmosis, Animal , Animals , Toxoplasma/isolation & purification , Toxoplasma/genetics , Brazil/epidemiology , Neospora/isolation & purification , Neospora/genetics , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Bird Diseases/epidemiology , Coccidiosis/veterinary , Coccidiosis/diagnosis , Coccidiosis/epidemiology , Coccidiosis/parasitology , DNA, Protozoan/isolation & purification , DNA, Protozoan/analysis , Polymerase Chain Reaction/veterinary , Birds/parasitology , Charadriiformes/parasitology
17.
Acta Trop ; 255: 107211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678844

ABSTRACT

Toxoplasmosis is a prevalent parasitic infection caused by Toxoplasma gondii known to induce complex immune responses, to control the infection. MicroRNAs (miRNAs) are a cluster of small noncoding RNAs that are reported to have regulatory functions in the immune response. The objective of this study is to assess the expression of miR-155 and its targets, Src homology-2 domain-containing inositol 5- phosphatase 1 (SHIP-1) and suppressor of cytokine signaling-1 (SOCS1), in non-pregnant Iraqi women seropositive for toxoplasmosis. The study included 55 non-pregnant women positive for toxoplasmosis (20 in the acute phase and 35 in the chronic phase) and 35 non-pregnant women negative for toxoplasmosis (control group). Serum samples were collected from all participants to investigate the expression of miR-155 by RT‒PCR, in addition to the levels of SOCS1 and SHIP-1 measured by ELISA. The results showed a significant increase in the expression of miR-155 in both groups of acute and chronic toxoplasmosis compared to the control group. Lower levels of SOCS1 and SHIP-1 were found in acutely infected women compared to those with chronic infection and non-infected women. These findings showed the possible critical impact of miR-155 on host immune response during T.gondii infection, proposing that miR-155 can be explored as a prospective target to support host immune response against infectious diseases, with special help in early detection and management of toxoplasmosis in high-risk immunocompromised patients. Further studies are needed to evaluate the molecular pathways by which miRNAs improve immunity against toxoplasmosis.


Subject(s)
MicroRNAs , Suppressor of Cytokine Signaling 1 Protein , Toxoplasma , Toxoplasmosis , Humans , Female , MicroRNAs/genetics , MicroRNAs/blood , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Adult , Suppressor of Cytokine Signaling 1 Protein/genetics , Toxoplasma/genetics , Toxoplasma/immunology , Iraq/epidemiology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Chronic Disease , Young Adult , Acute Disease , Middle Aged
18.
Parasit Vectors ; 17(1): 105, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439083

ABSTRACT

BACKGROUND: The human sortilin protein is an important drug target and detection marker for cancer research. The sortilin from Toxoplasma gondii transports proteins associated with the apical organelles of the parasite. In this study, we aimed to determine the intracellular localization and structural domains of T. gondii sortilin, which may mediate protein transportation. Approaches to the functional inhibition of sortilin to establish novel treatments for T. gondii infections were explored. METHODS: A gene encoding the sortilin protein was identified in the T. gondii genome. Immunoprecipitation and mass spectrometry were performed to identify the protein species transported by T. gondii sortilin. The interaction of each structural domain of sortilin with the transported proteins was investigated using bio-layer interferometry. The binding regions of the transported proteins in sortilin were identified. The effect of the sortilin inhibitor AF38469 on the infectivity of T. gondii was investigated. The binding site of AF38469 on sortilin was determined. RESULTS: The subdomains Vps10, sortilin-C, and sortilin-M of the sortilin were identified as the binding regions for intracellular transportation of the target proteins. The sortilin inhibitor AF38469 bound to the Vps10 structural domain of T. gondii sortilin, which inhibited parasite invasion, replication, and intracellular growth in vitro and was therapeutic in mice infected with T. gondii. CONCLUSION: The Vps10, sortilin-C, and sortilin-M subdomains of T. gondii sortilin were identified as functional regions for intracellular protein transport. The binding region for the sortilin inhibitor AF38469 was also identified as the Vps10 subdomain. This study establishes sortilin as a promising drug target against T. gondii and provides a valuable reference for the development of anti-T. gondii drug-target studies.


Subject(s)
Adaptor Proteins, Vesicular Transport , Hydrocarbons, Fluorinated , Parasites , Pyridines , Toxoplasma , Humans , Animals , Mice , Toxoplasma/genetics , Cell Proliferation
19.
Trends Parasitol ; 40(5): 401-415, 2024 May.
Article in English | MEDLINE | ID: mdl-38531711

ABSTRACT

Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.


Subject(s)
Cytoskeleton , Toxoplasma , Tubulin , Toxoplasma/metabolism , Toxoplasma/genetics , Toxoplasma/physiology , Tubulin/metabolism , Tubulin/genetics , Cytoskeleton/metabolism , Animals , Microtubules/metabolism , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
20.
J Clin Microbiol ; 62(4): e0142823, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38470023

ABSTRACT

The molecular detection of Toxoplasma gondii DNA is a key tool for the diagnosis of disseminated and congenital toxoplasmosis. This multicentric study from the Molecular Biology Pole of the French National Reference Center for toxoplasmosis aimed to evaluate Toxoplasma gondii Real-TM PCR kit (Sacace). The study compared the analytical and clinical performances of this PCR assay with the reference PCRs used in proficient laboratories. PCR efficiencies varied from 90% to 112%; linearity zone extended over four log units (R2 > 0.99) and limit of detection varied from 0.01 to ≤1 Tg/mL depending on the center. Determined on 173 cryopreserved DNAs from a large range of clinical specimens, clinical sensitivity was 100% [106/106; 95 confidence interval (CI): 96.5%-100%] and specificity was 100% (67/67; 95 CI: 94.6%-100%). The study revealed two potential limitations of the Sacace PCR assay: the first was the inconsistency of the internal control (IC) when added to the PCR mixture. This point was not found under routine conditions when the IC was added during the extraction step. The second is a lack of practicality, as the mixture is distributed over several vials, requiring numerous pipetting operations. Overall, this study provides useful information for the molecular diagnosis of toxoplasmosis; the analytical and clinical performances of the Sacace PCR kit were satisfactory, the kit having sensitivity and specificity similar to those of expert center methods and being able to detect low parasite loads, at levels where multiplicative analysis gives inconsistently positive results. Finally, the study recommends multiplicative analysis in particular for amniotic fluids, aqueous humor, and other single specimens.


Subject(s)
Toxoplasma , Toxoplasmosis, Congenital , Toxoplasmosis , Humans , Toxoplasma/genetics , Toxoplasmosis/diagnosis , Toxoplasmosis/parasitology , Toxoplasmosis, Congenital/diagnosis , Toxoplasmosis, Congenital/parasitology , DNA , Reagent Kits, Diagnostic , Sensitivity and Specificity , DNA, Protozoan/genetics , DNA, Protozoan/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...