Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675938

ABSTRACT

Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.


Subject(s)
Fungal Viruses , Phylogeny , Virome , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Genome, Viral , China , Trametes/genetics , Trametes/classification , Trametes/virology
2.
Int J Med Mushrooms ; 19(2): 137-144, 2017.
Article in English | MEDLINE | ID: mdl-28436322

ABSTRACT

Nomenclature revision and enlarged taxonomical descriptions are still needed for some well-known species whose interpretation is complicated by many nomenclature or taxonomical problems. The polyporoid fungus widely known as Trametes ochracea (= Coriolus zonatus) belongs to such a problematic group. At the same time, recent data show that this species, like its sister species T. versicolor, seems to be a perspective subject for fungal biotechnology and pharmacology. This article is devoted to stabilizing the nomenclature of the species in question via lectotypification and epitypification of Boletus multicolor. It will clarify the name T. multicolor as applied to this species is nomenclaturally correct and useful, free of further problems. An expanded species description and cultural characterization of epitype materials are presented.


Subject(s)
Agaricales/classification , Mycological Typing Techniques , Trametes/classification , Agaricales/cytology , Agaricales/growth & development , Microscopy , Terminology as Topic , Trametes/cytology , Trametes/growth & development
3.
Mycopathologia ; 182(7-8): 755-759, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28324243

ABSTRACT

PURPOSE: We report the first case of human infection and keratitis secondary to Trametes betulina, a rare filamentous fungus. METHODS: Clinical examination including external and slit-lamp examination and corneal scrapings with microbiologic evaluation were performed on a patient with chronic allergic conjunctivitis, entropion and a long-standing corneal ulcer resistant to treatment. RESULTS: The culture from the corneal scraping revealed a basidiomycetous fungus which was submitted for identification. DNA extraction with sequencing and analysis of the ITS and D1/D2 regions were performed on the isolate and demonstrated 100% similarity to Lenzites betulina/Trametes betulina. Susceptibility testing demonstrated potent in vitro activity of voriconazole (MIC < 0.03 µg/ml). The patient was treated with voriconazole, and the corneal ulcer and infiltrate resolved. The infection resulted in corneal thinning and a dense central corneal scar. Penetrating keratoplasty was performed 5 months after diagnosis and treatment and revealed stromal scarring without fungal elements. CONCLUSION: This is the first reported case of keratitis caused by Trametes betulina. This organism should be considered in the differential diagnosis for rare filamentous fungal keratitis and its treatment with voriconazole also noted.


Subject(s)
Cornea/microbiology , Keratitis/diagnosis , Keratitis/pathology , Trametes/isolation & purification , Aged , Antifungal Agents/pharmacology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Humans , Keratitis/microbiology , Keratitis/surgery , Keratoplasty, Penetrating , Male , Microbial Sensitivity Tests , Microbiological Techniques , Sequence Analysis, DNA , Trametes/classification , Trametes/genetics , Voriconazole/pharmacology
4.
Int J Biol Macromol ; 81: 785-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26361865

ABSTRACT

A novel laccase was purified from fermentation broth of white rot fungus Trametes sp. LAC-01 using an isolation procedure involving three ion-exchange chromatography steps on DEAE-cellulose, SP-Sepharose, and Q-Sepharose, and one gel-filtration step. The purified enzyme (TSL) was proved as a monomeric protein with a Mr of 59kDa based on SDS-PAGE and FPLC. Partial amino acid sequences were obtained by LC-MS/MS sharing considerably high sequence similarity with that of other laccases. It possessed optimal pH of 2.6 and temperature of 60°C using ABTS as the substrate. The Km of the laccase toward ABTS was estimated to 30.28µM at pH 2.6 and 40°C. TSL manifested considerably high oxidizing activity toward ABTS, but was avoid of degradative activity toward benzidine, caftaric acid, etc. It was effective in the decolorization of phenolic dyes - Bromothymol Blue and Malachite Green with decolorization rate higher than 60% after 24h of incubation. Adjunction of Cu(2+) with the final concentration of 2.0mmol/L significantly activated laccase production with a steady high level of 275.8-282.2U/mL in 96-144h. The high yield and short production period makes Trametes sp. LAC-01 and TSL potentially useful for industrial and environmental application and commercialization.


Subject(s)
Coloring Agents/chemistry , Fungi/enzymology , Laccase/chemistry , Chromatography, Liquid , Copper/chemistry , DNA, Intergenic , Enzyme Activation , Enzyme Stability , Fermentation , Fungi/classification , Fungi/genetics , Hydrogen-Ion Concentration , Kinetics , Laccase/biosynthesis , Laccase/isolation & purification , Molecular Weight , Phylogeny , Substrate Specificity , Tandem Mass Spectrometry , Temperature , Trametes/classification , Trametes/enzymology , Trametes/genetics
5.
Mycologia ; 106(4): 735-45, 2014.
Article in English | MEDLINE | ID: mdl-24898532

ABSTRACT

Trametes is a cosmopolitan genus of white rot polypores, including the "turkey tail" fungus, T. versicolor. Although Trametes is one of the most familiar genera of polypores, its species-level taxonomy is unsettled. The ITS region is the most commonly used molecular marker for species delimitation in fungi, but it has been shown to have a low molecular variation in Trametes resulting in poorly resolved phylogenies and unclear species boundaries, especially in the T. versicolor species complex (T. versicolor sensu stricto, T. ochracea, T. pubescens, T. ectypa). Here we evaluate the performance of three protein-coding genes (TEF1, RPB1, RPB2) for species delimitation and phylogenetic reconstruction in Trametes. We obtained 59 TEF1, 34 RPB1 and 55 RPB2 sequences from 69 individuals, focusing on the T. versicolor complex and performed phylogenetic analyses with maximum likelihood and parsimony methods. All three protein-coding genes outperformed ITS for separating species in the T. versicolor complex. The multigene phylogenetic analysis shows the highest amount of resolution and supported nodes separating T. ectypa, T. ochracea, T. pubescens and T. versicolor with strong support. In addition three slineages are resolved in the species complex of T. elegans. The T. elegans complex includes three species: T. elegans (based on material from Puerto Rico, Belize, the Philippines), T. aesculi (from North America) and T. repanda (from Papua New Guinea, the Philippines, Venezuela). The utility of gene markers varies, with TEF1 having the highest PCR and sequencing success rate and RPB1 offering the best backbone resolution for the genus.


Subject(s)
Fungal Proteins/genetics , Trametes/classification , Base Sequence , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Multilocus Sequence Typing , Mycological Typing Techniques , Peptide Elongation Factor 1/genetics , Phylogeny , RNA Polymerase II/genetics , Sequence Analysis, DNA , Trametes/genetics , Trametes/isolation & purification
6.
Folia Microbiol (Praha) ; 58(4): 283-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23229285

ABSTRACT

Some endophyte isolates were isolated in a bamboo pole sample parasitized the fungus Shiraia bambusicola from Zhejiang Province. After screening through hypocrellin bacteriostatic effect and fermentation test, we got the isolate TX4 of bacterial elicitor and GZUIFR-TT1 of fungal elicitor which had certain effect to promote S. bambusicola to produce hypocrellin. The Plackett-Burman design was introduced to evaluate the effects of nine factors based on single-factor test. Yeast extract, glucose, and isolate GZUIFR-TT1 elicitor were found to be the critical activity factors for increasing the total hypocrellin production. So we identified the isolate GZUIFR-TT1 as Trametes sp. Through response surface methodology, we obtained the optimum production conditions as follows: yeast extract, 2.99 g/L; glucose, 32.45 g/L; and Trametes sp. elicitor, 81.40 µg/mL. Under the above conditions, the experimental value of hypocrellin production was 102.60 mg/L, compared with the control it increased about 7.90 times.


Subject(s)
Anti-Infective Agents/metabolism , Ascomycota/metabolism , Perylene/analogs & derivatives , Quinones/metabolism , Trametes/growth & development , Biotechnology/methods , Culture Media/chemistry , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Fermentation , Molecular Sequence Data , Perylene/metabolism , Phenol , Sequence Analysis, DNA , Trametes/classification , Trametes/genetics , Trametes/isolation & purification
7.
Int J Med Mushrooms ; 13(3): 227-36, 2011.
Article in English | MEDLINE | ID: mdl-22135874

ABSTRACT

Turkey tail medicinal mushroom, Trametes versicolor (TV), is a species with a variety of pharmacological activities. Its intracellular polysaccharopeptides are widely commercialized. Recently, we found a novel TV strain LH-1 in Taiwan and demonstrated that the extracellular polysaccharopeptide (ePSP) of LH-1 obtained from submerged culture exhibits significant immunomodulatory activity. In this in vivo study, we further evaluated the safety of orally administered LH-1 ePSP using both male and female ICR mice. The LH-1 ePSP was orally administered to mice at levels of 0 (water), 100 (low dose), 500 (medium dose), or 1000 mg/kg/day (high dose) for 28 days. Clinical observations, growth, food consumption, histopathological examination, and clinical biochemical analyses revealed no adverse effects of LH-1 ePSP in mice. There were no significant differences in the results of target organ weights, hematological analyses, and urinalysis examination among groups. However, male mice that ingested high doses of LH-1 ePSP tended to have decreased lung weights and platelet numbers. In conclusion, the results of the present study suggested that oral administration of LH-1 ePSP for 28 days is accompanied by no obvious signs of toxicity. The lack of toxicity supports the potential use of LH-1 ePSP as a food or dietary supplement.


Subject(s)
Proteoglycans/toxicity , Trametes/chemistry , Administration, Oral , Animals , Blood Cell Count , Blood Chemical Analysis , Body Weight/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Immunomodulation/drug effects , Male , Mice , Mice, Inbred ICR , Organ Size/drug effects , Proteoglycans/administration & dosage , Random Allocation , Taiwan , Time Factors , Toxicity Tests , Trametes/classification , Trametes/isolation & purification , Urinalysis
8.
FEMS Microbiol Lett ; 304(1): 39-46, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20070371

ABSTRACT

The lignin peroxidase (LiP) from Trametes cervina was cloned, characterized, and identified as a novel fungal peroxidase. The sequence of T. cervina LiP encodes the essential amino acids for shaping the heme cavity and calcium-binding sites, which are conserved in plant and fungal peroxidases. However, a sequence homology analysis showed that T. cervina LiP has two unique features: it lacks the conserved tryptophan residue corresponding to the substrate-oxidation site (Trp171) of Phanerochaete chrysosporium LiP and it has a tyrosine residue (Tyr181) that has never been reported in other lignin peroxidases. A tertiary model of T. cervina LiP showed that Tyr181 sterically adjacent to the 6-propionate group of heme is surrounded by acidic amino acids and is exposed to the exterior. These attributes indicate that Tyr181 could be a T. cervina LiP substrate-oxidation site. A phylogenetic analysis showed that T. cervina LiP does not cluster with any other fungal peroxidases, suggesting that it is a unique molecule that is evolutionarily distant from other peroxidases. Thus, we concluded that T. cervina LiP could be a novel secreted peroxidase, among those produced by fungi, with a new oxidation mechanism probably involving Tyr181.


Subject(s)
Peroxidases/genetics , Trametes/enzymology , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Peroxidases/chemistry , Peroxidases/metabolism , Sequence Analysis, DNA , Trametes/classification , Trametes/genetics , Tryptophan/chemistry , Tyrosine/chemistry
9.
Rev. colomb. biotecnol ; 11(1): 59-72, jul. 2009. tab, graf
Article in Spanish | LILACS | ID: lil-590632

ABSTRACT

La presencia de colorantes azoicos en aguas residuales de la industria textil es un problema ambiental y sanitario, porque muchos de estos compuestos son cancerígenos. Los tratamientos biológicos son una alternativa para la remoción de ese tipo de colorantes. En el presente trabajo se evaluó el efecto de tres hongos de podredumbre blanca, Trametes versicolor, Pleurotus ostreatus y Phanerochaete chrysosporium sobre la decoloración de un agua que contiene colorante negro reactivo 5 (NR5), ampliamente usado en la industria textil. Se estudió la inmovilización de estos hongos en dos soportes, espuma de poliuretano y estropajo (L. cylíndrica) para seleccionar el mejor soporte y el hongo con mayor capacidad para la decoloración. Ambos soportes fueron igualmente efectivos, pero se seleccionó estropajo por ser un producto natural. El hongo que generó los mayores porcentajes de decoloración en 4 días fue Trametes versicolor, con 96%, 98% y 98% para agua con concentración de NR5 300 ppm, 150 ppm y 75 ppm, respectivamente. La actividad lacasa para cada concentración de NR5 fue 8 U L-1, 7 U L-1 y 5 U L-1.


Waste water from the textile industry represents a major environmental and health problem because it contains azo dyes whose carcirogenic effect has been tested in research. Biological treatment represents a valuable alternative for removing these dyes. The effect of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium rot fungi on decoloration of water containing reactive black five (NR5) textile dye was evaluated in this work. Immobilising the fungi on polyurethane foam and luffa sponge (Luffa cylindrica) supports was studied in order to select the best support and the fungi having the best decolorisation. Both supports were equally effective; however, the luffa sponge was selected as being a natural product. Trametes versicolor produced the highest decolorisation percentages in four days (96%, 98% and 98% for 300 ppm, 150 ppm and 75 ppm NR5 concentrations, respectively) while lacase enzyme activity was 8 UL-1, 7 UL-1 and 5 UL-1 for each of them.


Subject(s)
Trametes/classification , Trametes/chemistry , Trametes/virology
10.
Prep Biochem Biotechnol ; 39(1): 32-45, 2009.
Article in English | MEDLINE | ID: mdl-19090419

ABSTRACT

Optimization of pyranose-2-oxidase (P2O) production conditions from Trametes versicolor was carried out in shaking cultures containing glucose, malt, and yeast extracts; the optimum concentration values were found to be 1.5% glucose, 1.0% yeast extract, and 1.0% malt extract, pH 5.0, temperature, 26 degrees C, and agitation rate 150 rpm. For the first time, P2O production was also carried out in a stirred tank reactor (STR) with 2.2 L working volume in the optimized medium composition, and biomass, P2O activity, protein, nitrogen and glucose concentrations were also monitored besides pH and dissolved oxygen (DO). In the STR, P2O activity peaked on day 9. Partial enzyme characterization occurred and optimum pH and temperature were detected as 7.0 and 37 degrees C, respectively. K(m) value was found to be 1.009 mM.


Subject(s)
Bioreactors/microbiology , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/metabolism , Trametes/classification , Trametes/enzymology , Enzyme Activation , Enzyme Stability , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...