Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Brain Behav ; 12(12): e2786, 2022 12.
Article in English | MEDLINE | ID: mdl-36377337

ABSTRACT

AIM: The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism. METHOD: Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining. RESULT: In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator. CONCLUSION: TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.


Subject(s)
Brain Injuries, Traumatic , Endoribonucleases , Animals , Mice , Apoptosis/drug effects , Benzylisoquinolines/pharmacology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Caspase 12/metabolism , Caspase 3/metabolism , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/drug effects , Neurons/metabolism , Neurons/pathology , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 1/metabolism , TNF Receptor-Associated Factor 1/pharmacology , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism , Tumor Necrosis Factor-alpha/metabolism , Water/metabolism , Water/pharmacology , Disease Models, Animal
2.
J Ethnopharmacol ; 290: 115100, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35151835

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The natural extract glaucocalyxin A (GLA), purified from the aboveground sections of the Chinese traditional medicinal herb Rabdosia japonica (Burm. f.) Hara var. glaucocalyx (Maxim.) Hara, has various pharmacological benefits, such as anti-bacterial, anti-coagulative, anti-neoplastic, and anti-inflammatory activities. Although GLA has shown anti-tumor activity against various cancers, the therapeutic potential and biological mechanisms of GLA remain to be further explored in oral squamous cell carcinoma (OSCC). AIM OF THE STUDY: This study aimed to elucidate the therapeutic potential and regulatory mechanisms of GLA in OSCC. MATERIALS AND METHODS: The cell proliferation and apoptosis effects of GLA were analyzed by CCK-8, clone formation, Annexin V/PI staining, and apoptotic protein expression in vitro. An OSCC xenograft model was applied to confirm the anti-neoplastic effect in vivo. Furthermore, the changes of reactive oxygen species (ROS) were determined by DCFH-DA probe and GSH/GSSG assay, and inhibited by the pan-caspase inhibitor Z-VAD(OMe)-FMK and the ROS scavenger N-acetylcysteine (NAC). The modulation of GLA on mitochondria and ER-dependent apoptosis pathways was analyzed by JC-1 probe, quantitative real-time PCR, and Western blot. Finally, public databases, clinical samples, and transfection cells were analyzed to explore the importance of GLA's indirect targeting molecule CHAC1 in OSCC. RESULTS: GLA significantly inhibited cell proliferation and induced apoptosis in vitro and in vivo. GLA perturbed the redox homeostasis, and cell apoptosis was totally rescued by Z-VAD(OMe)-FMK and NAC. Furthermore, GLA activated the mitochondrial apoptosis pathway. Simultaneously, the overexpression and knockdown of CHAC1 dramatically affected GLA-mediated apoptosis. The endoplasmic reticulum stress-associated ATF4/CHOP signal was identified to participate in GLA-upregulated CHAC1 expression. Finally, we found that CHAC1 expression was lower in OSCC compared with normal tissues and positively correlated with 4-Hydroxynonenal (4-HNE) level. High CHAC1 expression also indicated better overall survival. Moreover, CHAC1 selectively regulated the viability of oral cancer cells. CONCLUSION: GLA is a promising therapeutic agent that activates the ROS-mediated ATF4/CHOP/CHAC1 axis in OSCC patients.


Subject(s)
Activating Transcription Factor 4/drug effects , Carcinoma, Squamous Cell/pathology , Diterpenes, Kaurane/pharmacology , Mouth Neoplasms/pathology , Transcription Factor CHOP/drug effects , gamma-Glutamylcyclotransferase/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Humans , Isodon , Male , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
3.
Acta Pharmacol Sin ; 43(3): 712-723, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33980998

ABSTRACT

Previous reports suggested that cinnamaldehyde (CA), the bioactive ingredient in Cinnamomum cassia, can suppress tumor growth, migratory, and invasive abilities. However, the role and molecular mechanisms of CA in GC are not completely understood. In the present study, we found that CA-induced ER stress and cell death via the PERK-CHOP axis and Ca2+ release in GC cells. Inhibition of ER stress using specific-siRNA blocked CA-induced cell death. Interestingly, CA treatment resulted in autophagic cell death by inducing Beclin-1, ATG5, and LC3B expression and by inhibiting p62 expression whereas autophagy inhibition suppressed CA-induced cell death. We showed that CA induces the inhibition of G9a and the activation of LC3B. Moreover, CA inhibited G9a binding on Beclin-1 and LC3B promoter. Overall, these results suggested that CA regulates the PERK-CHOP signaling, and G9a inhibition activates autophagic cell death via ER stress in GC cells.


Subject(s)
Acrolein/analogs & derivatives , Autophagic Cell Death/drug effects , Endoplasmic Reticulum Stress/drug effects , Epigenesis, Genetic/drug effects , Stomach Neoplasms/pathology , Acrolein/pharmacology , Autophagy-Related Protein 5/drug effects , Beclin-1/drug effects , Calcium/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Microtubule-Associated Proteins/drug effects , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Transcription Factor CHOP/drug effects , eIF-2 Kinase/drug effects
4.
Mol Biol Rep ; 48(12): 7841-7851, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34698990

ABSTRACT

BACKGROUND: The long-term use of dexamethasone (Dex), a well-known immunosuppressant, leads to an imbalance in bone metabolism and rapid decline of bone mineral density due to apoptosis of osteoblasts. The molecular mechanisms by which Dex induces osteoblast apoptosis remain unclear. MATERIALS AND METHODS: MC3T3-E1 cells were treated with 0, 10-8, 10-6, and 10-4 M Dex for 24 h. ATF6, phosphorylated PERK, PERK, phosphorylated IRE1, and IRE1 expression, cell apoptosis, and caspase-12 and caspase-3 activity were measured. CHOP expression and calcium ion influx rate were measured in cells treated with 0 and 10-4 M Dex for 24 h. The effect of 2-APB treatment was assessed in cells treated with 0 or 10-4 M Dex. RESULTS: Levels of ATF6 and phosphorylated PERK and IRE1 increased in a dose-dependent manner in MC3T3-E1 cells treated with 10-8, 10-6, and 10-4 M Dex, compared to the control group (P < 0.05). Cells treated with 10-6 and 10-4 M Dex had significantly increased apoptotic rates and caspase-12 and caspase-3 activities (P < 0.05). Cells treated with 10-4 M Dex had significantly increased CHOP levels and calcium ion influx rates (P < 0.05). Combined treatment with 10-4 M Dex and 2-APB abrogated the observed increases in cell apoptosis and caspase-12 and caspase-3 activities (P < 0.05). CONCLUSIONS: High doses of Dex induce CHOP expression by promoting calcium ion influx-dependent induction of ATF6, phosphorylated PERK and phosphorylated IRE1, which induce endoplasmic reticulum stress-mediated apoptosis in osteoblasts. 2-APB protects the osteoblasts from the effects of Dex, preventing endoplasmic reticulum stress-mediated apoptosis.


Subject(s)
Dexamethasone/pharmacology , Osteoblasts/metabolism , Transcription Factor CHOP/metabolism , Activating Transcription Factor 6/metabolism , Animals , Apoptosis/drug effects , Calcium/metabolism , Caspase 12/metabolism , Caspase 3/metabolism , Cell Line , China , Dexamethasone/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Membrane Proteins/metabolism , Mice , Osteoblasts/drug effects , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Transcription Factor CHOP/drug effects , eIF-2 Kinase/metabolism
5.
Int J Immunopathol Pharmacol ; 35: 20587384211032098, 2021.
Article in English | MEDLINE | ID: mdl-34275383

ABSTRACT

Hepatic ischemia-reperfusion injury (IRI) is a major unavoidable clinical problem often accompanying various liver surgery and transplantation. d-Pinitol, a cyclic polyol, exhibits hepatoprotective efficacy. The objective of this study is to determine the possible mechanism of action of pinitol against endoplasmic reticulum (ER) stress regulation-mediated hepatic IRI and compare its effects with thymoquinone (TQ) in experimental rats. Male Sprague Dawley rats were pre-treated orally with either vehicle (DMSO) or d-Pinitol (5, 10, and 20 mg/kg) or TQ (30 mg/kg) for 21 days and subjected to 60 min of partial hepatic ischemia followed by 24 h of reperfusion. Pre-treatment with pinitol (10 and 20 mg/kg) effectively (P < 0.05) protected against IRI-induced hepatic damage reflected by attenuation of elevated oxidative stress and pro-inflammatory cytokines. Additionally, western blot and ELISA analyses suggested that pinitol significantly (P < 0.05) down-regulated expression of endoplasmic reticulum stress apoptotic markers, namely glucose-regulated protein (GRP)-78, CCAAT/enhancer-binding protein homologous protein (CHOP), activating transcription factor (AFT)-4 and -6α, X-box binding protein-1, and caspase-3, 9, and 12. Additionally, pinitol pre-treatment effectively (P < 0.05) improved mitochondrial function and phosphorylation of Extracellular signal-regulated kinase (ERK)-1/2 and p38. Pinitol markedly (P < 0.05) protected hepatic apoptosis determined by flow cytometry. Further, pinitol provided effective (P < 0.05) protection against hepatic histological and ultrastructural aberrations induced by IRI. TQ showed more pronounced protective effect against attenuation of IRI-induced hepatic injury as compared to d-Pinitol. Pinitol offered protection against endoplasmic reticulum stress-mediated phosphorylation of ERK1/2 and p38, thereby inhibiting AFT4-CHOP/GRP78 signaling response and caspase-3 induced hepatocellular apoptosis during hepatic ischemia-reperfusion insults. Thus, Pinitol can be considered as a viable option for the management of hepatic IRI.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Inositol/analogs & derivatives , Liver Diseases/drug therapy , Reperfusion Injury/prevention & control , Signal Transduction/drug effects , Animals , Caspase 3/drug effects , Heat-Shock Proteins/drug effects , Inositol/therapeutic use , Liver Diseases/pathology , Male , Rats , Rats, Sprague-Dawley , Reperfusion Injury/pathology , Transcription Factor CHOP/drug effects
6.
J Chem Neuroanat ; 114: 101942, 2021 07.
Article in English | MEDLINE | ID: mdl-33675952

ABSTRACT

Methamphetamine (Meth) is a neuro-stimulator substrate which might lead to neural cell death and the activation of several interconnected cellular pathways as well. However, the precise molecular mechanisms underlying Meth-induced neural cell death remained unclear yet. The current study aimed to assess the specific relationship between long-term Meth exposure and several endoplasmic reticulum stress, autophagy, and apoptosis associated markers including C/EBP homologous protein (CHOP), Tribbles homolog 3(Trib3), Nuclear protein 1(NUPR1), and Beclin-1 expression in postmortem human striatum. Therefore, the effects of long-term Meth exposure on autophagy and apoptosis in the striatum of postmortem users were evaluated and molecular, immunehistochemical, and histological examinations were performed on 10 control and 10 Meth-addicted brains. The level of CHOP, Trib3, NUPR1, and Beclin-1, Microtubule-associated proteins 1A/1B light chain 3B(LC3), Caspase 3, and Autophagy protein 5 (ATG5) were measured by using qPCR and immunohistochemistry. Stereological neural cell counting, Hematoxylin and Eosin, Nissl and Tunel staining were also performed. Based on our findings, the expression level of CHOP, Trib3, NUPR1, and Beclin-1 in the striatum of Meth group were significantly higher than the control group. Besides, the neuronal cell death was substantially increased in the striatum based on data obtained from the Tunel assay and the stereological analysis. Long-term presence of Meth in the brain can induce ER stress and overexpression of NUPR1 which is associated with the upregulation of CHOP, a pro-apoptotic transcription factor. Moreover, an increase in Trib3 expression is implicated in CHOP-dependent autophagic cell death during Meth-induced ER stress accompanied by an increase in neuronal cell death in the striatum of the postmortem human brains. Beclin 1 expression was also upregulated which may due to the activation of autophagic mechanisms upon prolonged Meth exposure.


Subject(s)
Amphetamine-Related Disorders/complications , Autophagosomes/drug effects , Basic Helix-Loop-Helix Transcription Factors/drug effects , Corpus Striatum/drug effects , Neoplasm Proteins/drug effects , Transcription Factor CHOP/drug effects , Adult , Apoptosis/drug effects , Autopsy , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Central Nervous System Stimulants/adverse effects , Humans , Male , Methamphetamine/adverse effects , Neoplasm Proteins/biosynthesis , Transcription Factor CHOP/biosynthesis
7.
J Neurochem ; 157(3): 710-726, 2021 05.
Article in English | MEDLINE | ID: mdl-33354763

ABSTRACT

Apoptotic endoplasmic reticulum (ER) stress is a major mechanism for dopaminergic (DA) loss in Parkinson's disease (PD). We assessed if low doses of the partial α4ß2 nicotinic acetylcholine receptor agonist, cytisine attenuates apoptotic ER stress and exerts neuroprotection in substantia nigra pars compacta (SNc) DA neurons. Alternate day intraperitoneal injections of 0.2 mg/kg cytisine were administered to female and male mice with 6-hydroxydopamine (6-OHDA) lesions in the dorsolateral striatum, which caused unilateral degeneration of SNc DA neurons. Cytisine attenuated 6-OHDA-induced PD-related behaviors in female, but not in male mice. We also found significant reductions in tyrosine hydroxylase (TH) loss within the lesioned SNc of female, but not male mice. In contrast to female mice, DA neurons within the lesioned SNc of male mice showed a cytisine-induced pathological increase in the nuclear translocation of the pro-apoptotic ER stress protein, C/EBP homologous protein (CHOP). To assess the role of estrogen in cytisine neuroprotection in female mice, we exposed primary mouse DA cultures to either 10 nM 17-ß-estradiol and 200 nM cytisine or 10 nM 17-ß-estradiol alone. 17-ß-estradiol reduced expression of CHOP, whereas cytisine exposure reduced 6-OHDA-mediated nuclear translocation of two other ER stress proteins, activating transcription factor 6 and x-box-binding protein 1, but not CHOP. Taken together, these data show that cytisine and 17-ß-estradiol work in combination to inhibit all three arms (activating transcription factor 6, x-box-binding protein 1, and CHOP) of apoptotic ER stress signaling in DA neurons, which can explain the neuroprotective effect of low-dose cytisine in female mice.


Subject(s)
Alkaloids/pharmacology , Apoptosis/drug effects , Dopaminergic Neurons/drug effects , Endoplasmic Reticulum Stress/drug effects , Estradiol/pharmacology , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/drug therapy , Activating Transcription Factor 6/drug effects , Animals , Azocines/pharmacology , Behavior, Animal/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/psychology , Primary Cell Culture , Quinolizines/pharmacology , Sex Characteristics , Substantia Nigra/drug effects , Sympatholytics , Transcription Factor CHOP/drug effects , Tyrosine 3-Monooxygenase/metabolism
8.
Sci Total Environ ; 756: 144070, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33288253

ABSTRACT

Microcystin-leucine arginine (MC-LR), an intracellular toxin to cause reproduction toxicity, is produced by blooming cyanobacteria and widely distributed in eutrophic waters. It is revealed that MC-LR-induced female reproductive toxicity is more severe than male reproductive toxicity. Previous studies mainly focused on male reproductive toxicity, and the molecular mechanisms of MC-LR-induced apoptosis, follicular atresia and infertility in female remain largely unclear. Here, it was found that MC-LR treatment could induce apoptosis, inflammation, follicular atresia, and decrease of gonadal index in mice ovaries. RNA-Seq data showed that the up-regulation of DNA-damage inducible transcript 3 (Ddit3) under endoplasmic reticulum (ER) stress had predominantly regulatory role in MC-LR-induced apoptotic pathway. Furthermore, MC-LR exposure promoted cleavage of activating transcription factor 6 (ATF6, 50kd), inositol-requiring enzyme 1 (Ire1) expression, phosphorylation of IRE1, mitogen-activated protein kinase 5 (Map3k5) and Ddit3 expression, which was accompanied by the upregulation of death receptor 5 (Dr5) and active-caspase-3, and a decrease in Bcl-2 expression. ER stress inhibitor 4-Phenyl butyric acid (4-PBA) ameliorated these MC-LR-induced changes in protein or mRNA level. More importantly, knockdown of Ddit3 suppressed MC-LR-induced cell apoptosis and follicular atresia by directly regulating Dr5 and Bcl-2. Additionally, it was also found that MC-LR increased Map3k5 phosphorylation by inhibiting protein phosphatase 2A (PP2A) activity, and then promoted Ddit3 expression. In short, our data suggests that Ddit3 promotes MC-LR-induced mice ovarian cells apoptosis and follicular atresia via ER stress activation, which provides a new insight into the relation between infertility in females and the emerging water pollutant MC-LR.


Subject(s)
Marine Toxins , Microcystins , Transcription Factor CHOP , Animals , Apoptosis , Arginine , Endoplasmic Reticulum Stress , Female , Follicular Atresia , Leucine , Male , Mice , Microcystins/toxicity , Ovary , Transcription Factor CHOP/drug effects
9.
Acta Cir Bras ; 35(1): e202000104, 2020.
Article in English | MEDLINE | ID: mdl-32159588

ABSTRACT

PURPOSE: Glutamine, as an essential part of enteral nutrition and parenteral nutrition agent, has been widely recognized to be a kind of important intestinal mucosa protectant in clinical practice and experimental research. However, the mechanisms of its protective effects are still not fully understand. Consequently, this study aimed to explore the potential mechanism of glutamine on ischemia-reperfusion (I/R) injury induced endoplasmic reticulum (ER) stress in intestine. METHODS: An experimental model of intestinal I/R in rats was established by 1 hour occlusion of the superior mesenteric artery followed by 3 hours of reperfusion. Morphologic changes of intestinal mucosa, apoptosis of epithelial cells, and expression of intestinal Grp78, Gadd153, Caspase-12, ATF4, PERK phosphorylation (P-PERK) and elF2αphosphorylation(P-elF2α) were determined. RESULTS: After I/R, the apoptotic index of intestinal mucosa epithelial cells observably increased with notable necrosis of intestinal mucosa, and the expressions of Grp78, Gadd153, Caspase-12, ATF4, P-PERK and P-elF2αall were increased. However, treatment with glutamine could significantly relieve intestinal I/R injury and apoptosis index. Moreover, glutamine could clearly up-regulate the expression of Grp78, restrain P-PERK and P-elF2α, and reduce ATF4, Gadd153 and Caspase-12 expressions. CONCLUSION: Glutamine may be involved in alleviating ER stress induced intestinal mucosa cells apoptosis.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Glutamine/pharmacology , Intestinal Mucosa/drug effects , Protective Agents/pharmacology , Reperfusion Injury/prevention & control , Activating Transcription Factor 4/drug effects , Animals , Caspase 12/drug effects , Heat-Shock Proteins/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/ultrastructure , Male , Mesenteric Artery, Superior/injuries , Models, Animal , RNA, Messenger/drug effects , Rats, Sprague-Dawley , Transcription Factor CHOP/drug effects , eIF-2 Kinase/drug effects
10.
Am J Respir Crit Care Med ; 201(2): 198-211, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31738079

ABSTRACT

Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-ß (transforming growth factor-ß)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum Stress/genetics , Heat-Shock Proteins/genetics , Pulmonary Fibrosis/genetics , Stem Cells/metabolism , Age Factors , Alveolar Epithelial Cells/pathology , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/genetics , Cellular Senescence/genetics , Dasatinib/pharmacology , Endoplasmic Reticulum Chaperone BiP , Gene Knockout Techniques , Heat-Shock Proteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/drug effects , Membrane Glycoproteins/drug effects , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Quercetin/pharmacology , Quinolines/pharmacology , Smad Proteins/metabolism , Taurochenodeoxycholic Acid/pharmacology , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism , Transforming Growth Factor beta/metabolism
11.
Acta cir. bras ; 35(1): e202000104, 2020. graf
Article in English | LILACS | ID: biblio-1088525

ABSTRACT

Abstract Purpose Glutamine, as an essential part of enteral nutrition and parenteral nutrition agent, has been widely recognized to be a kind of important intestinal mucosa protectant in clinical practice and experimental research. However, the mechanisms of its protective effects are still not fully understand. Consequently, this study aimed to explore the potential mechanism of glutamine on ischemia-reperfusion (I/R) injury induced endoplasmic reticulum (ER) stress in intestine. Methods An experimental model of intestinal I/R in rats was established by 1 hour occlusion of the superior mesenteric artery followed by 3 hours of reperfusion. Morphologic changes of intestinal mucosa, apoptosis of epithelial cells, and expression of intestinal Grp78, Gadd153, Caspase-12, ATF4, PERK phosphorylation (P-PERK) and elF2αphosphorylation(P-elF2α) were determined. Results After I/R, the apoptotic index of intestinal mucosa epithelial cells observably increased with notable necrosis of intestinal mucosa, and the expressions of Grp78, Gadd153, Caspase-12, ATF4, P-PERK and P-elF2αall were increased. However, treatment with glutamine could significantly relieve intestinal I/R injury and apoptosis index. Moreover, glutamine could clearly up-regulate the expression of Grp78, restrain P-PERK and P-elF2α, and reduce ATF4, Gadd153 and Caspase-12 expressions. Conclusion Glutamine may be involved in alleviating ER stress induced intestinal mucosa cells apoptosis.


Subject(s)
Animals , Male , Reperfusion Injury/prevention & control , Apoptosis/drug effects , Protective Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Glutamine/pharmacology , Intestinal Mucosa/drug effects , RNA, Messenger/drug effects , Rats, Sprague-Dawley , Mesenteric Artery, Superior/injuries , eIF-2 Kinase/drug effects , Models, Animal , Activating Transcription Factor 4/drug effects , Transcription Factor CHOP/drug effects , Caspase 12/drug effects , Heat-Shock Proteins/drug effects , Intestinal Mucosa , Intestinal Mucosa/ultrastructure
12.
Elife ; 82019 11 19.
Article in English | MEDLINE | ID: mdl-31742555

ABSTRACT

Curative cancer therapies are uncommon and nearly always involve multi-drug combinations developed by experimentation in humans; unfortunately, the mechanistic basis for the success of such combinations has rarely been investigated in detail, obscuring lessons learned. Here, we use isobologram analysis to score pharmacological interaction, and clone tracing and CRISPR screening to measure cross-resistance among the five drugs comprising R-CHOP, a combination therapy that frequently cures Diffuse Large B-Cell Lymphomas. We find that drugs in R-CHOP exhibit very low cross-resistance but not synergistic interaction: together they achieve a greater fractional kill according to the null hypothesis for both the Loewe dose-additivity model and the Bliss effect-independence model. These data provide direct evidence for the 50 year old hypothesis that a curative cancer therapy can be constructed on the basis of independently effective drugs having non-overlapping mechanisms of resistance, without synergistic interaction, which has immediate significance for the design of new drug combinations.


Subject(s)
Combined Modality Therapy/methods , Drug Resistance, Neoplasm/drug effects , Lymphoma, B-Cell/drug therapy , Neoplasms/drug therapy , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Dose-Response Relationship, Drug , Drug Synergism , Drug Therapy, Combination , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Mutation , Neoplasms/genetics , Transcription Factor CHOP/drug effects
13.
Braz J Med Biol Res ; 52(11): e8772, 2019.
Article in English | MEDLINE | ID: mdl-31664306

ABSTRACT

This study aimed to investigate the mechanism of fluorofenidone (AKF-PD) in treating renal interstitial fibrosis in rats with unilateral urinary obstruction (UUO). Thirty-two male Sprague-Dawley rats were randomly divided into sham, UUO, UUO + enalapril, and UUO + AKF-PD groups. All rats, except sham, underwent left urethral obstruction surgery to establish the animal model. Rats were sacrificed 14 days after surgery, and serum was collected for renal function examination. Kidneys were collected to observe pathological changes. Immunohistochemistry was performed to assess collagen I (Col I) protein expression, and terminal deoxynucleotidyl transferase-mediated nick end-labeling staining to observe the apoptosis of renal tubular epithelial cells. The expression of Fas-associated death domain (FADD), apoptotic protease activating factor-1 (Apaf-1), and C/EBP homologous protein (CHOP) proteins was evaluated by immunohistochemistry and western blot analysis. AKF-PD showed no significant effect on renal function in UUO rats. The pathological changes were alleviated significantly after enalapril or AKF-PD treatment, but with no significant differences between the two groups. Col I protein was overexpressed in the UUO group, which was inhibited by both enalapril and AKF-PD. The number of apoptotic renal tubular epithelial cells was much higher in the UUO group, and AKF-PD significantly inhibited epithelial cells apoptosis. The expression of FADD, Apaf-1, and CHOP proteins was significantly upregulated in the UUO group and downregulated by enalapril and AKF-PD. In conclusion, AKF-PD improved renal interstitial fibrosis by inhibiting apoptosis of renal tubular epithelial cells in rats with UUO.


Subject(s)
Apoptosis/drug effects , Epithelial Cells/drug effects , Kidney Diseases/pathology , Pyridones/pharmacology , Ureteral Obstruction/pathology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Apoptotic Protease-Activating Factor 1/drug effects , Apoptotic Protease-Activating Factor 1/metabolism , Blood Urea Nitrogen , Collagen Type I/drug effects , Collagen Type I/metabolism , Creatinine/blood , Disease Models, Animal , Enalapril/metabolism , Enalapril/pharmacology , Fas-Associated Death Domain Protein/drug effects , Fas-Associated Death Domain Protein/metabolism , Fibrosis , Male , Pyridones/metabolism , Random Allocation , Rats, Sprague-Dawley , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism
14.
Braz. j. med. biol. res ; 52(11): e8772, 2019. graf
Article in English | LILACS | ID: biblio-1039259

ABSTRACT

This study aimed to investigate the mechanism of fluorofenidone (AKF-PD) in treating renal interstitial fibrosis in rats with unilateral urinary obstruction (UUO). Thirty-two male Sprague-Dawley rats were randomly divided into sham, UUO, UUO + enalapril, and UUO + AKF-PD groups. All rats, except sham, underwent left urethral obstruction surgery to establish the animal model. Rats were sacrificed 14 days after surgery, and serum was collected for renal function examination. Kidneys were collected to observe pathological changes. Immunohistochemistry was performed to assess collagen I (Col I) protein expression, and terminal deoxynucleotidyl transferase-mediated nick end-labeling staining to observe the apoptosis of renal tubular epithelial cells. The expression of Fas-associated death domain (FADD), apoptotic protease activating factor-1 (Apaf-1), and C/EBP homologous protein (CHOP) proteins was evaluated by immunohistochemistry and western blot analysis. AKF-PD showed no significant effect on renal function in UUO rats. The pathological changes were alleviated significantly after enalapril or AKF-PD treatment, but with no significant differences between the two groups. Col I protein was overexpressed in the UUO group, which was inhibited by both enalapril and AKF-PD. The number of apoptotic renal tubular epithelial cells was much higher in the UUO group, and AKF-PD significantly inhibited epithelial cells apoptosis. The expression of FADD, Apaf-1, and CHOP proteins was significantly upregulated in the UUO group and downregulated by enalapril and AKF-PD. In conclusion, AKF-PD improved renal interstitial fibrosis by inhibiting apoptosis of renal tubular epithelial cells in rats with UUO.


Subject(s)
Animals , Male , Pyridones/pharmacology , Ureteral Obstruction/pathology , Apoptosis/drug effects , Epithelial Cells/drug effects , Kidney Diseases/pathology , Pyridones/metabolism , Blood Urea Nitrogen , Fibrosis , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Enalapril/metabolism , Enalapril/pharmacology , Random Allocation , Rats, Sprague-Dawley , Creatinine/blood , Collagen Type I/drug effects , Collagen Type I/metabolism , Disease Models, Animal , Transcription Factor CHOP/drug effects , Apoptotic Protease-Activating Factor 1/drug effects , Apoptotic Protease-Activating Factor 1/metabolism , Fas-Associated Death Domain Protein/drug effects , Fas-Associated Death Domain Protein/metabolism
15.
J Agric Food Chem ; 66(41): 10741-10747, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30296076

ABSTRACT

Royal jelly, a natural product secreted by honeybees, contains several fatty acids, such as 10-hydroxy-2-decenoic acid (DE), and shows anti- and pro-apoptotic properties. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE), a DE derivative, exhibits potent antioxidative activity; however, it currently remains unclear whether HPO-DAEE induces cancer-cell death. In the present study, treatment with HPO-DAEE induced human-lung-cancer-A549-cell death (52.7 ± 10.2%) that was accompanied by DNA fragmentation. Moreover, the accumulation of intracellular reactive oxygen species (ROS, 2.38 ± 0.1-fold) and the induction of proapoptotic CCAAT-enhancer-binding-protein-homologous-protein (CHOP) expression (18.4 ± 4.0-fold) were observed in HPO-DAEE-treated cells. HPO-DAEE-elicited CHOP expression and cell death were markedly suppressed by pretreatment with N-acetylcysteine (NAC), an antioxidant, by 2.40 ± 1.57-fold and 5.7 ± 1.6%, respectively. Pretreatment with 4-phenylbutyric acid (PBA), an inhibitor of endoplasmic reticulum stress, also suppressed A549-cell death (38.4 ± 1.1%). Furthermore, we demonstrated the involvement of extracellular-signal-regulated protein kinase (ERK) and p38-related signaling in HPO-DAEE-elicited cell-death events. Overall, we concluded that HPO-DAEE induces A549-cell apoptosis through the ROS-ERK-p38 pathway and, at least in part, the CHOP pathway.


Subject(s)
Antineoplastic Agents/chemistry , Fatty Acids, Unsaturated/chemistry , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/drug effects , A549 Cells , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Death/drug effects , Endoplasmic Reticulum Stress/drug effects , Esters/chemistry , Esters/therapeutic use , Extracellular Signal-Regulated MAP Kinases/metabolism , Fatty Acids, Unsaturated/therapeutic use , Humans , Lung Neoplasms , Signal Transduction/drug effects , Transcription Factor CHOP/genetics
16.
Aerosp Med Hum Perform ; 89(10): 883-888, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30219115

ABSTRACT

BACKGROUND: Skeletal muscle atrophy is a striking example of the multiple changes in the physiological state of humans and animals induced by microgravity. Previous studies have shown that a blood circulation disorder may be a cause of this atrophy, and traditional Chinese medicine has been regarded as a potential countermeasure to reverse the atrophy in China. This study was carried out to test the effects of Xuefuzhuyu capsules (XFZY) on the skeletal muscle atrophy induced by simulated microgravity. METHODS: The mass and cross-sectional area of the soleus muscle were compared in rats treated with XFZY that were hindlimb unloaded for 30 d (XFZY-TS group), untreated rats that were hindlimb unloaded for 30 d (TS group), and control rats (CON group). The expression and phosphorylation levels of key proteins of the sarcoplasmic reticulum stress system were also measured. RESULTS: Treatment with XFZY attenuated the loss of muscle mass and cross-sectional area induced by hindlimb unloading. Western blot analysis showed that the phosphatidyl-inositol-3-kinase/phospho-Akt (PI3K/p-Akt) pathways were down-regulated after 30 d in the TS group compared with the CON group. This effect was partly reversed by XFZY. Hindlimb unloading increased the expression of glucose-regulated protein 78 (GRP78), cytosine-cytosine-adenosine-adenosine-thymidine/enhancer-binding protein homologous protein (CHOP), C-Jun N-terminal kinase (JNK), and Caspase 12. Treatment with XFZY alleviated this increased protein expression. DISCUSSION: Our results suggest that XFZY could partially reverse the effects of hindlimb unloading on muscle atrophy and perhaps target the sarcoplasmic reticulum stress system, possibly through the GRP78-CHOP-JNK-Caspase 12 pathway.Zhang S, Yuan M, Cheng C, Xia D, Wu S. Chinese herbal medicine effects on muscle atrophy induced by simulated microgravity. Aerosp Med Hum Perform. 2018; 89(10):883-888.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hindlimb Suspension , Muscle, Skeletal/drug effects , Muscular Atrophy/pathology , Weightlessness Simulation , Animals , Caspase 12/drug effects , Caspase 12/metabolism , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/drug effects , Heat-Shock Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Phosphatidylinositol 3-Kinase/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism
17.
Pharmazie ; 73(3): 156-160, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29544563

ABSTRACT

Previous studies have shown sorafenib to function as a multitargeted tyrosine kinase inhibitor in different tumors. However, whether sorafenib improves renal cell carcinoma (RCC) through activating transcription factor 4 (ATF4) has never been explored. In the current study, we showed that sorafenib could suppress RCC cell viability in a time- and dose-dependent manner. Furthermore, sorafenib is demonstrated to enhance the mRNA and protein levels of ATF4. Meanwhile, overexpression of ATF4 was demonstrated to induce ACHN cell cycle arrest and cell apoptosis. Moreover, treatment with sorafenib could enhance the expression of CCAAT/enhancer-binding protein-homologous protein (CHOP) and p53 upregulated modulator of apoptosis (PUMA), thereby leading to ACHN cell apoptosis. More importantly, silencing of ATF4 could largely abolish sorafenib-induced upregulation of CHOP and PUMA in ACHN cells. Meanwhile, sorafenib-induced cell apoptosis may be dependent on the activation of ATF4 since knockdown of ATF4 partially reversed sorafenib-induced ACHN cell apoptosis. In summary, the present study demonstrates that sorafenib activates ATF4-CHOP-PUMA pathway in RCC cells, resulting in enhanced ER stress-related cell apoptosis.


Subject(s)
Activating Transcription Factor 4/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Sorafenib/pharmacology , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Knockdown Techniques , Humans , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/drug effects , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/biosynthesis , Transcription Factor CHOP/drug effects , Transfection , Up-Regulation/drug effects
18.
Bosn J Basic Med Sci ; 18(1): 49-54, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-28686850

ABSTRACT

Status epilepticus (SE) is defined as continuous seizure activity lasting more than 5 minutes. It results in neuronal cell death, mediated by endoplasmic reticulum (ER) stress response. Previously, metformin demonstrated neuroprotective effects in primary cortical neurons. In this study, we analyzed the effect of metformin on ER stress via the pro-apoptotic protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)-C/EBP homologous protein (CHOP) pathway. SE was induced in rats by pentylenetetrazole. Following SE, the rats were treated with salubrinal, GSK2656157, or metformin. In a control group (normal saline) SE was not induced. CHOP, eIF2α, and PERK expression was determined by Western blot; apoptosis was analyzed by TUNEL assay. CHOP expression was significantly increased at 6 and 24 hours following SE. At both time points, eIF2α and PERK levels were also increased. At 6 hours, CHOP expression was significantly reduced in salubrinal, GSK2656157 and metformin groups versus SE group. eIF2α and PERK levels were decreased in metformin compared to SE group. eIF2α expression was markedly decreased in salubrinal versus SE group, while PERK expression was markedly reduced in GSK2656157 versus SE group. At 6 and 24 hours, the apoptosis rate was significantly increased in SE versus control group, while it was significantly reduced in salubrinal, GSK2656157, and metformin groups compared to SE group. The apoptosis rate also decreased in salubrinal group at 24 hours, although not to the extent observed in metformin group. Overall, CHOP expression and apoptosis induced by SE in rats were reduced with metformin. Further studies are required to evaluate the clinical relevance of metformin for patients with SE.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Signal Transduction/drug effects , Status Epilepticus/drug therapy , Transcription Factor CHOP/drug effects , eIF-2 Kinase/drug effects , Animals , Apoptosis/drug effects , Convulsants , Pentylenetetrazole , Rats , Rats, Sprague-Dawley , Status Epilepticus/chemically induced , Status Epilepticus/physiopathology
19.
Bratisl Lek Listy ; 118(6): 339-346, 2017.
Article in English | MEDLINE | ID: mdl-28664743

ABSTRACT

BACKGROUND: To explore the role of the MAPK signaling pathway in the cardiomyocyte apoptosis of mice with post-infarction heart failure (HF). METHODS: Mice were divided into sham and myocardial infarction (MI) groups. Before surgery, the MI group was divided into SB203580 and PBS subgroups. A post-infarction HF model was established by ligating the left anterior descending coronary artery. Ventricular dilatation and cardiac function were observed by small animal echocardiography. The growth of primary cardiomyocytes was observed under an inverted phase contrast microscope. The mRNA and protein expressions of endoplasmic reticulum stress (ERS) markers, GRP78 and CHOP, were detected by qRT-PCR and immunofluorescence assay, respectively. RESULTS: The MI group had enlarged left ventricle and decreased cardiac function. GRP78 and CHOP protein expressions in myocardial tissues, especially those of SB203580 subgroup, significantly increased (p < 0.05). The expressions of p-JNK and cleaved caspase 12 proteins, especially those of SB203580 subgroup, were significantly up-regulated. Cardiomyocytes of MI group were significantly more prone to apoptosis (p < 0.05), with SB203580 subgroup being more obvious. CONCLUSION: MI was accompanied by ERS, probably involving the MAPK signaling pathway. SB203580, a specific inhibitor of this pathway, can relieve cardiomyocyte apoptosis and protect the myocardium by suppressing such stress (Tab. 3, Fig. 7, Ref. 20).


Subject(s)
Apoptosis , Heart Failure/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Caspase 12/drug effects , Caspase 12/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique , Heart Failure/etiology , Heart Failure/pathology , Heat-Shock Proteins/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Imidazoles/pharmacology , MAP Kinase Kinase 4/drug effects , MAP Kinase Kinase 4/metabolism , Male , Mice , Mitogen-Activated Protein Kinases/drug effects , Myocardial Infarction/complications , Myocardial Infarction/pathology , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phosphoproteins/metabolism , Pyridines/pharmacology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Up-Regulation
20.
Article in English | MEDLINE | ID: mdl-28642847

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea among children and travelers in developing countries, and heat-labile enterotoxin (LT) is one of the most important virulence factors. The pathogenesis of and virulence factors associated with ETEC have been well-characterized; however, the extent to which ETEC damages host cells remains unclear. In this study, we found that LT could induce decreases in intestinal epithelial cell viability and induce apoptosis in a dose- and time- dependent manner in both HCT-8 and Caco-2 cells. We analyzed the expression profiles of apoptosis-related proteins via protein array technology and found that Bax, p-p53(S46), cleaved caspase-3, and TNFRI/TNFRSF1A expression levels were significantly up-regulated in wild-type ETEC- but not in ΔLT ETEC-infected HCT-8 cells. Bax is essential for endoplasmic reticulum (ER) stress-triggered apoptosis, and our RNAi experiments showed that the PERK-eIF2-CHOP pathway and reactive oxygen species (ROS) are also main participants in this process. LT-induced ROS generation was decreased in CHOP-knockdown HCT-8 cells compared to that in control cells. Moreover, pretreatment with the ROS inhibitor NAC down-regulated GRP78, CHOP, Bim, and cleaved caspase-3 expression, resulting in a reduction in the apoptosis rate from 36.2 to 20.3% in LT-treated HCT-8 cells. Furthermore, ROS inhibition also attenuated LT-induced apoptosis in the small intestinal mucosa in the ETEC-inoculation mouse model.


Subject(s)
Apoptosis/drug effects , Enterotoxins/pharmacology , Epithelial Cells/drug effects , Intestinal Mucosa/metabolism , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism , eIF-2 Kinase/drug effects , eIF-2 Kinase/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11/drug effects , Caco-2 Cells , Caspase 3/metabolism , Cell Line , Cell Survival/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Enterotoxigenic Escherichia coli/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Enterotoxins/administration & dosage , Escherichia coli Infections , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Gene Expression Regulation/drug effects , Gene Silencing , Heat-Shock Proteins/drug effects , Hot Temperature , Humans , Intestines/drug effects , Mice , Mice, Inbred ICR , RNA Interference , Reactive Oxygen Species/metabolism , Time Factors , Transcription Factor CHOP/genetics , bcl-2-Associated X Protein/metabolism , eIF-2 Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...