Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.401
Filter
1.
FASEB J ; 38(9): e23645, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703043

ABSTRACT

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Subject(s)
Aortic Dissection , Chemokine CX3CL1 , Mice, Inbred C57BL , Pentacyclic Triterpenes , Signal Transduction , Transcription Factor RelA , Vascular Remodeling , Animals , Mice , Male , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/drug therapy , Pentacyclic Triterpenes/pharmacology , Vascular Remodeling/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aminopropionitrile/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 739-747, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708508

ABSTRACT

OBJECTIVE: To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). METHODS: In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1ß levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. RESULTS: Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1ß, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. CONCLUSION: Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1ß/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Matrix Metalloproteinase 1 , Rats, Sprague-Dawley , Synovial Membrane , Tumor Necrosis Factor-alpha , Animals , Rats , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Matrix Metalloproteinase 1/metabolism , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 2/metabolism , Down-Regulation/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/metabolism , Tripterygium/chemistry , Transcription Factor RelA/metabolism
3.
Neurosci Lett ; 832: 137806, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38714229

ABSTRACT

BACKGROUND: Trigeminal neuralgia (TN) is a common and difficult-to-treat neuropathic pain disorder in clinical practice. Previous studies have shown that Toll-like receptor 4 (TLR4) modulates the activation of the NF-κB pathway to affect neuropathic pain in rats. Voltage-gated sodium channels (VGSCs) are known to play an important role in neuropathic pain electrical activity. OBJECTIVE: To investigate whether TLR4 can regulate Nav1.3 through the TRAF6/NF-κB p65 pathway after infraorbital nerve chronic constriction injury (ION-CCI). STUDY DESIGN: ION-CCI modeling was performed on SD (Sprague Dawley) rats. To verify the success of the modeling, we need to detect the mechanical pain threshold and ATF3. Then, detecting the expression of TLR4, TRAF6, NF-κB p65, p-p65, and Nav1.3 in rat TG. Subsequently, investigate the role of TLR4/TRAF6/NF-κB pathway in ION-CCI model by intrathecal injections of LPS-rs (TLR4 antagonist), C25-140 (TRAF6 inhibitor), and PDTC (NF-κB p65 inhibitor). RESULTS: ION-CCI surgery decreased the mechanical pain threshold of rats and increased the expression of ATF3, TLR4, TRAF6, NF-κB p-p65 and Nav1.3, but there was no difference in NF-κB p65 expression. After inject antagonist or inhibitor of the TLR4/TRAF6/NF-κB pathway, the expression of Nav1.3 was decreased and mechanical pain threshold was increased. CONCLUSION: In the rat model of ION-CCI, TLR4 in the rat trigeminal ganglion regulates Nav1.3 through the TRAF6/NF-κB p65 pathway, and TLR4 antagonist alleviates neuropathic pain in ION-CCI rats.


Subject(s)
NAV1.3 Voltage-Gated Sodium Channel , Rats, Sprague-Dawley , Signal Transduction , TNF Receptor-Associated Factor 6 , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , TNF Receptor-Associated Factor 6/metabolism , Male , NAV1.3 Voltage-Gated Sodium Channel/metabolism , Signal Transduction/physiology , NF-kappa B/metabolism , Trigeminal Neuralgia/metabolism , Rats , Disease Models, Animal , Transcription Factor RelA/metabolism , Activating Transcription Factor 3/metabolism , Pain Threshold/physiology
4.
Sci Rep ; 14(1): 11211, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755247

ABSTRACT

Lung adenocarcinoma (LUAD) is a malignancy with an abysmal survival rate. High metastasis is the leading cause of the low survival rate of LUAD. NCAPH, an oncogene, is involved in the carcinogenesis of LUAD. However, the regulation of NCAPH in LUAD remains controversial. In this work, we identified an up-regulation of NCAPH in LUAD tissues. Patients who expressed more NCAPH had shorter overall survival (OS). Furthermore, NCAPH overexpression promoted LUAD cell migration while inhibiting apoptosis. MiR-1976 and miR-133b were predicted to target NCAPH expression by searching TargetScan and linkedomics databases. Following that, we confirmed that miR-1976 suppressed NCAPH by directly targeting a 7-bp region of NCAPH 3' untranslated regions (UTR). In addition, increased expression of miR-1976 decreased the proliferation & migration and promoted apoptosis of LUAD cells, and the re-introduction of NCAPH reversed these influences. Furthermore, the xenograft and metastasis mouse models also confirmed that miR-1976 inhibited tumor growth and metastasis in vivo by targeting NCAPH. Finally, we found that MiR-1976 targeting NCAPH blocked the activation of NF-κB. In conclusion, miR-1976 inhibits NCAPH activity in LUAD and acts as a tumor suppressor. The miR-1976/NCAPH/NF-κB axis may, in the future, represent crucial diagnostic and prognostic biomarkers and promising therapeutic options.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Cell Movement/genetics , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Male , Female , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Phenotype , Mice, Nude , Signal Transduction
5.
PLoS One ; 19(5): e0303740, 2024.
Article in English | MEDLINE | ID: mdl-38748639

ABSTRACT

Acute kidney injury (AKI) is a sudden loss of renal function with a high mortality rate and inflammation is thought to be the underlying cause. The phenylpropanoid components acteoside (ACT) and isoacteoside (ISO), which were isolated from Cistanche deserticola Y.C.Ma, have been reported to have preventive effects against kidney disorders. This study aimed to investigate the anti-inflammatory properties and protective mechanisms of ACT and ISO. In this investigation, kidney function was assessed using a semi-automatic biochemical analyzer, histopathology was examined using Hematoxylin-Eosin staining and immunohistochemistry, and the concentration of inflammatory cytokines was assessed using an enzyme-linked immunosorbent assay (ELISA) test. In addition, using Western blot and q-PCR, the expression of proteins and genes connected to the NF-κB signaling pathway in mice with lipopolysaccharide (LPS)-induced AKI was found. The findings showed that under AKI intervention in LPS group, ACT group and ISO group, the expression of Rela (Rela gene is responsible for the expression of NFκB p65 protein) and Tlr4 mRNA was considerably elevated (P<0.01), which led to a significant improvement in the expression of MyD88, TLR4, Iκ-Bɑ and NF-κB p65 protein (P<0.001). The levels of Alb, Crea and BUN (P<0.001) increased along with the release of downstream inflammatory factors such as IL-1ß, IL-6, Cys-C, SOD1 and TNF-α (P<0.001). More importantly, the study showed that ISO had a more favorable impact on LPS-induced AKI mice than ACT. In conclusion, by inhibiting NF-κB signaling pathway, ACT and ISO could relieve renal failure and inflammation in AKI, offering a fresh possibility for the therapeutic management of the condition.


Subject(s)
Acute Kidney Injury , Glucosides , Inflammation , Lipopolysaccharides , NF-kappa B , Phenols , Signal Transduction , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Signal Transduction/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Mice , NF-kappa B/metabolism , Male , Phenols/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Transcription Factor RelA/metabolism
6.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764152

ABSTRACT

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Subject(s)
Colitis, Ulcerative , Genistein , Transcription Factor RelA , Animals , Genistein/pharmacology , Mice , RAW 264.7 Cells , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Transcription Factor RelA/metabolism , Male , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Dextran Sulfate/toxicity
7.
Mol Immunol ; 170: 156-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692097

ABSTRACT

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Transcription Factors , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Neoplasm Recurrence, Local/immunology , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Cell Line, Tumor , Epithelial Cells/immunology , Epithelial Cells/metabolism , Animals , RNA, Double-Stranded/immunology , Transcription Factor RelA/metabolism , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732100

ABSTRACT

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Subject(s)
Composite Resins , Fibroblasts , Gingiva , Interleukin-1beta , Polymethyl Methacrylate , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Gingiva/cytology , Composite Resins/pharmacology , Composite Resins/chemistry , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cells, Cultured , Transcription Factor RelA/metabolism , Cell Adhesion/drug effects
9.
Proc Natl Acad Sci U S A ; 121(23): e2405555121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805268

ABSTRACT

The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 µs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.


Subject(s)
DNA , Molecular Dynamics Simulation , NF-kappa B , Protein Binding , DNA/metabolism , Humans , NF-kappa B/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Binding Sites , Crystallography, X-Ray
10.
Bioorg Chem ; 147: 107420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718461

ABSTRACT

Phytochemical analysis of Chloranthus henryi var. hupehensis roots led to the identification of a new eudesmane sesquiterpenoid dimer, 18 new sesquiterpenoids, and three known sesquiterpenoids. Among the isolates, 1 was a rare sesquiterpenoid dimer that is assembled by a unique oxygen bridge (C11-O-C8') of two highly rearranged eudesmane-type sesquiterpenes with the undescribed C16 carbon framework. (+)-2 and (-)-2 were a pair of new skeleton dinorsesquiterpenoids with a remarkable 6/6/5 tricyclic ring framework including one γ-lactone ring and the bicyclo[3.3.1]nonane core. Their structures were elucidated using spectroscopic data, single-crystal X-ray diffraction analysis, and quantum chemical computations. In the LPS-induced BV-2 microglial cell model, 17 suppressed IL-1ß and TNF-α expression with EC50 values of 6.81 and 2.76 µM, respectively, indicating its excellent efficacy in inhibiting inflammatory factors production in a dose dependent manner and without cytotoxicity. In subsequent mechanism studies, compounds 3, 16, and 17 could reduce IL-1ß and TNF-α production by inhibiting IKBα/p65 pathway activation.


Subject(s)
Dose-Response Relationship, Drug , Plant Roots , Sesquiterpenes , Signal Transduction , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Plant Roots/chemistry , Signal Transduction/drug effects , Molecular Structure , Mice , Animals , Structure-Activity Relationship , Transcription Factor RelA/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Drug Discovery , NF-KappaB Inhibitor alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification
11.
Bull Exp Biol Med ; 176(5): 562-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724811

ABSTRACT

We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.


Subject(s)
Heme Oxygenase-1 , Iron , NF-E2-Related Factor 2 , Thiourea , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Thiourea/analogs & derivatives , Thiourea/pharmacology , HeLa Cells , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Iron/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Nitrogen Oxides/metabolism , Nitrogen Oxides/pharmacology , Antioxidants/pharmacology
12.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802961

ABSTRACT

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Subject(s)
Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
13.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759303

ABSTRACT

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Subject(s)
Epidermis , Formaldehyde , Animals , Phosphorylation/drug effects , Mice , Male , Epidermis/metabolism , Epidermis/drug effects , Transcription Factor RelA/metabolism , CD11 Antigens/metabolism , Nociception/drug effects , Humans
14.
Arch Dermatol Res ; 316(6): 274, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796528

ABSTRACT

Wound healing is a highly programmed process, in which any abnormalities result in scar formation. MicroRNAs are potent regulators affecting wound repair and scarification. However, the function of microRNAs in wound healing is not fully understood. Here, we analyzed the expression and function of microRNAs in patients with cutaneous wounds. Cutaneous wound biopsies from patients with either hypertrophic scarring or normal wound repair were collected during inflammation, proliferation, and remodeling phases. Fourteen candidate microRNAs were selected for expression analysis by qRT-PCR. The expression of genes involved in inflammation, angiogenesis, proliferation, and migration were measured using qRT-PCR. Cell cycle and scratch assays were used to explore the proliferation and migration rates. Flow cytometry analysis was employed to examine TGF-ß, αSMA and collagen-I expression. Target gene suggestion was performed using Enrichr tool. The results showed that miR-16-5p, miR-152-3p, miR-125b-5p, miR-34c-5p, and miR-182-5p were revealed to be differentially expressed between scarring and non-scarring wounds. Based on the expression patterns obtained, miR-182-5p was selected for functional studies. miR-182-5p induced RELA expression synergistically upon IL-6 induction in keratinocytes and promoted angiogenesis. miR-182-5p prevented keratinocyte migration, while overexpressed TGF-ß3 following induction of inflammation. Moreover, miR-182-5p enhanced fibroblast proliferation, migration, differentiation, and collagen-1 expression. FoxO1 and FoxO3 were found to potentially serve as putative gene targets of miR-182-5p. In conclusion, miR-182-5p is differentially expressed between scarring and non-scarring wounds and affect the behavior of cells involved in cutaneous wound healing. Deregulated expression of miR-182-5p adversely affects the proper transition of wound healing phases, resulting in scar formation.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , MicroRNAs , Skin , Wound Healing , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Wound Healing/genetics , Cell Proliferation/genetics , Skin/pathology , Skin/injuries , Skin/metabolism , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/metabolism , Cell Movement/genetics , Inflammation/genetics , Inflammation/pathology , Keratinocytes/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Male , Female , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Middle Aged , Neovascularization, Physiologic/genetics
15.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Article in English | MEDLINE | ID: mdl-38775678

ABSTRACT

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Subject(s)
Cardiomyopathies , Diosgenin , Myeloid Differentiation Factor 88 , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Toll-Like Receptor 4/metabolism , Rats , Myeloid Differentiation Factor 88/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Signal Transduction/drug effects , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/prevention & control , Cell Line , Rats, Sprague-Dawley , Transcription Factor RelA/metabolism , Oxidative Stress/drug effects , Lipopolysaccharides , Disease Models, Animal , Apoptosis/drug effects
16.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724505

ABSTRACT

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Subject(s)
Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
17.
Biomed Pharmacother ; 175: 116674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703509

ABSTRACT

Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1ß, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.


Subject(s)
Epithelial Cells , Animals , Humans , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice , Lung/pathology , Lung/drug effects , Lung/metabolism , Transcription Factor RelA/metabolism , COVID-19 Drug Treatment , A549 Cells , SARS-CoV-2/drug effects , COVID-19/prevention & control , Proteolysis/drug effects , Lung Injury/prevention & control , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/virology , Male , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acetamides/pharmacology
18.
PLoS One ; 19(4): e0297849, 2024.
Article in English | MEDLINE | ID: mdl-38625951

ABSTRACT

More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.


Subject(s)
COVID-19 , MicroRNAs , Neoplasms , Humans , MicroRNAs/metabolism , Lipid Metabolism/genetics , Angiogenesis , Macrophages/metabolism , Inflammation/pathology , Fatty Acids/metabolism , Neoplasms/pathology , COVID-19/pathology , Tumor Microenvironment , Transcription Factor RelA/metabolism
19.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668900

ABSTRACT

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Subject(s)
Chemokine CCL2 , Chemokine CXCL10 , Imidazoles , Interleukin-8 , Toll-Like Receptor 7 , Transcription Factor RelA , Humans , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/biosynthesis , Chemokine CXCL10/genetics , Chemokine CXCL10/biosynthesis , Imidazoles/pharmacology , Interleukin-8/genetics , Interleukin-8/biosynthesis , Neuroblastoma , Neurons/drug effects , Neurons/metabolism , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660903

ABSTRACT

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Subject(s)
Bilirubin , Chaperone-Mediated Autophagy , Microglia , Animals , Mice , Microglia/metabolism , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Cell Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...