Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Biol ; 10(1): 33-47, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28992066

ABSTRACT

Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.


Subject(s)
Cell Nucleus/metabolism , Endopeptidases/metabolism , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factor TFIIA/metabolism , Active Transport, Cell Nucleus , Cell Line , HeLa Cells , Humans , Models, Molecular , Nuclear Export Signals , Protein Conformation , Transcription Factor TFIIA/analysis , Transcription Factor TFIIA/genetics , Transcriptional Activation , Exportin 1 Protein
2.
FEBS Lett ; 579(16): 3401-10, 2005 Jun 20.
Article in English | MEDLINE | ID: mdl-15927180

ABSTRACT

Male germ cells specifically express paralogues of components of the general transcription apparatus including ALF a paralogue of TFIIAalpha/beta. We show that endogenous ALF is proteolytically cleaved to give alpha- and beta-subunits and we map the proteolytic cleavage site by mass spectrometry. Immunoprecipitations show that ALFalpha- and beta-subunits form a series of homologous and heterologous complexes with somatic TFIIA which is coexpressed in male germ cells. In addition, we show that ALF is coexpressed in late pachytene spermatocytes and in haploid round spermatids with transcription factor TRF2, and that these proteins form stable complexes in testis extracts. Our observations highlight how cleavage of ALF and coexpression with TFIIA and TRF2 increases the combinatorial possibilities for gene regulation at different developmental stages of spermatogenesis.


Subject(s)
Spermatocytes/metabolism , Telomeric Repeat Binding Protein 2/metabolism , Transcription Factor TFIIA/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Cell Extracts/immunology , Conserved Sequence , Male , Mice , Molecular Sequence Data , Peptide Mapping , Protein Subunits/analysis , Protein Subunits/metabolism , Spermatocytes/chemistry , Spermatocytes/immunology , Spermatogenesis/genetics , Telomeric Repeat Binding Protein 2/analysis , Testis/cytology , Transcription Factor TFIIA/analysis , Transcription Factors/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...