Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.358
Filter
1.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806451

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Subject(s)
Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , NADPH Oxidase 4 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Peritoneum/pathology , Pyrazolones , Pyridones
2.
Sci Rep ; 14(1): 8729, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622264

ABSTRACT

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Losartan , Pyridones , Humans , Rats , Animals , Losartan/pharmacology , Losartan/therapeutic use , Bleomycin/toxicity , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Transforming Growth Factor beta1/pharmacology , Collagen/pharmacology
3.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667308

ABSTRACT

Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-ß, TGF-ß1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-ß induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-ß1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.


Subject(s)
Adipose Tissue , Fibrosis , Gene Expression Profiling , Inflammation , Stem Cells , Stem Cells/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Humans , Inflammation/pathology , Inflammation/genetics , Cell Hypoxia/genetics , Transcriptome/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Animals
4.
Sci Rep ; 14(1): 9495, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664570

ABSTRACT

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-ß (TGFß) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFß signaling in tendon prompted us to utilize TGFß1 to induce tendon-like structures in 3D tendon constructs. TGFß1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFß1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFß1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.


Subject(s)
Cell Differentiation , Cell Proliferation , Tendons , Tenocytes , Transforming Growth Factor beta1 , Animals , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Tendons/cytology , Tendons/metabolism , Mice , Cell Differentiation/drug effects , Tenocytes/metabolism , Tenocytes/cytology , Cell Proliferation/drug effects , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Cell Culture Techniques/methods , Extracellular Matrix/metabolism , Collagen/metabolism , Tissue Engineering/methods
5.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 201-207, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38584100

ABSTRACT

Objective: To investigate the effects of reduced nicotinamide adenine dinucleotide phosphooxidase 4 (NOX4) inhibitors GKT137831 and M2-type macrophages on oxidative stress markers NOX4, nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the rat hepatic stellate cell line (HSC-T6). Methods: Rat bone marrow macrophages were extracted and induced using interleukin (IL)-4 to differentiate them into M2 phenotype macrophages. HSC-T6 activation was performed with 5 µg/L transforming growth factor ß1 (TGF-ß1). The proliferation condition of HSC-T6 cells stimulated by the NOX4 inhibitor GKT137831 at a concentration gradient of 5 to 80 µmol/L after 48 hours was detected using the Cell Counting Kit-8 (CCK-8) assay. The optimal drug concentration was chosen and divided into an HSC co-culture group (the control group) and five experimental groups: the TGF-ß1 stimulation group, the TGF-ß1 +GKT137831 stimulation group, the M2-type macrophage + HSC co-culture group, the M2-type macrophage +TGF-ß1 stimulation group, and the M2-type + TGF-ß1 + GKT137831 stimulation group. Reactive oxygen species (ROS) production level was detected in each cell using the DCFH-DA probe method. NOX4, α-smooth muscle actin (α-SMA), Nrf2, and HO-1 levels in each group of HSC cells were detected using the qRT-PCR method and the Western blot method. The t-test was used to compare the two groups. The one-way ANOVA method was used to compare multiple groups. Results: Intracellular ROS increased significantly following TGF-ß1 stimulation. ROS relative levels in each cell group were 1.03±0.11, 3.88±0.07, 2.90±0.08, 0.99±0.06, 3.30±0.05, 2.21±0.11, F = 686.1, P = 0.001, respectively. The mRNA and protein expressions of NOX4, α-SMA, Nrf2, and HO-1 were significantly increased (P < 0.05). After the addition of GKT137831, ROS, and NOX4, α-SMA mRNA and protein expression were comparatively decreased in the TGF-ß1 stimulation group (P < 0.05), while mRNA and protein expressions of Nrf2 and HO-1 were increased (P < 0.05). The expression of ROS and NOX4, as well as α-SMA mRNA and protein, produced by HSC were significantly decreased in the co-culture group compared to the single culture group after TGF-ß1 stimulation (P < 0.05). After the addition of GKT137831, ROS, NOX4, α-SMA mRNA, and protein expression were further reduced in the co-culture group compared with the single culture group (P < 0.05), while the mRNA and protein expression of Nrf2 and HO-1 were further increased (P < 0.05). Conclusion: NOX4 inhibitor GKT137831 can reduce RO, NOX4, and α-SMA levels while increasing Nrf2 and HO-1 levels in hepatic stellate cells. After M2-type macrophage co-culture, GKT137831 assists in lowering ROS, NOX4, and α-SMA levels while accelerating Nrf2 and HO-1 levels in hepatic stellate cells, which regulates the balance between oxidative stress and anti-oxidative stress systems, thereby antagonizing the fibrosis process.


Subject(s)
Hepatic Stellate Cells , Pyrazolones , Pyridones , Transforming Growth Factor beta1 , Rats , Animals , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/pharmacology , NF-E2-Related Factor 2/metabolism , Liver Cirrhosis/chemically induced , Oxidative Stress , Macrophages/metabolism , RNA, Messenger/metabolism
6.
J Cell Mol Med ; 28(7): e18191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494860

ABSTRACT

Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.


Subject(s)
Histones , Idiopathic Pulmonary Fibrosis , Humans , Histones/metabolism , Acetylglucosamine/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Lung/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
7.
Nanoscale ; 16(13): 6708-6719, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38488127

ABSTRACT

Hypertrophic scar (HS) is characterized by an abnormal fibroblast-myofibroblast transformation; non-apoptosis of fibroblasts; and redundant expression of TGF-ß1, VEGF, α-SMA, and collagen I/III. An HS affects patients' physical and psychological quality of life, leading to joint dysfunction and skin cancer. However, there is currently no satisfactory drug to treat this disorder. In this study, we constructed methylprednisolone sodium succinate (MPSS) encapsulated ZIF-90 (MPSS@ZIF-90) for the effective treatment of an HS. The encapsulation of MPSS in ZIF-90 can achieve the controllable drug release of MPSS and prolong its effective treatment time. MPSS@ZIF-90 enhanced the apoptosis of human hypertrophic scar fibroblasts and downregulated the overexpression of TGF-ß1, VEGF, α-SMA, and collagen I/III both in vitro and in vivo. The instant injection of MPSS@ZIF-90 effectively intervened with the formation of the HS after 28 days. On the contrary, MPSS@ZIF-90 greatly reduced the HS with two injections and 14 days of treatment after the HS was formed. This work provides evidence of effective intervention in the formation of an HS and the therapeutic effectiveness of MPSS@ZIF-90 with short treatment periods in vivo. It suggests that MPSS@ZIF-90 can be used as a biomedical option in the treatment of skin wounds and may reveal the potential molecular basis for promising future antifibrotic agents against scarring.


Subject(s)
Cicatrix, Hypertrophic , Metal-Organic Frameworks , Nanoparticles , Humans , Cicatrix, Hypertrophic/drug therapy , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Methylprednisolone Hemisuccinate/metabolism , Methylprednisolone Hemisuccinate/pharmacology , Methylprednisolone Hemisuccinate/therapeutic use , Quality of Life , Vascular Endothelial Growth Factor A/metabolism , Fibroblasts/metabolism , Collagen Type I
8.
DNA Cell Biol ; 43(5): 245-257, 2024 May.
Article in English | MEDLINE | ID: mdl-38489601

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of kidney epithelial cells, one of the most common tumors in the world. Transforming growth factor beta (TGFß)1 is a crucial factor that induces epithelial-mesenchymal transition (EMT) in cancer cells. microRNA-141-3p (miR-141-3p) is a microRNA that is considered a tumor suppressor. However, the role and mechanism of miR-141-3p in TGFß1-induced ccRCC cells are not fully understood. This study investigated the roles of miR-141-3p and its target gene in regulating EMT in ccRCC development. 786-0 and Caki-1cells were treated with TGFß1 to induce EMT. The levels of miR-141-3p and TGFß2 were determined by quantitative real-time polymerase chain reaction and Western blotting. The progression of EMT was evaluated by E-cadherin detection by immunofluorescence, and E-cadherin, N-cadherin, and vimentin detection by Western blotting. Furthermore, migration and invasion capacities were assessed using a Transwell system. The direct binding of miR-141-3p with the target gene TGFß2 was confirmed by dual luciferase reporter gene assay. Results indicated that TGFß1 treatment decreased the protein abundance of E-cadherin while increasing the protein expression of N-cadherin and vimentin, indicating TGFß1-induced EMT was constructed successfully. Moreover, TGFß1 treatment repressed the expression of miR-141-3p. miR-141-3p mimics reversed the effect of TGFß1 on the migration, invasion, and expression of E-cadherin, N-cadherin, and vimentin. The miR-141-3p directly binds with the 3' untranslated region of TGFß2 mRNA and suppresses its expression. Furthermore, TGFß2 overexpression abrogated the above changes regulated by miR-141-3p mimics. Taken together, miR-141-3p inhibited TGFß1-induced EMT by suppressing the migration and invasion of ccRCC cells via directly targeting TGFß2 gene expression.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , MicroRNAs , Transforming Growth Factor beta2 , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/drug effects , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Disease Progression
9.
Arch Oral Biol ; 162: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522213

ABSTRACT

OBJECTIVE: The periodontal ligament is a crucial part of the periodontium, and its regeneration is challenging. This study compares the effect of simultaneous and sequential use of FGF-2 and TGF-ß1 with FGF-2 and TGF-ß3 on the periodontal ligament stem cells (PDLSCs) teno/ligamentogenic differentiation. DESIGN: This study comprises ten different groups. A control group with only PDLSCs; FGF-2 group containing PDLSCs with a medium culture supplemented with FGF-2 (50 ng/mL). In other experimental groups, different concentrations (5 ng/mL or 10 ng/mL) of TGF-ß1&-ß3 simultaneously or sequentially were combined with FGF-2 on the cultured PDLSCs. TGF-ß was added to the medium after day 3 in the sequential groups. Methyl Thiazolyl Tetrazolium (MTT) assay on days 3, 5, and 7 and Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis after day 7 were conducted to investigate PLAP1, SCX, and COL3A1, RUNX2 genes. All experiments were conducted in a triplicate. The One-way and Two-way ANOVA with Tukey post hoc were utilized to analyze the results of the MTT and RT-qPCR tests, respectively. A p-value less than 0.05 is considered significant. RESULTS: The proliferation of cells on days 3, 5, and 7 was not significantly different among different experimental groups (P > 0.05). A higher expression of the PLAP1, SCX, and COL3A1 have been seen in groups with sequential use of growth factors; among these groups, the group using 5 ng/mL of TGF-ß3 led other groups with the most amount of significant upregulation in PLAP1(17.69 ± 1.11 fold; P < 0.0001), SCX (5.71 ± 0.38 fold; P < 0.0001), and COL1A3 (6.35 ± 0.39 fold; P < 0.0001) expression, compared to the control group. The expression of the RUNX2 decreased in all groups compared to the control group; this reduction was more in groups with sequential use of growth factors. CONCLUSION: The sequential use of growth factors can be more effective than simultaneous use in teno/ligamentogenic differentiation of PDLSCs. Moreover, treatment with 5 ng/mL TGF-ß3 after FGF-2 was more effective than TGF-ß1.


Subject(s)
Fibroblast Growth Factor 2 , Periodontal Ligament , Stem Cells , Transforming Growth Factor beta1 , Transforming Growth Factor beta3 , Cell Differentiation , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolism , Humans
10.
Connect Tissue Res ; 65(2): 161-169, 2024 03.
Article in English | MEDLINE | ID: mdl-38436275

ABSTRACT

OBJECTIVE: The COL1A1 proximal promoter contains two GC-rich regions and two inverted CCAAT boxes. The transcription factors Sp1 and CBF bind to the GC sequence at -122 to -115 bp and the inverted CCAAT box at -101 to -96 bp, respectively, and stimulate COL1A1 transcriptional activity. METHODS: To further define the regulatory mechanisms controlling COL1A1 expression by Sp1 and CBF, we introduced 2, 4, 6, or 8 thymidine nucleotides (T-tracts) at position -111 bp of the COL1A1 gene promoter to increase the physical distance between these two binding sites and examined in vitro the transcriptional activities of the resulting constructs and their response to TGF-ß1.`. RESULTS: Insertion of 2 or 4 nucleotides decreased COL1A1 promoter activity by up to 70%. Furthermore, the expected increase in COL1A1 transcription in response to TGF-ß1 was abolished. Computer modeling of the modified DNA structure indicated that increasing the physical distance between the Sp1 and CBF binding sites introduces a rotational change in the DNA topology that disrupts the alignment of Sp1 and CBF binding sites and likely alters protein-protein interactions among these transcription factors or their associated co-activators. CONCLUSION: The topology of the COL1A1 proximal promoter is crucial in determining the transcriptional activity of the gene and its response to the stimulatory effects of TGF-ß1.


Subject(s)
Transforming Growth Factor beta1 , Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/pharmacology , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , DNA , Nucleotides
11.
Discov Med ; 36(182): 604-612, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531801

ABSTRACT

BACKGROUND: The hedgehog signaling pathway exerts vital functions in regulating epithelial-to-mesenchymal transition (EMT) in renal interstitial fibrosis (RIF). It was reported that lncRNA-maternally expressed gene 3 (lncRNA Meg3) can regulate hepatic fibrosis by regulating the expression of smoothened (Smo) in the hedgehog signaling pathway. However, the specific role of lncRNA Meg3 in renal fibrosis resulting from unilateral ureteral obstruction (UUO) by regulating the hedgehog signaling pathway has not been reported. Hence, this research aimed to expound the effects of lncRNA Meg3 on renal fibrosis induced by UUO in rats via the hedgehog pathway. METHODS: Peripheral blood was collected from patients with chronic kidney disease (CKD, CKD group) and healthy volunteers (Normal group) at the same period. In addition, 6-week-old male Sprague-Dawley (SD) rats were divided to Sham, UUO, UUO+shRNA Negative control (shNC), and UUO+sh-Meg3 groups, and their kidney tissues and serum were gathered. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was employed for detecting the lncRNA Meg3 expression level in the serum of patients and renal tissue of rats; kits for testing levels of blood urea nitrogen (BUN), creatinine (Cr), hydroxyproline (HYP), and 24-hour urine protein (24-up) in rats of each group; hematoxylin and eosin (HE) staining and Masson staining for observing kidney tissue and renal fibrosis level in rats; western blot for measuring levels of collagen type III (Col III), α-Smooth muscle actin (α-SMA), fibronectin, E-cadherin, sonic hedgehog (Shh), patched (Ptch) protein, smoothened (Smo) protein and glioma-associated oncogene homolog 1 (Gli1) protein expression. RESULTS: LncRNA Meg3 was highly expressed in CKD patients and UUO rats (p < 0.01). In contrast to the UUO+shNC group, knocking down lncRNA Meg3 improved renal injury, relieved pathological renal lesions, and reduced kidney fibrosis and related protein levels. It inhibited the hedgehog pathway in kidney tissues of UUO rats (p < 0.05 and p < 0.01). CONCLUSIONS: LncRNA Meg3 can aggravate UUO-induced rat renal fibrosis by activating the hedgehog pathway.


Subject(s)
Kidney Diseases , RNA, Long Noncoding , Renal Insufficiency, Chronic , Ureteral Obstruction , Animals , Humans , Male , Rats , Fibrosis , Hedgehog Proteins/metabolism , Hedgehog Proteins/pharmacology , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/complications , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
12.
ACS Appl Mater Interfaces ; 16(9): 11336-11348, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407027

ABSTRACT

Articular cartilage injury is a common disease in clinical medicine. Because of its special physiological structure and lack of blood, lymph, and nerves, its ability to regenerate once damaged is very limited. In this study, we designed and synthesized a series of self- and coassembled cartilage-inducing functional peptide molecules and constructed a coassembled functional peptide hydrogel based on phenylboronic acid-o-dihydroxy "click chemistry" cross-linking to promote aggregation and signal transduction of mesenchymal stem cells (MSCs) in the early stage and differentiation toward cartilage, thereby promoting the repair of cartilage damage. Three functional peptide molecules were produced using solid-phase peptide synthesis technology, yielding a purity higher than 95%. DOPA-FEFEFEFEGHSNGLPL (DFP) and PBA-FKFKFKFKGHAVDI (BFP) were coassembled at near-neutral pH to form hydrogels (C Gels) based on phenylboronic acid-o-dihydroxy click chemistry cross-linking and effectively loaded transforming growth factor (TGF)-ß1 with a release period of up to 2 weeks. Furthermore, chondrocytes and bone marrow mesenchymal stem cells (BMSCs) were cocultured with functional peptide hydrogels, and the results displayed that the coassembled functional peptide hydrogel group C Gels significantly promoted the proliferation of chondrocytes and MSCs. The chondrocyte markers collagen type I, collagen type II, and glycosaminoglycan (GAG) in the coassembled functional peptide hydrogel group were significantly higher than those in the control group, indicating that it can induce the differentiation of MSCs into cartilage. In vivo experiments demonstrated that the size and thickness of the new cartilage in the compound gel group were the most beneficial to cartilage regeneration. These results indicated that peptide hydrogels are a promising therapeutic option for cartilage regeneration.


Subject(s)
Boronic Acids , Cartilage, Articular , Hydrogels , Hydrogels/chemistry , Cartilage, Articular/metabolism , Chondrocytes , Cell Differentiation , Peptides/pharmacology , Peptides/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Chondrogenesis , Tissue Engineering/methods
13.
Arch Oral Biol ; 160: 105910, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364717

ABSTRACT

OBJECTIVE: To determine whether celastrol, an inhibitor of the mechanosensitive transcriptional cofactor yes-associated protein-1 (YAP1), impairs the ability of TGFß1 to stimulate fibrogenic activity in human gingival fibroblast cell line. DESIGN: Human gingival fibroblasts were pre-treated with celastrol or DMSO followed by stimulation with or without TGFß1 (4 ng/ml). We then utilized bulk RNA sequencing (RNAseq), real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, cell proliferation assays to determine if celastrol impaired TGFß1-induced responses in a human gingival fibroblast cell line. RESULTS: Celastrol impaired the ability of TGFß1 to induce expression of the profibrotic marker and mediator CCN2. Bulk RNAseq analysis of gingival fibroblasts treated with TGFß1, in the presence or absence of celastrol, revealed that celastrol impaired the ability of TGFß1 to induce mRNA expression of genes within extracellular matrix, wound healing, focal adhesion and cytokine/Wnt signaling clusters. RT-PCR analysis of extracted RNAs confirmed that celastrol antagonized the ability of TGFß1 to induce expression of genes anticipated to contribute to fibrotic responses. Celastrol also reduced gingival fibroblast proliferation, and YAP1 nuclear localization in response to TGFß1. CONCLUSION: YAP1 inhibitors such as celastrol could be used to impair pro-fibrotic responses to TGFß1 in human gingival fibroblasts.


Subject(s)
Connective Tissue Growth Factor , Pentacyclic Triterpenes , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Connective Tissue Growth Factor/metabolism , YAP-Signaling Proteins , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Transcription Factors/metabolism , Fibroblasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cells, Cultured
14.
J Environ Sci (China) ; 141: 139-150, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38408815

ABSTRACT

Epidemiological evidence presents that dust storms are related to respiratory diseases, such as pulmonary fibrosis (PF). However, the precise underlying mechanisms of SPM-elicited adverse effects still need to be investigated. Epithelial-mesenchymal transition (EMT) process is a characteristic of PF. We discussed whether suspended particulate matter (SPM) is involved in EMT induction via transforming growth factor-ß1 (TGF-ß1). In this study, a detailed elemental analysis (55 elements), particle size, and morphology were determined. To investigate the toxicity of SPM, an MTT test was performed to detect cell viability. Next, A549 cells were exposed to selected concentrations of SPM (20 and 40 µg/mL) for single and repeated exposures. The DCFH-DA assay showed that exposure to SPM could produce reactive oxygen species (ROS). The ELISA assay demonstrated increased levels of interleukin-8 (IL-8) and TGF-ß1 in the supernatant. Western blot was used to detect the expression of proteins associated with EMT and the SMAD3-dependent pathway. Results of western blot demonstrated that E-cadherin was reduced, whereas p-SMAD3, vimentin, and α-smooth muscle actin were elevated. Our findings indicated that SPM triggered EMT by induction of oxidative stress, inflammation, and the TGF-ß1/SMAD3 pathway activation.


Subject(s)
Pulmonary Fibrosis , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Alveolar Epithelial Cells/metabolism , Reactive Oxygen Species/metabolism , Interleukin-8/metabolism , Particulate Matter/toxicity , Epithelial-Mesenchymal Transition , Pulmonary Fibrosis/metabolism , Epithelial Cells/metabolism , Smad3 Protein/metabolism
15.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38353379

ABSTRACT

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Subject(s)
Proto-Oncogene Proteins c-akt , Transforming Growth Factor beta1 , Humans , Rats , Animals , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinases/therapeutic use , Yin-Yang , Liver Cirrhosis/metabolism , Extracellular Matrix/metabolism , Inflammation/metabolism , Carbon Tetrachloride
16.
Neurochem Res ; 49(5): 1254-1267, 2024 May.
Article in English | MEDLINE | ID: mdl-38381246

ABSTRACT

Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-ß1 (TGF-ß1), SB431542 (a TGF-ß1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-ß1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-ß1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-ß1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.


Subject(s)
Benzamides , Bromodomain Containing Proteins , Casein Kinase II , Cicatrix , Dioxoles , Ischemic Stroke , Animals , Rats , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Cicatrix/metabolism , Cicatrix/pathology , Fibroblasts/metabolism , Fibrosis , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Nuclear Proteins , Phosphorylation , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Bromodomain Containing Proteins/drug effects , Bromodomain Containing Proteins/metabolism
17.
J Biomech Eng ; 146(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38421345

ABSTRACT

Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-ß1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-ß1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.


Subject(s)
Cardiovascular Diseases , Transforming Growth Factor beta1 , Mice , Female , Male , Animals , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Muscle, Smooth, Vascular , Aorta, Abdominal , Collagen/metabolism , Myocytes, Smooth Muscle/metabolism
18.
Acta Biomater ; 178: 50-67, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382832

ABSTRACT

Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-ß1) (OHA-DA-PAM/CMP/TGF-ß1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-ß1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-ß1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-ß1), was developed to facilitate AF regeneration. The sustained release of TGF-ß1 enhanced AF cell recruitment, while both TGF-ß1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-ß1 composite hydrogel for repairing AF defects.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Rats , Animals , Annulus Fibrosus/pathology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Hydrogels/chemistry , Adhesives/pharmacology , Delayed-Action Preparations/pharmacology , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Collagen/metabolism
19.
In Vitro Cell Dev Biol Anim ; 60(2): 183-194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409638

ABSTRACT

Mammary fibrosis in dairy cows is a chronic condition caused by mastitis, and can lead to serious culling of dairy cows resulting in huge economic losses in the dairy industry. MicroRNAs (miRNAs) exert an important role in regulating mammary gland health in dairy cows. This study investigated whether exosomal miRNAs in mammary epithelial cells can regulate the proliferation of bovine mammary fibroblasts (BMFBs) in mastitis. Liposome transfection technology was used to construct a cellular model of the overexpression and inhibition of miRNAs. The STarMir software, dual luciferase reporter gene test, real-time quantitative PCR (qRT-PCR), a Cell Counting Kit-8 (CCK-8), and a Western Blot and plate clone formation test were used to investigate the mechanism by which bta-miR-1296 regulates the proliferation of BMFBs. Target gene prediction results revealed that glutamate-ammonia ligase was a direct target gene by which bta-miR-1296 regulates cell proliferation. It was found that bta-miR-1296 significantly inhibited the proliferation of BMFBs. After BMFBs were transfected with a bta-miR-1296 mimic, mRNA expression in the extracellular matrix (ECM), α-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1α1) and collagen type III alpha 1 chain (COL3α1), and various cell growth factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-ß1 (TGF-ß1)) were down-regulated, and the expressions of α-SMA, COL1α1, COL3α1, phospho-extracellular regulated protein kinases, phospho-protein kinase B, TGF-ß1, and phospho-Smad family member3 proteins were inhibited. In conclusion, bta-miR-1296 can inhibit the proliferation of BMFBs and the synthesis of ECM in BMFBs, thus affecting the occurrence and development of mammary fibrosis in dairy cows and laying the foundation for further studies to clarify the regulatory mechanism of mammary fibrosis.


Subject(s)
Cattle Diseases , Cell Proliferation , Mastitis , MicroRNAs , Animals , Cattle , Female , Extracellular Matrix/metabolism , Fibroblasts , Fibrosis , Mammary Glands, Animal/metabolism , Mastitis/metabolism , Mastitis/veterinary , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta1/pharmacology , Vascular Endothelial Growth Factor A/metabolism
20.
J Oral Biosci ; 66(1): 68-75, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266705

ABSTRACT

OBJECTIVES: Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-ß1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-ß1, on osteogenic differentiation in MSCs. METHODS: UE7T-13 cells were treated with TGF-ß1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS: Co-treatment with TGF-ß1 and CTGF resulted in the suppression of TGF-ß1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-ß1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-ß1. Osteopontin expression was observed only after TGF-ß1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-ß1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS: CTGF enhances TGF-ß1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.


Subject(s)
Mesenchymal Stem Cells , Mitogen-Activated Protein Kinase 14 , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Transforming Growth Factor beta1/pharmacology , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/pharmacology , Osteogenesis , Cell Differentiation , Mesenchymal Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...