Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Neuroanat ; 118: 102023, 2021 12.
Article in English | MEDLINE | ID: mdl-34481914

ABSTRACT

Spontaneous bursting activity is already generated in the cochlea before hearing onset and represents an important condition of the functional and anatomical organization of auditory brainstem nuclei. In the present study, cochlea ablation induced changes were characterized in auditory brainstem nuclei indirectly innervated by auditory nerve fibers before hearing onset. In Meriones unguiculatus immunohistochemical labeling of calbindin-D28k (CB) and synaptophysin (SYN) were performed. The influence of cochlea-ablation on CB or SYN was analyzed by considering their differential immunoreaction during development. During the normal postnatal development, CB was first detected in somata of the medial nucleus of the trapezoid body (MNTB) at postnatal day (P)4. The immunoreaction increased gradually in parallel to the appearance of CB-immunoreactive terminal fields in distinct superior olivary complex (SOC) nuclei. Cochlear removal at P5 or P9 in animals with 24 and 48 h survival times resulted in an increase in somatic CB-labeling in the lesioned MNTB including terminal fields compared to the non-lesioned MNTB. SYN-immunolabeling was first detected at P0 and began to strongly encircle the MNTB neurons at P4. A further progression was observed with age. Cochlear ablation resulted in a significant reduction of SYN-labeled MNTB areas of P5-cochlea-ablated gerbils after 48 h post-lesion. In P9 cochlea-ablated gerbils, a redistribution of SYN-positive terminals was seen after 24 and 48 h. Taken together, the destruction of cochlea differentially influences CB- and SYN-labeling in the MNTB, which should be considered in association with different critical periods before hearing onset.


Subject(s)
Auditory Pathways/growth & development , Calbindins/metabolism , Cochlea/physiology , Hearing/physiology , Synaptophysin/metabolism , Trapezoid Body/growth & development , Aging/physiology , Animals , Auditory Pathways/drug effects , Cochlea/growth & development , Cochlear Nucleus , Gerbillinae , Immunohistochemistry , Neurons/physiology , Olivary Nucleus/growth & development , Presynaptic Terminals/physiology , Trapezoid Body/drug effects
2.
J Neurosci ; 39(36): 7037-7048, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31217330

ABSTRACT

The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Subject(s)
Cochlea/physiology , Evoked Potentials, Auditory, Brain Stem , Olivary Nucleus/physiology , Synaptic Potentials , Trapezoid Body/physiology , Animals , Auditory Perception , Cochlea/growth & development , Cochlea/metabolism , Female , Hair Cells, Auditory/cytology , Hair Cells, Auditory/physiology , Male , Mice , Motor Neurons/cytology , Motor Neurons/physiology , Olivary Nucleus/growth & development , Olivary Nucleus/metabolism , Receptors, Nicotinic/genetics , Trapezoid Body/growth & development , Trapezoid Body/metabolism
3.
Front Neural Circuits ; 8: 140, 2014.
Article in English | MEDLINE | ID: mdl-25505386

ABSTRACT

The vesicular glutamate transporter 3 (VGLUT3) is expressed at several locations not normally associated with glutamate release. Although the function of this protein has been generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the immature glycinergic projection between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) of auditory brainstem, the transient early expression of VGLUT3 is required for normal developmental refinement. It has however been unknown whether the primary function of VGLUT3 in development of these inhibitory synapses is to enable glutamate release or to promote loading of inhibitory neurotransmitter through vesicular synergy. Using tissue from young mice in which Vglut3 had been genetically deleted, we evaluated inhibitory neurotransmission in the MNTB-LSO pathway. Our results show, in contrast to what has been seen at adult synapses, that VGLUT3 expression has little or no effect on vesicular synergy at the immature glycinergic synapse of brainstem. This finding supports the model that the primary function of increased VGLUT3 expression in the immature auditory brainstem is to enable glutamate release in a developing inhibitory circuit.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Glycine/metabolism , Superior Olivary Complex/growth & development , Trapezoid Body/growth & development , gamma-Aminobutyric Acid/metabolism , Amino Acid Transport Systems, Acidic/genetics , Animals , Auditory Pathways/growth & development , Auditory Pathways/physiology , Electric Stimulation , Mice, Knockout , Miniature Postsynaptic Potentials/physiology , Neural Inhibition/physiology , Patch-Clamp Techniques , Superior Olivary Complex/physiology , Synapses/physiology , Tissue Culture Techniques , Trapezoid Body/physiology
4.
Front Neural Circuits ; 8: 109, 2014.
Article in English | MEDLINE | ID: mdl-25309335

ABSTRACT

Neurons in the superior olivary complex (SOC) integrate excitatory and inhibitory inputs to localize sounds in space. The majority of these inhibitory inputs have been thought to arise within the SOC from the medial nucleus of the trapezoid body (MNTB). However, recent work demonstrates that glycinergic innervation of the SOC persists in Egr2; En1(CKO) mice that lack MNTB neurons, suggesting that there are other sources of this innervation (Jalabi et al., 2013). To study the development of MNTB- and non-MNTB-derived glycinergic SOC innervation, we compared immunostaining patterns of glycine transporter 2 (GlyT2) at several postnatal ages in control and Egr2; En1(CKO) mice. GlyT2 immunostaining was present at birth (P0) in controls and reached adult levels by P7 in the superior paraolivary nucleus (SPN) and by P12 in the lateral superior olive (LSO). In Egr2; En1(CKO) mice, glycinergic innervation of the LSO developed at a similar rate but was delayed by one week in the SPN. Conversely, consistent reductions in the number of GlyT2(+) boutons located on LSO somata were seen at all ages in Egr2; En1(CKO) mice, while these numbers reached control levels in the SPN by adulthood. Dendritic localization of GlyT2+ boutons was unaltered in both the LSO and SPN of adult Egr2; En1(CKO) mice. On the postsynaptic side, adult Egr2; En1(CKO) mice had reduced glycine receptor α1 (GlyRα1) expression in the LSO but normal levels in the SPN. GlyRα2 was not expressed by LSO or SPN neurons in either genotype. These findings contribute important information for understanding the development of MNTB- and non-MNTB-derived glycinergic pathways to the mouse SOC.


Subject(s)
Glycine/metabolism , Neural Pathways/physiology , Neurons/physiology , Superior Olivary Complex/cytology , Superior Olivary Complex/growth & development , Trapezoid Body/cytology , Age Factors , Animals , Animals, Newborn , Dendrites/metabolism , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Female , Gene Expression Regulation, Developmental/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Receptors, Glycine/metabolism , Trapezoid Body/growth & development
5.
Neuroscience ; 278: 237-52, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25158674

ABSTRACT

Auditory brainstem networks facilitate sound source localization through binaural integration. A key component of this circuitry is the projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid body (MNTB), a relay nucleus that provides inhibition to the superior olivary complex. This strictly contralateral projection terminates in the large calyx of Held synapse. The formation of this pathway requires spatiotemporal coordination of cues that promote cell maturation, axon growth, and synaptogenesis. Here we have examined the emergence of distinct classes of glial cells, which are known to function in development and in response to injury. Immunofluorescence for several astrocyte markers revealed unique expression patterns. Aldehyde dehydrogenase 1 family member L1 (ALDH1L1) was expressed earliest in both nuclei, followed by S100ß, during the first postnatal week. Glial fibrillary acidic protein (GFAP) expression was seen in the second postnatal week. GFAP-positive cell bodies remained outside the boundaries of VCN and MNTB, with a limited number of labeled fibers penetrating into the margins of the nuclei. Oligodendrocyte transcription factor 2 (OLIG2) expression revealed the presence of oligodendrocytes in VCN and MNTB from birth until after hearing onset. In addition, ionized calcium binding adaptor molecule 1 (IBA1)-positive microglia were observed after the first postnatal week. Following hearing onset, all glial populations were found in MNTB. We then determined the distribution of glial cells following early (P2) unilateral cochlear removal, which results in formation of ectopic projections from the intact VCN to ipsilateral MNTB. We found that following perturbation, astrocytic markers showed expression near the ectopic ipsilateral calyx. Taken together, the developmental expression patterns are consistent with a role for glial cells in the maturation of the calyx of Held and suggest that these cells may have a similar role in maturation of lesion-induced connections.


Subject(s)
Cochlear Nucleus/cytology , Cochlear Nucleus/growth & development , Neuroglia/physiology , Trapezoid Body/cytology , Trapezoid Body/growth & development , Animals , Cell Count , Mice , Neural Pathways/cytology , Neural Pathways/growth & development , Neuroglia/metabolism
6.
Article in English | MEDLINE | ID: mdl-25120436

ABSTRACT

Neurons in the medial nucleus of the trapezoid body (MNTB) receive prominent excitatory input through the calyx of Held, a giant synapse that produces large and fast excitatory currents. MNTB neurons also receive inhibitory glycinergic inputs that are also large and fast, and match the calyceal excitation in terms of synaptic strength. GABAergic inputs provide additional inhibition to MNTB neurons. Inhibitory inputs to MNTB modify spiking of MNTB neurons both in-vitro and in-vivo, underscoring their importance. Surprisingly, the origin of the inhibitory inputs to MNTB has not been shown conclusively. We performed retrograde tracing, anterograde tracing, immunohistochemical experiments, and electrophysiological recordings to address this question. The results support the ventral nucleus of the trapezoid body (VNTB) as at least one major source of glycinergic input to MNTB. VNTB fibers enter the ipsilateral MNTB, travel along MNTB principal neurons and produce several bouton-like presynaptic terminals. Further, the contribution of GABA to the total inhibition declines during development, resulting in only a very minor fraction of GABAergic inhibition in adulthood, which is matched in time by a reduction in expression of a GABA synthetic enzyme in VNTB principal neurons.


Subject(s)
Nerve Net/physiology , Neural Inhibition/physiology , Neurons/physiology , Synapses/physiology , Trapezoid Body/anatomy & histology , Age Factors , Animals , Animals, Newborn , Cholera Toxin/metabolism , Electric Stimulation , Electroporation , Functional Laterality , Glutamate Decarboxylase/metabolism , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , In Vitro Techniques , Mice , Mice, Transgenic , Nerve Net/growth & development , Patch-Clamp Techniques , Rhodamines , Trapezoid Body/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...