Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(22): 12527-33, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23130847

ABSTRACT

Volatilization of pesticides from the bare soil surface is drastically reduced when the soil is under dry conditions (i.e., water content lower than the permanent wilting point). This effect is caused by the hydrated mineral surfaces that become available as additional sorption sites under dry conditions. However, established volatilization models do not explicitly consider the hydrated mineral surfaces as an independent sorption compartment and cannot correctly cover the moisture effect on volatilization. Here we integrated the existing mechanistic understanding of sorption of organic compounds to mineral surfaces and its dependence on the hydration status into a simple volatilization model. The resulting model was tested with reported experimental data for two herbicides from a wind tunnel experiment under various well-defined humidity conditions. The required equilibrium sorption coefficients of triallate and trifluralin to the mineral surfaces, K(min/air), at 60% relative humidity were fitted to experimental data and extrapolated to other humidity conditions. The model captures the general trend of the volatilization in different humidity scenarios. The results reveal that it is essential to have high quality input data for K(min/air), the available specific surface area (SSA), the penetration depth of the applied pesticide solution, and the humidity conditions in the soil. The model approach presented here in combination with an improved description of the humidity conditions under dry conditions can be integrated into existing volatilization models that already work well for humid conditions but still lack the mechanistically based description of the volatilization process under dry conditions.


Subject(s)
Environmental Monitoring/methods , Herbicides/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Triallate/chemistry , Trifluralin/chemistry , Adsorption , Humidity , Models, Theoretical , Volatilization
2.
Environ Sci Technol ; 40(10): 3223-8, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16749685

ABSTRACT

A field experiment was conducted to measure surface dissipation and volatilization of the herbicide triallate after application to bare soil using micrometeorological, chamber, and soil-loss methods. The volatilization rate was measured continuously for 6.5 days and the range in the daily peak values for the integrated horizontal flux method was from 32.4 (day 5) to 235.2 g ha(-1) d(-1) (day 1), for the theoretical profile shape method was from 31.5 to 213.0 g ha(-1) d(-1), and for the flux chamber was from 15.7 to 47.8 g ha(-1) d(-1). Soil samples were taken within 30 min after application and the measured mass of triallate was 8.75 kg ha(-1). The measured triallate mass in the soil at the end of the experiment was approximately 6 kg ha(-1). The triallate dissipation rate, obtained by soil sampling, was approximately 334 g ha(-1) d(-1) (98 g d(-1)) and the average rate of volatilization was 361 g ha(-1) d(-1). Soil sampling at the end of the experiment showed that approximately 31% (0.803 kg/2.56 kg) of the triallate mass was lost from the soil. Significant volatilization of triallate is possible when applied directly to the soil surface without incorporation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis , Soil/analysis , Air Movements , Air Pollutants/chemistry , Herbicides/chemistry , Temperature , Time Factors , Triallate/analysis , Triallate/chemistry , Volatilization , Wind
3.
Chemosphere ; 57(7): 579-86, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15488919

ABSTRACT

The reductive degradation of a chlorinated herbicide by iron powder was investigated at lab scale. The studied substrate was triallate (S-2,3,3-trichloroallyl di-isopropyl thiocarbamate) which contains a trichloroethylene moiety potentially reducible by zero-valent iron. Degradation reactions were carried out in batch, at 25 degrees C, in the absence of oxygen, by contacting electrolytic iron powder (size range: 20-50 microm) with a triallate aqueous solution (2.5 mgl(-1)). Herbicide decay, corresponding evolutions of TOC, TOX and chloride ion release were regularly monitored throughout the reactions. Furthermore, the main degradation by-products were identified by HPLC/MS. The results showed that, after 5 days, herbicide degradation extent was about 97% and that the reaction proceeded through the formation of a dechlorinated alkyne by-product (S-2-propinyl di-isopropyl thiocarbamate) resulting from the complete dechlorination of triallate. The subsequent reduction of such an alkyne intermediate gave S-allyl di-isopropyl thiocarbamate as main end by-product. The identified by-products suggested that dechlorination took place mainly via reductive beta-elimination. However, as traces of dichloroallyl di-isopropyl thiocarbamate were also detected, a role, although minor, was assigned even to hydrogenolysis in the overall dechlorination process.


Subject(s)
Herbicides/chemistry , Iron/chemistry , Triallate/chemistry , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Kinetics , Models, Chemical , Trichloroethylene/chemistry
4.
Chemosphere ; 42(3): 257-61, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11100925

ABSTRACT

The rate of volatilisation of the formulated herbicide triallate was investigated in a wind tunnel under controlled wind-speed conditions. An experimental set-up is described which allows the monitoring of wind speed (w.s.), soil-water content, and the temperature of air and soil. A system controlling soil-water content is also described. The influence of air velocity and soil texture was investigated measuring the cumulative volatilisation losses of triallate from soil. The herbicide volatilisation losses after application ranged from 40% at 3 m/s to 53% at 9 m/s for loam soil and from 60% at 3 m/s to 73% at 9 m/s for sandy soil.


Subject(s)
Herbicides/chemistry , Triallate/chemistry , Air , Air Pollutants/analysis , Air Pollutants/chemistry , Herbicides/analysis , Soil Pollutants/analysis , Time Factors , Triallate/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...