ABSTRACT
Bartonelloses represent a group of potentially fatal diseases associated with various clinical manifestations including endocarditis. Caused by bacteria belonging to the genus Bartonella, these microorganisms have a remarkable ability to infect mammals, and their transmission is commonly associated with hematophagous vectors such as fleas, lice, mosquitoes, and ticks. The aim of this study was to evaluate the occurrence of Bartonella sp. DNA in 81 triatomines of the species Triatoma sordida collected in the field in peridomiciliary areas of the Brazilian city of Seabra, located in the state of Bahia. Nested PCR was conducted targeting the ftsZ gene and real-time PCR targeting the gltA gene, both representing specific reactions for Bartonella henselae. Additionally, conventional PCR targeting kDNA was employed to evaluate the presence of Trypanosoma cruzi. Of the samples tested, 23/81 (28.39 %) bugs showed positive PCR for B. henselae. No sample showed positive PCR for T. cruzi. The high prevalence of triatomines with a positive PCR for B. henselae emphasizes the close relationship between these insects and the bacteria, indicating the need for further studies to investigate the vectorial potential of these kissing bugs.
Subject(s)
Bartonella henselae , DNA, Bacterial , Insect Vectors , Triatoma , Animals , Triatoma/microbiology , Triatoma/parasitology , Bartonella henselae/genetics , Bartonella henselae/isolation & purification , Insect Vectors/microbiology , DNA, Bacterial/analysis , Brazil , Polymerase Chain Reaction , Real-Time Polymerase Chain ReactionABSTRACT
The stridulation in the subfamily Triatominae has been identified as a means of communication between species, produced by the friction of the proboscis on the prosternal stridulatory groove. Despite its biological significance, this phenomenon remains understudied, with the signal's production seemingly contingent upon the morphology of the stridulatory groove. In this study, we examined the morphology of stridulatory grooves in females and males of five species and two subspecies of Mexican triatomines using morphometric and scanning electron microscopical analysis. Our findings reveal that all analyzed species exhibit triangular-shaped stridulatory grooves with parallel ridges covering the entire groove, bordered on each side, and covered with setae. Surprisingly, we observed noticeable differences in the number of ridges and inter-ridge distance between the species Triatoma lecticularia and Triatoma rubida (p < 0.001 and p < 0.009, respectively), indicating sexual dimorphism in this aspect, a phenomenon not previously reported in the morphology of this structure. Our findings shed light on the intricate morphology of the stridulatory groove in Mexican triatomines, suggesting potential implications for their behavior and intra-specific communication.
Subject(s)
Triatoma , Animals , Mexico , Triatoma/physiology , Triatoma/classification , Female , Male , Microscopy, Electron, Scanning , Animal CommunicationABSTRACT
Triatominae are recognized as vectors of Trypanosoma cruzi, a protozoan which is the etiological agent of Chagas disease. A specimen of Triatoma delpontei was found at Porto Murtinho in Mato Grosso do Sul State, Brazil. This is the first report of the occurrence of T. delpontei to the state of Mato Grosso do Sul, Brazil. With the present finding, the total number of triatomines recorded in Mato do Grosso do Sul reaches 17 species, while T. delpontei, previously recorded only from Rio Grande do Sul, is now recorded to a second Brazilian state. Based on the information available in the literature, a meticulous and organized compilation has been crafted, highlighting the cytogenetics differentiations of the species occurring in this state. This work emphasizes the importance of continuous research and surveillance on Triatominae, recognized as vectors of T. cruzi.
Subject(s)
Chagas Disease , Insect Vectors , Triatoma , Animals , Brazil , Triatoma/classification , Insect Vectors/classification , Chagas Disease/transmission , Trypanosoma cruziABSTRACT
BACKGROUND: The city of El Pedregal grew out of a desert, following an agricultural irrigation project in southern Peru. OBJECTIVES: To describe infestation patterns by triatomines and bed bugs and their relationship to migration and urbanization. METHODS: We conducted door-to-door entomological surveys for triatomines and bed bugs. We assessed spatial clustering of infestations and compared the year of construction of infested to un-infested households. To gain a better understanding of the context surrounding triatomine infestations, we conducted in-depth interviews with residents to explore their migration histories, including previous experiences with infestation. FINDINGS: We inspected 5,164 households for Triatoma infestans (known locally as the Chirimacha); 21 (0.41%) were infested. These were extremely spatially clustered (Ripley's K p-value < 0.001 at various spatial scales). Infested houses were older than controls (Wilcoxon rank-sum: W = 33; p = 0.02). We conducted bed bug specific inspections in 34 households; 23 of these were infested. These were spatially dispersed across El Pedregal, and no difference was observed in construction age between bed bug infested houses and control houses (W = 6.5, p = 0.07). MAIN CONCLUSIONS: The establishment of agribusiness companies in a desert area demanded a permanent work force, leading to the emergence of a new city. Migrant farmers, seeking work opportunities or escaping from adverse climatic events, arrived with few resources, and constructed their houses with precarious materials. T. infestans, a Chagas disease vector, was introduced to the city and colonized houses, but its dispersal was constrained by presence of vacant houses. We discuss how changes in the socioeconomic and agricultural landscape can increase vulnerability to vector-borne illnesses.
Subject(s)
Bedbugs , Chagas Disease , Insect Vectors , Triatoma , Animals , Peru , Chagas Disease/transmission , Insect Vectors/classification , Insect Vectors/parasitology , Insect Vectors/physiology , Humans , Triatoma/parasitology , Agricultural Irrigation , HousingABSTRACT
We assessed the diversity of triatomines, the rates of natural infection, and the discrete typing units (DTUs) of Trypanosoma cruzi isolated from them in two municipalities in the state of Sergipe, Brazil. Active searches for triatomines were conducted in the peridomicily and wild enviroments of 10 villages within the two municipalities. Triatomines were taxonomically identified and their feces were extracted using the abdominal compression method. Parasite detection was performed using optical microscopy. For Trypanosoma cruzi genotyping via PCR-FFLB, 151 samples of the subspecies Triatoma brasiliensis macromelasoma and Triatoma brasiliensis were isolated from both municipalities. In total, 505 triatomines were collected, with Triatoma brasiliensis macromelasoma being the most frequent species (58.81 %). Triatoma b. brasiliensis was the only species in both peridomestic and wild environments. Regarding the other species, T. pseudomaculata was found only in the peridomestic environment; and T. b. macromelasoma and Psammolestes tertius were found in the wild environment. Three Discrete Typing Units were identified: TcI (87.51 %) detected in T. b. brasiliensis and T. b. macromelasoma, TcI+TcIII (10.41 %) in T. b. macromelasoma, and TcI+Trypanosoma rangeli (2.08 %) in T. b. macromelasoma. It is concluded that T. b. macromelasoma is the species collected most frequently in the studied region and the one that presents the highest rates of natural infection, highlighting its epidemiological importance for the vectorial transmission of Chagas disease in Sergipe.
Subject(s)
Chagas Disease , Genotype , Insect Vectors , Triatoma , Trypanosoma cruzi , Animals , Brazil , Trypanosoma cruzi/genetics , Trypanosoma cruzi/classification , Trypanosoma cruzi/isolation & purification , Chagas Disease/parasitology , Chagas Disease/transmission , Chagas Disease/epidemiology , Triatoma/parasitology , Triatoma/classification , Insect Vectors/parasitology , Insect Vectors/classification , Feces/parasitology , HumansABSTRACT
Chagas disease is a key vector-borne disease. This illness is caused by Trypanosoma cruzi Chagas, which is transmitted by triatomine bugs. Largely, the control of this disease relies on reducing such contact. We optimized the performance of a box trap in laboratory conditions to capture four triatomine species: Triatoma pallidipennis (Stål), Triatoma infestans Klug, Triatoma phyllosoma (Burmeister), and Rhodnius prolixus Stål. We varied four components for a box trap: material, color, height, and bait attractants. All species were captured more in corrugated cardboard traps than in other trap material. Moreover, T. infestans and R. prolixus were also captured in plywood traps. T. pallidipennis preferred traps of 15 × 15 × 4 cm and 20 × 20 × 4 cm, while T. phyllosoma and T. infestans were more captured in traps of 10 × 10 × 4 cm, and 15 × 15 × 4 cm. Rhodnius prolixus was more captured to 10 × 10 × 4 cm traps. T. pallidipennis was trapped with traps of any color tested, T. phyllosoma and T. infestans were captured more in red and yellow traps, and R. prolixus was mostly captured in blue, violet, and yellow traps. Triatoma pallidipennis was captured at any height above the ground, while T. phyllosoma, T. infestans, and R. prolixus were mostly captured 50, 100, and 150 cm above the ground. Regarding the lure, T. pallidipennis was trapped with four aldehydes + lactic acid + ammonia; T. infestans and R. prolixus were trapped with a blend of four aldehydes + lactic acid, a blend of the four aldehydes + ammonia, and a blend of four aldehydes + lactic acid + ammonia. Triatoma phyllosoma was trapped with any lure tested. These results showed that the trap boxes offer an alternative method for controlling Chagas disease.
Subject(s)
Rhodnius , Triatoma , Animals , Rhodnius/parasitology , Chagas Disease/transmission , Chagas Disease/prevention & control , Insect Control/methods , Insect Control/instrumentation , Trypanosoma cruzi , Insect Vectors/physiologyABSTRACT
BACKGROUND: Domiciliation by Triatoma sordida is a public health concern in South America. This study aimed to evaluate the morphometric changes in the domestic and peridomestic populations of T. sordida. METHODS: Specimen hemelytra were mounted, digitized, and processed for geometric morphometric analyses. RESULTS: The specimens captured in houses were smaller than those captured in peridomiciles. A large size reduction effect was observed in female peridomicile populations compared with female house populations. CONCLUSIONS: T. sordida house populations were smaller than peridomestic populations. Wing geometric morphometry can be used as a tool to indicate T. sordida domiciliation.
Subject(s)
Insect Vectors , Triatoma , Wings, Animal , Triatoma/anatomy & histology , Triatoma/classification , Animals , Female , Male , Wings, Animal/anatomy & histology , Insect Vectors/anatomy & histology , Insect Vectors/classification , Chagas Disease/transmission , HumansABSTRACT
Triatomine bugs are vectors for the Trypanosoma cruzi Chagas parasites, the etiological agent for Chagas disease. This study evaluated 6 epidemiologically significant behaviors (development time, number of blood meals required for molting to the next instar, mortality rate, aggressiveness, feeding duration, and defecation delay) across 4 populations of Triatoma mexicana Herrich-Schaeffer (Heteroptera: Reduviidae), a major T. cruzi vector in Central Mexico. We collected triatomines from areas characterized by high (HP), medium (MP), medium-high (MHP), and low (LP) prevalence of human T. cruzi infection. The MHP population had the shortest development time, <290 days. Both the HP and MP populations required the most blood meals to molt to the next instar, with a median of 13. Mortality rates varied across all populations, ranging from 44% to 52%. All of the tested populations showed aggressive behavior during feeding. All populations shared similar feeding durations, with most exceeding 13 min and increasing with each instar. Quick defecation, during feeding, immediately after or less than 1 min after feeding, was observed in most nymphs (78%-90%) from the MP and MHP populations and adults (74%-92%) from HP, MP, and MHP populations. Though most parameters suggest a low potential for T. mexicana to transmit T. cruzi, unique feeding and defecation behaviors in 3 populations (excluding the LP group) could elevate their epidemiological importance. These population-specific differences may contribute to the varying prevalence rates of T. cruzi infection in areas where T. mexicana is found.
Subject(s)
Triatoma , Animals , Triatoma/physiology , Triatoma/growth & development , Triatoma/parasitology , Mexico/epidemiology , Life History Traits , Nymph/growth & development , Nymph/physiology , Female , Feeding Behavior , Male , Insect Vectors/physiology , Defecation , Chagas Disease/transmissionABSTRACT
BACKGROUND: The emergence of pyrethroid resistance has threatened the elimination of Triatoma infestans from the Gran Chaco ecoregion. We investigated the status and spatial distribution of house infestation with T. infestans and its main determinants in Castelli, a municipality of the Argentine Chaco with record levels of triatomine pyrethroid resistance, persistent infestation over 2005-2014, and limited or no control actions over 2015-2020. METHODS: We conducted a 2-year longitudinal survey to assess triatomine infestation by timed manual searches in a well-defined rural section of Castelli including 14 villages and 234 inhabited houses in 2018 (baseline) and 2020, collected housing and sociodemographic data by on-site inspection and a tailored questionnaire, and synthetized these data into three indices generated by multiple correspondence analysis. RESULTS: The overall prevalence of house infestation in 2018 (33.8%) and 2020 (31.6%) virtually matched the historical estimates for the period 2005-2014 (33.7%) under recurrent pyrethroid sprays. While mean peridomestic infestation remained the same (26.4-26.7%) between 2018 and 2020, domestic infestation slightly decreased from 12.2 to 8.3%. Key triatomine habitats were storerooms, domiciles, kitchens, and structures occupied by chickens. Local spatial analysis showed significant aggregation of infestation and bug abundance in five villages, four of which had very high pyrethroid resistance approximately over 2010-2013, suggesting persistent infestations over space-time. House bug abundance within the hotspots consistently exceeded the estimates recorded in other villages. Multiple regression analysis revealed that the presence and relative abundance of T. infestans in domiciles were strongly and negatively associated with indices for household preventive practices (pesticide use) and housing quality. Questionnaire-derived information showed extensive use of pyrethroids associated with livestock raising and concomitant spillover treatment of dogs and (peri) domestic premises. CONCLUSIONS: Triatoma infestans populations in an area with high pyrethroid resistance showed slow recovery and propagation rates despite limited or marginal control actions over a 5-year period. Consistent with these patterns, independent experiments confirmed the lower fitness of pyrethroid-resistant triatomines in Castelli compared with susceptible conspecifics. Targeting hotspots and pyrethroid-resistant foci with appropriate house modification measures and judicious application of alternative insecticides with adequate toxicity profiles are needed to suppress resistant triatomine populations and prevent their eventual regional spread.
Subject(s)
Chagas Disease , Insecticide Resistance , Insecticides , Pyrethrins , Triatoma , Animals , Triatoma/drug effects , Triatoma/physiology , Pyrethrins/pharmacology , Argentina , Insecticides/pharmacology , Chagas Disease/transmission , Chagas Disease/epidemiology , Humans , Longitudinal Studies , Insect Vectors/drug effects , Insect Vectors/physiology , Housing , Ecosystem , Insect ControlABSTRACT
Insecticide resistance is considered a barrier to chemical control of Triatoma infestans, the main vector of Chagas disease in the Southern Cone of South America. Although initiatives to reduce the incidence of the disease in the region have integrated different strategies, they have mainly relied on vector elimination using pyrethroid insecticides such as deltamethrin. Reports of pyrethroid resistance in connection with T. infestans control failures first emerged in northern Argentina and southern Bolivia. Recently, a mosaic pyrethroid-resistant focus has been described in the center of the Argentine Gran Chaco (Department of General Güemes, Chaco Province), characterized by the presence of susceptible and very highly resistant populations in the same area. The involvement of different resistance mechanisms has been proposed, together with the contribution of environmental variables that promote the toxicological heterogeneity described. In the endemic zone of Argentina, however, new questions arise: Are there any other clusters of resistance? Is there a relationship between the distribution of resistance and environmental variables (as has been observed at smaller scale)? We studied toxicological data from insects collected and analyzed at 224 localities between 2010 and 2020 as part of the resistance monitoring conducted by the Chagas National Program. The sites were classified according to the survival rate of insects exposed to a discriminant dose of deltamethrin: 0-0.19 were considered susceptible, 0.2-0.79 low-resistance, and 0.8-1 high-resistance. Localities were georeferenced to describe the spatial distribution of resistance and to identify environmental variables (demographics, land use, urbanization, connectivity, and climate) potentially associated with resistance. We used Generalized Linear Models (GLMs) to examine the association between resistance and environmental predictors, selecting error distributions based on the response variable definition. For the entire period, 197 susceptible localities were distributed across the endemic zone. Localities with different survival rates were found throughout the area; 9 high-resistance localities circled the two previously identified resistant foci, and 18 low-resistance in 6 provinces, highlighting their relevance for control planning. Precipitation variables were linked to resistance in all the GLMs evaluated. Presence/absence models were the most accurate, with precipitation, distance from the capital city, and land use contributing to the distribution of resistance. This information could be valuable for improving T. infestans control strategies in future scenarios characterized by unpredictable changes in land use and precipitation.
Subject(s)
Chagas Disease , Insecticide Resistance , Insecticides , Pyrethrins , Triatoma , Triatoma/drug effects , Argentina , Pyrethrins/pharmacology , Animals , Insecticides/pharmacology , Chagas Disease/transmission , Chagas Disease/epidemiology , Insect Vectors/drug effects , Nitriles/pharmacologyABSTRACT
In Triatoma infestans it was observed pyrethroid resistance attributed in part to an elevated oxidative metabolism mediated by cytochromes P450. The nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays a crucial role in catalysing the electron transfer from NADPH to all cytochrome P450s. The daily variations in the expression of CPR gene and a P450 gene (CYP4EM7), both associated with insecticide resistance, suggested that their expressions would be under the endogenous clock control. To clarify the involvement of the clock in orchestration of the daily fluctuations in CPR and CYP4M7 genes expression, it was proposed to investigate the effect of silencing the clock gene period (per) by RNA interference (RNAi). The results obtained allowed to establish that the silencing of per gene was influenced by intake schemes used in the interference protocols. The silencing of per gene in T. infestans reduced its expression at all the time points analysed and abolished the characteristic rhythm in the transcriptional expression of per mRNA. The effect of the per gene silencing in the expression profiles at the transcriptional level of CPR and CYP4EM7 genes showed the loss of rhythmicity and demonstrated the biological clock involvement in the regulation of t heir expression.
Subject(s)
Circadian Rhythm , Insecticide Resistance , RNA Interference , Triatoma , Animals , Triatoma/genetics , Triatoma/drug effects , Insecticide Resistance/genetics , Circadian Rhythm/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Regulation/drug effects , Cytochrome P-450 Enzyme System/genetics , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Disease VectorsABSTRACT
The study focuses on identifying and understanding the ecological dynamics of Triatoma breyeri in Bolivia. Morphological identification and molecular analysis using gene fragments (COI, CytB and 16S) confirms T. breyeri's presence and its relation to other species. The species has been consistently found in the Estancia-Mataral-La Palma region since 2010 but has not spread to other regions in Bolivia. The region of occurrence is a small characteristic dry inter-Andean valley. A MaxEnt model suggests part of the Bolivian Montane Dry Forest ecoregion serves as a unique habitat within its range. The infrequent presence in Bolivia and the distance from its main range in Argentina suggest recent accidental introduction, possibly through human transport. Further research is needed to comprehend its persistence in this small area of Bolivia.
Subject(s)
Triatoma , Animals , Bolivia , Triatoma/genetics , Triatoma/physiology , Ecosystem , PhylogenyABSTRACT
Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease in the American continent. Here, we have tested a loop-mediated isothermal amplification (LAMP) test for a direct detection of T. cruzi in feces of Triatoma infestans, the main vector of this parasite in the Southern Cone of America. The analytical evaluation showed positive results with samples of triatomine feces artificially inoculated with DNA from strains of T. cruzi corresponding to each Discrete Typing Units (I-VI), with a sensitivity of up to one parasite per reaction. Conversely, the reaction yielded negative results when tested with DNA from Trypanosoma rangeli and other phylogenetically related and unrelated organisms. In triatomines captured under real field conditions (from urban households), and defined as positive or negative for T. cruzi using the reference microscopy technique, the LAMP test achieved a concordance of 100 %. Our results demonstrate that this LAMP reaction exhibits excellent analytical specificity and sensitivity without interference from the fecal matrix, since all the reactions were conducted without purification steps. This simple molecular diagnostic technique can be easily used by vector control agencies under field conditions.
Subject(s)
Chagas Disease , Feces , Insect Vectors , Nucleic Acid Amplification Techniques , Triatoma , Trypanosoma cruzi , Animals , Feces/parasitology , Trypanosoma cruzi/isolation & purification , Chagas Disease/parasitology , Chagas Disease/diagnosis , Triatoma/parasitology , Nucleic Acid Amplification Techniques/methods , Insect Vectors/parasitology , Sensitivity and Specificity , Molecular Diagnostic TechniquesABSTRACT
BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.
Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effectsABSTRACT
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi (Chagas, 1909). One of the primary vectors of T. cruzi in South America is Triatoma infestans (Klug, 1834). This triatomine species is distributed across a huge latitudinal gradient, inhabiting domiciliary , peridomiciliary , and wild environments. Its wide geographic distribution provides an excellent opportunity to study the relationships between environmental gradients and intraspecific morphological variation. In this study, we investigated variations in wing size and shape in T. infestans across six ecoregions. We aimed to address the following questions: How do wing size and shape vary on a regional scale, does morphological variation follow specific patterns along an environmental or latitudinal gradient, and what environmental factors might contribute to wing variation? Geometric morphometric methods were applied to the wings of 162 females belonging to 21 T. infestans populations, 13 from Argentina (n = 105), 5 from Bolivia (n = 42), and 3 from Paraguay (n = 15). A comparison of wing centroid size across the 21 populations showed significant differences. Canonical Variate Analysis (CVA) revealed significant differences in wing shape between the populations from Argentina, Bolivia, and Paraguay, although there was a considerable overlap, especially among the Argentinian populations. Well-structured populations were observed for the Bolivian and Paraguayan groups. Two analyses were performed to assess the association between wing size and shape, geographic and climatic variables: multiple linear regression analysis (MRA) for size and Partial Least Squares (PLS) regression for shape. The MRA showed a significant general model fit. Six temperature-related variables, one precipitation-related variable, and the latitude showed significant associations with wing size. The PLS analysis revealed a significant correlation between wing shape with latitude, longitude, temperature-related, and rainfall-related variables. Wing size and shape in T. infestans populations varied across geographic distribution. Our findings demonstrate that geographic and climatic variables significantly influence T. infestans wing morphology.
Subject(s)
Triatoma , Wings, Animal , Animals , Triatoma/anatomy & histology , Triatoma/physiology , Triatoma/growth & development , Triatoma/classification , Wings, Animal/anatomy & histology , Female , Argentina , Bolivia , Paraguay , Chagas Disease/transmissionABSTRACT
Chagas disease is a zoonosis caused by the protozoan Trypanosoma cruzi and transmitted through the feces of triatomines, mainly in Latin America. Since the 1950s, chemical insecticides have been the primary method for controlling these triatomines, yet resistance has emerged, prompting the exploration of alternative approaches. The objective of this research was to test the capacity of the entomopathogenic nematodes Heterorhabditis indica and its symbiotic bacteria Photorhabdus luminescens, to produce mortality of Triatoma dimidiata a key vector of T. cruzi in Mexico under laboratory conditions. Two bioassays were conducted. In the first bioassay, the experimental unit was a 250 ml plastic jar with 100 g of sterile soil and three adult T. dimidiata. Three nematode quantities were tested: 2250, 4500, and 9000 nematodes per 100 g of sterile soil (n/100 g) per jar, with 3 replicates for each concentration and 1 control per concentration (1 jar with 100 g of sterile soil and 3 T. dimidiata without nematodes). The experimental unit of the second bioassay was a 500 ml plastic jar with 100 g of sterile soil and 4 adult T. dimidiata. This bioassay included 5, 50, 500, and 5000 n/100 g of sterile soil per jar, with 3 replicates of each quantity and 1 control per quantity. Data were analyzed using Kaplan-Meyer survival analysis. Electron microscopy was used to assess the presence of nematodes and tissue damage in T. dimidiata. The results of the first bioassay demonstrated that the nematode induced an accumulated average mortality ranging from 55.5 % (2250 n/100 g) to 100 % (4500 and 9000 n/100 g) within 144 h. In the second bioassay, the 5000 n/100 g concentration yielded 87.5 % mortality at 86 h, but a concentration as small as 500 n/100 g caused 75 % mortality from 84 h onwards. Survival analysis indicated higher T. dimidiata mortality with increased nematode quantities, with significant differences between the 4500, 5000, and 9000 n/100 g and controls. Electron microscopy revealed the presence of nematodes and its presumably symbiotic bacteria in the digestive system of T. dimidiata. Based on these analyses, we assert that the H. indica and P. luminescens complex causes mortality in adult T. dimidiata under laboratory conditions.
Subject(s)
Chagas Disease , Photorhabdus , Triatoma , Animals , Chagas Disease/parasitology , Chagas Disease/prevention & control , Triatoma/parasitology , Mexico , Survival Analysis , Rhabditida/physiology , Biological Control Agents , Pest Control, Biological/methods , Rhabditoidea/physiology , Disease Vectors , Trypanosoma cruzi/physiologyABSTRACT
BACKGROUND: Chagas disease, caused by Trypanosoma cruzi, is still a public health problem in Latin America and in the Southern Cone countries, where Triatoma infestans is the main vector. We evaluated the relationships among the density of green vegetation around rural houses, sociodemographic characteristics, and domestic (re)infestation with T. infestans while accounting for their spatial dependence in the municipality of Pampa del Indio between 2007 and 2016. METHODS: The study comprised sociodemographic and ecological variables from 734 rural houses with no missing data. Green vegetation density surrounding houses was estimated by the normalized difference vegetation index (NDVI). We used a hierarchical Bayesian logistic regression composed of fixed effects and spatial random effects to estimate domestic infestation risk and quantile regressions to evaluate the association between surrounding NDVI and selected sociodemographic variables. RESULTS: Qom ethnicity and the number of poultry were negatively associated with surrounding NDVI, whereas overcrowding was positively associated with surrounding NDVI. Hierarchical Bayesian models identified that domestic infestation was positively associated with surrounding NDVI, suitable walls for triatomines, and overcrowding over both intervention periods. Preintervention domestic infestation also was positively associated with Qom ethnicity. Models with spatial random effects performed better than models without spatial effects. The former identified geographic areas with a domestic infestation risk not accounted for by fixed-effect variables. CONCLUSIONS: Domestic infestation with T. infestans was associated with the density of green vegetation surrounding rural houses and social vulnerability over a decade of sustained vector control interventions. High density of green vegetation surrounding rural houses was associated with households with more vulnerable social conditions. Evaluation of domestic infestation risk should simultaneously consider social, landscape and spatial effects to control for their mutual dependency. Hierarchical Bayesian models provided a proficient methodology to identify areas for targeted triatomine and disease surveillance and control.
Subject(s)
Chagas Disease , Insect Vectors , Triatoma , Triatoma/physiology , Triatoma/parasitology , Animals , Chagas Disease/transmission , Chagas Disease/epidemiology , Humans , Argentina/epidemiology , Insect Vectors/physiology , Bayes Theorem , Rural Population , Trypanosoma cruzi , Housing , Socioeconomic Factors , Risk FactorsABSTRACT
In Mexico, more than 30 species of triatomines, vectors of Trypanosoma cruzi, the etiological agent of Chagas disease, have been collected. Among them, Triatoma pallidipennis stands out for its wide geographical distribution, high infection rates and domiciliation. Local populations of triatomines have shown notable biological and behavioral differences, influencing their vectorial capacity. Six behaviors of epidemiological importance, namely, egg-to-adult development time, median number of blood meals to molt to the next instar, instar mortality rates, aggressiveness (delay in initiating a meal), feeding time and defecation delay, were evaluated in this study for six populations of T. pallidipennis. Those populations from central, western and southern Mexico were arranged by pairs with a combination of high (HP) and medium (MP) of Trypanosoma cruzi human infection and most (MFC) and low (CLF) collection frequencies: HP/MFC, HP/CLF, and MP/MFC. The development time was longer in HP/CLF populations (> 220 days). The median number of blood meals to molt was similar (7-9) among five of the six populations. Mortality rates were greater (> 40 %) in HP/CLF and one MP/MFC populations. All studied populations were aggressive but exhibited slight differences among them. The feeding times were similar (≥ 10 min) for all studied populations within instars, increasing as instars progressed. An irregular pattern was observed in defecation behaviors, with marked differences even between the two populations from the same pair. High percentages of young (57.3-87.9 %), and old (62.4-89.8 %) nymphs, of female (61.1-97.3 %) and male (65.7-93.1 %) of all the studied populations defecated quickly (while eating, immediately after finishing feeding or < 1 min postfeeding). Our results indicate that the HP/MFC populations are potentially highly effective vectors for transmitting T. cruzi infections, while HP/CLF populations are potentially less effective vectors T. cruzi infections.
Subject(s)
Chagas Disease , Insect Vectors , Triatoma , Trypanosoma cruzi , Animals , Triatoma/parasitology , Triatoma/physiology , Chagas Disease/transmission , Chagas Disease/epidemiology , Chagas Disease/parasitology , Mexico/epidemiology , Female , Trypanosoma cruzi/physiology , Insect Vectors/parasitology , Insect Vectors/physiology , Humans , Male , Feeding Behavior , Prevalence , Defecation/physiologyABSTRACT
Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.