Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.964
Filter
1.
J Enzyme Inhib Med Chem ; 39(1): 2351861, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847308

ABSTRACT

In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Phthalimides , SARS-CoV-2 , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Phthalimides/chemistry , Phthalimides/pharmacology , Phthalimides/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Vero Cells , Chlorocebus aethiops , SARS-CoV-2/drug effects , Animals , Microbial Sensitivity Tests , Structure-Activity Relationship , Molecular Structure , Humans , Dose-Response Relationship, Drug , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Models, Molecular
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731811

ABSTRACT

Recently studied N-(ß-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(ß-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated ß-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3-4 µM obtained for 1- and 2-naphthyl-substituted N-(ß-d-glucopyranosyl)-imidazolecarboxamides, 2b-c. The predicted protein-ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed.


Subject(s)
Enzyme Inhibitors , Glycogen Phosphorylase , Imidazoles , Molecular Docking Simulation , Kinetics , Rabbits , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Glycogen Phosphorylase/chemistry , Imidazoles/chemistry , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Computer Simulation , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis
3.
J Med Chem ; 67(10): 7788-7824, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38699796

ABSTRACT

Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.


Subject(s)
Chemistry, Pharmaceutical , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Chemistry, Pharmaceutical/methods , Humans , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Solubility , Isomerism , Animals
4.
Bioorg Chem ; 148: 107457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763000

ABSTRACT

Based on the significant biological activities and the remarkable physical and chemical properties of 1H-1,2,3-triazole pharmacophore, we herein adopted the strategy of click chemistry to combine the triazole fragment and the unique scaffold of 25-OCH3-PPD (AD-1) to design a series of potent compounds inducing apoptosis and DNA damage. The anti-proliferative effect was verified by MTT assay and colony formation assay. DNA double-stand breaks (DSBs) were obtained by observing the nuclear focus formation and the protein expression of γ-H2AX. Cell cycle arrest was evaluated by the cycle-related proteins such as CDK2, CDK4, CDK6, Cyclin D1 and P21. Apoptosis was assessed by flow cytometry, mitochondrial membrane potential (MMP) detection and the expression of apoptosis-related proteins. Reactive oxygen species (ROS) generation was measured with 2', 7'-dichlorofluorescein diacetate (DCFH-DA) staining. According to SAR analysis, the most potent compound 6a exhibited great inhibitory effect against A549 cells, which IC50 value of 2.84 ± 0.68 µM. Furthermore, 6a remarkably induced DNA damage, cell cycle arrest and apoptosis in A549 cells. 6a treatment increased the levels of ROS. Network pharmacology and molecular docking predicted the potential signaling pathways and ligand-receptor interactions, and the results of western blotting showed that 6a inhibited the PI3K/Akt/Bcl-2 signaling pathway by decreasing PI3K and Bcl-2 and total level of Akt expression, while Bax and Cyt c were increasing in 6a-treated A549 cells. As mentioned above, 6a has a potent inhibitory effect in A549 cells through induction of DNA damage, apoptosis via ROS generation and modulation of PI3K/Akt/Bcl-2 signaling pathway.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , DNA Damage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Reactive Oxygen Species , Triazoles , Humans , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Apoptosis/drug effects , Molecular Structure , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Molecular Docking Simulation , A549 Cells
5.
Bioorg Med Chem Lett ; 108: 129800, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763480

ABSTRACT

In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 µM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.


Subject(s)
Antimalarials , Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Plasmodium falciparum , Quinazolinones , Triazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Mycobacterium tuberculosis/drug effects , Plasmodium falciparum/drug effects , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Mice , Structure-Activity Relationship , Animals , Molecular Structure , Dose-Response Relationship, Drug , RAW 264.7 Cells
6.
Bioorg Chem ; 148: 107430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728909

ABSTRACT

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates many cytokine and growth factor signals. Tyrosine kinase 2 (TYK2), one of the members of this pathway and the first described member of the JAK family. TYK2 associates with inflammatory and autoimmune diseases, cancer and diabetes. Here, we present novel compounds as selective inhibitors of the canonical kinase domain of TYK2 enzyme. These compounds were rationally designed and synthesized with appropriate reactions. Molecular modeling techniques were used to design and optimize the candidates for TYK2 inhibition and to determine the estimated binding orientations of them inside JAKs. Designed compounds potently inhibited TYK2 with good selectivity against other JAKs as determined by in vitro assays. In order to verify its selectivity properties, compound A8 was tested against 58 human kinases (KinaseProfiler™ assay). The effects of the selected seven compounds on the protein levels of members of the JAK/STAT family were also detected in THP-1 monocytes although the basal level of these proteins is poorly detectable. Therefore, their expression was induced by lipopolysaccharide treatment and compounds A8, A15, A18, and A19 were found to be potent inhibitors of the TYK2 enzyme, (9.7 nM, 6.0 nM, 5.0 nM and 10.3 nM, respectively), and have high selectivity index for the JAK1, JAK2, and JAK3 enzymes. These findings suggest that triazolo[1,5-a]pyrimidinone derivatives may be lead compounds for developing potent TYK2-selective inhibitors targeting enzymes' active site.


Subject(s)
Drug Design , Protein Kinase Inhibitors , TYK2 Kinase , Humans , Dose-Response Relationship, Drug , Drug Discovery , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/metabolism , Janus Kinases/chemistry , Janus Kinases/metabolism
7.
Bioorg Chem ; 148: 107437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749114

ABSTRACT

In our study, a series of quinazoline-1,2,3-triazole hybrids (14a-r) have been designed and synthesized as multi-target EGFR, VEGFR-2, and Topo II inhibitors. All synthesized hybrids were assessed for their anticancer capacity. MTT assay revealed that compounds 14a, 14d, and 14k were the most potent hybrids against four cancer cell lines, HeLa, HePG-2, MCF-7, and HCT-116 at low micromolar range while exhibiting good selectivity against normal cell line WI-38. Sequentially, the three compounds were evaluated for EGFR, VEGFR-2, and Topo II inhibition. Compound 14d was moderate EGFR inhibitor (IC50 0.103 µM) compared to Erlotinib (IC50 0.049 µM), good VEGFR-2 inhibitor (IC50 0.069 µM) compared to Sorafenib (IC50 0.031 µM), and stronger Topo II inhibitor (IC50 19.74 µM) compared to Etoposide (IC50 34.19 µM) by about 1.7 folds. Compounds 14k and 14a represented strong inhibitory activity against Topo II with (IC50 31.02 µM and 56.3 µM) respectively, compared to Etoposide. Additionally, cell cycle analysis and apoptotic induction were performed. Compound 14d arrested the cell cycle on HeLa at G2/M phase by 17.53 % and enhanced apoptosis by 44.08 %. A molecular Docking study was implemented on the three hybrids and showed proper binding interaction with EGFR, VEGFR-2, and Topo II active sites.


Subject(s)
Antineoplastic Agents , Cell Proliferation , DNA Topoisomerases, Type II , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Molecular Docking Simulation , Triazoles , Vascular Endothelial Growth Factor Receptor-2 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Structure-Activity Relationship , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Cell Proliferation/drug effects , Molecular Structure , DNA Topoisomerases, Type II/metabolism , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis
8.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771934

ABSTRACT

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Subject(s)
Carica , Colletotrichum , Eugenol , Fungicides, Industrial , Molecular Docking Simulation , Plant Diseases , Triazoles , Colletotrichum/drug effects , Eugenol/pharmacology , Eugenol/chemistry , Carica/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Plant Diseases/microbiology , Plant Diseases/prevention & control , Structure-Activity Relationship , Drug Design , Fungal Proteins/chemistry , Molecular Structure
9.
J Agric Food Chem ; 72(22): 12415-12424, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779960

ABSTRACT

A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 µg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 µg/mL) compared to the positive controls hymexazol (EC50 = 12.80 µg/mL) and tebuconazole (EC50 = 0.87 µg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 µg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.


Subject(s)
Drug Design , Fungicides, Industrial , Molecular Docking Simulation , Plant Diseases , Quantitative Structure-Activity Relationship , Rhizoctonia , Triazoles , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Plant Diseases/microbiology , Molecular Structure , Hydrazines/chemistry , Hydrazines/pharmacology
10.
Bioorg Med Chem ; 107: 117761, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38795571

ABSTRACT

Small-molecule glucagon-like peptide-1 receptor (GLP-1R) agonists are recognized as promising therapeutics for type 2 diabetes mellitus (T2DM) and obesity. Danuglipron, an investigational small-molecule agonist, has demonstrated high efficacy in clinical trials. However, further development of danuglipron is challenged by a high rate of gastrointestinal adverse events. While these effects may be target-related, it is plausible that the carboxylic acid group present in danuglipron may also play a role in these outcomes by affecting the pharmacokinetic properties and dosing regimen of danuglipron, as well as by exerting direct gastrointestinal irritation. Therefore, this study aims to replace the problematic carboxylic acid group by exploring the internal binding cavity of danuglipron bound to GLP-1R using a water molecule displacement strategy. A series of novel triazole-containing compounds have been designed and synthesized during the structure-activity relationship (SAR) study. These efforts resulted in the discovery of compound 2j with high potency (EC50 = 0.065 nM). Moreover, docking simulations revealed that compound 2j directly interacts with the residue Glu387 within the internal cavity of GLP-1R, effectively displacing the structural water previously bound to Glu387. Subsequent in vitro and in vivo experiments demonstrated that compound 2j had comparable efficacy to danuglipron in enhancing insulin secretion and improving glycemic control. Collectively, this study offers a practicable approach for the discovery of novel small-molecule GLP-1R agonists based on danuglipron, and compound 2j may serve as a lead compound to further exploit the unoccupied internal cavity of danuglipron's binding pocket.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Structure-Activity Relationship , Humans , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Mice , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Dose-Response Relationship, Drug , Male , Molecular Docking Simulation , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Glucagon-Like Peptide-1 Receptor Agonists
11.
Sci Rep ; 14(1): 9223, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649732

ABSTRACT

A series of 20 novel gefitinib derivatives incorporating the 1,2,3-triazole moiety were designed and synthesized. The synthesized compounds were evaluated for their potential anticancer activity against EGFR wild-type human non-small cell lung cancer cells (NCI-H1299, A549) and human lung adenocarcinoma cells (NCI-H1437) as non-small cell lung cancer. In comparison to gefitinib, Initial biological assessments revealed that several compounds exhibited potent anti-proliferative activity against these cancer cell lines. Notably, compounds 7a and 7j demonstrated the most pronounced effects, with an IC50 value of 3.94 ± 0.17 µmol L-1 (NCI-H1299), 3.16 ± 0.11 µmol L-1 (A549), and 1.83 ± 0.13 µmol L-1 (NCI-H1437) for 7a, and an IC50 value of 3.84 ± 0.22 µmol L-1 (NCI-H1299), 3.86 ± 0.38 µmol L-1 (A549), and 1.69 ± 0.25 µmol L-1 (NCI-H1437) for 7j. These two compounds could inhibit the colony formation and migration ability of H1299 cells, and induce apoptosis in H1299 cells. Acute toxicity experiments on mice demonstrated that compound 7a exhibited low toxicity in mice. Based on these results, it is proposed that 7a and 7j could potentially be developed as novel drugs for the treatment of lung cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Gefitinib , Lung Neoplasms , Triazoles , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Gefitinib/pharmacology , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Apoptosis/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Xenograft Model Antitumor Assays , A549 Cells , Structure-Activity Relationship
12.
Bioorg Med Chem ; 105: 117727, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38669736

ABSTRACT

The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) plays a key role in the development of prostate cancer. In this work, seventeen derivatives of the natural diterpene totarol were prepared by copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of the correspondingO-propargylated totarol with aryl or alkyl azides and screened for their inhibitory activities toward hPIP5K1α. Five compounds, 3a, 3e, 3f, 3i, and 3r, strongly inhibited the enzyme activity with IC50 values of 1.44, 0.46, 1.02, 0.79, and 3.65 µM, respectively, with the most potent inhibitor 3e 13-[(1-(3-nitrophenyl)triazol-4yl)methoxy]-totara-8,11,13-triene). These compounds were evaluated on their antiproliferative effects in a panel of prostate cancer cell lines. Compound 3r inhibited the proliferation of LNCaP, PC3 and DU145 cells at 20 µM, strongly, but also has strong cytotoxic effects on all tested cells.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Phosphotransferases (Alcohol Group Acceptor) , Triazoles , Humans , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Molecular Structure , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/chemical synthesis , Dose-Response Relationship, Drug , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Docking Simulation
13.
J Am Chem Soc ; 146(18): 12672-12680, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683141

ABSTRACT

A bioconjugation strategy is reported that allows the derivatization of tyrosine side chains through triazolinedione-based "Y-clicking". Blocked triazolinedione reagents were developed that, in contrast to classical triazolinedione reagents, can be purified before use, can be stored for a long time, and allow functionalization with a wider range of cargoes and labels. These reagents are bench-stable at room temperature but steadily release highly reactive triazolinediones upon heating to 40 °C in buffered media at physiological pH, showing a sharp temperature response over the 0 to 40 °C range. This conceptually interesting strategy, which is complementary to existing photo- or electrochemical bioorthogonal bond-forming methods, not only avoids the classical synthesis and handling difficulties of these highly reactive click-like reagents but also markedly improves the selectivity profile of the tyrosine conjugation reaction itself. It avoids oxidative damage and "off-target" tryptophan labeling, and it even improves site-selectivity in discriminating between different tyrosine side chains on the same protein or different polypeptide chains. In this research article, we describe the stepwise development of these reagents, from their short and modular synthesis to small-molecule model bioconjugation studies and proof-of-principle bioorthogonal chemistry on peptides and proteins.


Subject(s)
Triazoles , Tyrosine , Tyrosine/chemistry , Triazoles/chemistry , Triazoles/chemical synthesis , Temperature , Click Chemistry , Molecular Structure
14.
Bioorg Chem ; 147: 107363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657527

ABSTRACT

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Subject(s)
Antioxidants , Dipeptidyl Peptidase 4 , Hypoglycemic Agents , Pyrazoles , Triazoles , alpha-Amylases , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Dipeptidyl Peptidase 4/metabolism , Molecular Structure , Humans , Dose-Response Relationship, Drug , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Molecular Docking Simulation , Picrates/antagonists & inhibitors , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Benzopyrans , Nitriles
15.
Bioorg Chem ; 147: 107312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599053

ABSTRACT

A series of water-soluble PEGylated 1,2,4-triazoles 5-8 were successfully synthesized from methyl 5-(chloromethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates 1. All of the water-soluble PEGylated 1,2,4-triazoles were characterized by FT-IR and 1H NMR spectroscopy. The solubility, in vitro plasma stability, and anti-inflammatory activity were also determined and compared to original methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates. For SAR study, all PEGylated 1,2,4-triazoles 5-8 performed potential anti-inflammatory activity on LPS-induced RAW 264.7 cells (IC50 = 3.42-7.81 µM). Moreover, the western blot result showed PEGylated 1,2,4-triazole 7d performed 5.43 and 2.37 folds inhibitory activity over iNOS and COX-2 expressions. On the other hand, the cell viability study revealed PEGylated 1,2,4-triazoles 7 and 8 with PEG molecular weight more than 600 presented better cell safety (cell viability > 95 %). Through the solubility and in vitro plasma stability studies, PEGylated 1,2,4-triazoles 7a-d exhibited higher hydrophilicity and prolonged 2.01 folds of half-life in compound 7d. Furthermore, the in vivo anti-inflammatory and gastric safety results indicated PEGylated 1,2,4-triazole 7d more effectively decreased the inflammatory response in edema and COX-2 expression and exhibited higher gastric safety than Indomethacin. Following the in vitro and in vivo study results, PEGylated 1,2,4-triazole 7d possessed favorable solubility, plasma stability features, safety, and significant anti-inflammatory activity to become the potential water-soluble anti-inflammatory candidate.


Subject(s)
Polyethylene Glycols , Solubility , Triazoles , Water , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Animals , Mice , Water/chemistry , Polyethylene Glycols/chemistry , Structure-Activity Relationship , Edema/drug therapy , Edema/chemically induced , Cyclooxygenase 2/metabolism , Cell Survival/drug effects , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Male , Dose-Response Relationship, Drug , Carrageenan
16.
Bioorg Chem ; 147: 107361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613924

ABSTRACT

Biologically important macromolecule 1, 1', 3, 3' Bis - [2,3,5,6-Tetramethyl-p-phenylenebis(methylene)] dibenzotriazlinium dibromide hydrate (BTD) was synthesized and characterized using FT-IR, NMR and single-crystal XRD (SCXRD). SCXRD revealed that the compound was crystallized as a monoclinic system and associated through weak intermolecular interactions like H-bonding and π- π stacking interactions. These weak intermolecular interactions in BTD were studied using Crystal Explorer and Gaussian. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Molecular electrostatic potential (MEP) surface analysis was used to investigate the crystal's nucleophilic and electrophilic reactive sites. The molecular shape and intermolecular interactions in the crystal structure were determined using Hirshfeld surface analysis and fingerprint plots. Anticancer, anti-bacterial and DNA binding ability of BTD were investigated by experimental and theoretical techniques. The obtained results suggest that BTD possesses better anti-cancer, anti-bacterial and DNA binding abilities. The mode of action of antibiotic and anticancer approach was discussed. This provides promising therapeutic advantages for further development.


Subject(s)
Antineoplastic Agents , Antitubercular Agents , DNA , Molecular Docking Simulation , Triazoles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Humans , Ligands , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Molecular Structure , DNA/chemistry , DNA/metabolism , Structure-Activity Relationship , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mycobacterium tuberculosis/drug effects , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
17.
Chembiochem ; 25(9): e202300837, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38477021

ABSTRACT

Dipeptides of a new structure based on ß-triazolalanines and (L)-α-amino acids were synthesized and optimal conditions were developed that ensure both chemical and optical purity of the final products. Molecular docking was carried out and possible intermolecular interactions of dipeptides with potential targets were established. Based on these studies, the analgesic property of chosen dipeptides was studied and it was found that some compounds possess revealed antinociceptive activity in the tail-flick test.


Subject(s)
Analgesics , Dipeptides , Molecular Docking Simulation , Triazoles , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Dipeptides/chemistry , Dipeptides/chemical synthesis , Dipeptides/pharmacology , Animals , Mice , Male
18.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Article in English | MEDLINE | ID: mdl-38457745

ABSTRACT

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Subject(s)
Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Triazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Structure-Activity Relationship , Enterococcus faecalis/drug effects , Molecular Structure , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis
19.
Chembiochem ; 25(10): e202400150, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38554039

ABSTRACT

1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.


Subject(s)
Cycloaddition Reaction , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Copper/chemistry , Catalysis , Azides/chemistry , Alkynes/chemistry , Alkynes/chemical synthesis , Proteins/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Click Chemistry , Nucleosides/chemistry , Nucleosides/chemical synthesis , Carbohydrates/chemistry , Carbohydrates/chemical synthesis
20.
Chem Biodivers ; 21(5): e202302064, 2024 May.
Article in English | MEDLINE | ID: mdl-38390665

ABSTRACT

Based on our previous research, a 3D-QSAR model (q2=0.51, ONC=5, r2=0.982, F=271.887, SEE=0.052) was established to predict the inhibitory effects of triazole Schiff base compounds on Fusarium graminearum, and its predictive ability was also confirmed through the statistical parameters. According to the results of the model design, 30 compounds with superior bioactivity compared to the template molecule 4 were obtained. Seven of these compounds (DES2-6, DES9-10) with improved biological activity and readily available raw materials were successfully synthesized. Their structures were confirmed through HRMS, NMR, and single crystal X-ray diffraction analysis (DES-5). The bioactivity of the final products was investigated through an in vitro antifungal assay. There was little difference in the EC50 values between the experimental and predicted values of the model, demonstrating the reliability of the model. Especially, DES-3 (EC50=9.915 mg/L) and DES-5 (EC50=9.384 mg/L) exhibited better inhibitory effects on Fusarium graminearum compared to the standard drug (SD) triadimenol (EC50=10.820 mg/L). These compounds could serve as potential new fungicides for future research. The interaction between the final products and isocitrate lyase (ICL) was investigated through molecular docking. Compounds with R groups that have a higher electron-donating capacity were found to be biologically active.


Subject(s)
Antifungal Agents , Fusarium , Microbial Sensitivity Tests , Quantitative Structure-Activity Relationship , Schiff Bases , Triazoles , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Fusarium/drug effects , Molecular Structure , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...