Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Invertebr Pathol ; 169: 107298, 2020 01.
Article in English | MEDLINE | ID: mdl-31805286

ABSTRACT

Insects fight against invading microbial pathogens through various immune-related measures that comprise 'internal', 'external' as well as 'social' immunities. The defenses by external immunity associated with the cuticular integument are supposed to be of particular importance in repelling entomopathogenic fungi that infect host insects transcutaneously. Among such integument-related defenses, external secretions of benzoquinone derivatives typical of tenebrionid beetles have been suggested to play important roles in the antimicrobial defenses. In the present study, by utilizing the experimental infection system composed of the red flour beetle Tribolium castaneum and generalist ascomycete entomopathogens Beauveria bassiana and Metarhizium anisopliae, we performed the functional assays of the three T. castaneum genes whose involvement in benzoquinone synthesis in the adults has been reported, namely GT39, GT62 and GT63. Observations by scanning electron microcopy (SEM) revealed that the conidia of the two fungal species did not germinate on the wild-type adult body surface but did on the pupae. The expression analyses demonstrated that the levels of GT39 and GT62 mRNA increased from middle pupae and reached high in early adults while GT63 did not show a clear adult-biased expression pattern. The RNA interference-based knockdown of any of the three genes in pupae resulted in the adults compromised to the infection of the both fungal species. SEM observations revealed that the gene silencing allowed the conidial germination on the body surface of the knockdown beetles, thereby impairing the robust antifungal defense of adult beetles. Thus, we have provided direct experimental evidence for the functional importance in vivo of these benzoquinone synthesis-related genes that support the antifungal defense of tenebrionid beetles.


Subject(s)
Beauveria/physiology , Benzoquinones/metabolism , Host-Pathogen Interactions , Insect Proteins/genetics , Metarhizium/physiology , Tribolium/genetics , Animals , Genes, Insect , Germination , Insect Proteins/metabolism , Longevity , Microscopy, Electron, Scanning , Pupa/genetics , Pupa/growth & development , Pupa/microbiology , Pupa/ultrastructure , RNA Interference , RNA, Messenger/analysis , Species Specificity , Spores, Fungal/physiology , Tribolium/growth & development , Tribolium/microbiology , Tribolium/ultrastructure
2.
Nat Methods ; 15(12): 1090-1097, 2018 12.
Article in English | MEDLINE | ID: mdl-30478326

ABSTRACT

Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.


Subject(s)
Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Software , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/ultrastructure , HeLa Cells , Humans , Liver/metabolism , Liver/ultrastructure , Photons , Planarians/metabolism , Planarians/ultrastructure , Retina/metabolism , Retina/ultrastructure , Tribolium/metabolism , Tribolium/ultrastructure , Zebrafish/metabolism
3.
Insect Biochem Mol Biol ; 91: 21-33, 2017 12.
Article in English | MEDLINE | ID: mdl-29117500

ABSTRACT

Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle). Even though the ultrastructure of the arthropod cuticle has been studied rather extensively, its temporal developmental pattern, in particular, the synchronous development of the functional layers in different cuticles during a molt, is not well understood. The beetle elytron, which is a highly modified and sclerotized forewing, offers excellent advantages for such a study because it can be easily isolated at precise time points during development. In this study, we describe the morphogenesis of the dorsal and ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum, during the period from the 0 d-old pupa to the 9 d-old adult. The deposition of exocuticle and mesocuticle is substantially different in the two cuticles. The dorsal cuticle is four-fold thicker than the ventral. Unlike the ventral cuticle, the dorsal contains a thicker exocuticle consisting of a large number of horizontal laminae and vertical pore canals with pore canal fibers and rib-like veins and bristles as well as a mesocuticle, lying right above the enodcuticle. The degree of sclerotization appears to be much greater in the dorsal cuticle. All of these differences result in a relatively thick and tanned rigid dorsal cuticle and a much thinner and less pigmented membrane-like ventral cuticle.


Subject(s)
Animal Shells/growth & development , Animal Shells/ultrastructure , Tribolium/growth & development , Tribolium/ultrastructure , Animals , Pupa/ultrastructure
4.
Open Biol ; 7(3)2017 03.
Article in English | MEDLINE | ID: mdl-28298310

ABSTRACT

Typical centrioles are made of microtubules organized in ninefold symmetry. Most animal somatic cells have two centrioles for normal cell division and function. These centrioles originate from the zygote, but because the oocyte does not provide any centrioles, it is surprising that the zygotes of many animals are thought to inherit only one centriole from the sperm. Recently, in the sperm of Drosophila melanogaster, we discovered a second centriolar structure, the proximal centriole-like structure (PCL), which functions in the zygote. Whether the sperm of other insects has a second centriolar structure is unknown. Here, we characterized spermiogenesis in the red flour beetle, Tribolium castaneum Electron microscopy suggests that Tribolium has one microtubule-based centriole at the tip of the axoneme and a structure similar to the PCL, which lacks microtubules and lies in a cytoplasmic invagination of the nucleus. Immunostaining against the orthologue of the centriole/PCL protein, Ana1, also recognizes two centrioles near the nucleus during spermiogenesis: one that is microtubule-based at the tip of the axoneme, suggesting it is the centriole; and another that is more proximal and appears during early spermiogenesis, suggesting it is the PCL. Together, these findings suggest that Tribolium sperm has one microtubule-based centriole and one microtubule-lacking centriole.


Subject(s)
Centrioles/ultrastructure , Microtubules/ultrastructure , Spermatozoa/ultrastructure , Tribolium/ultrastructure , Animals , Centrioles/metabolism , Male , Microtubules/metabolism , Spermatids/metabolism , Spermatids/ultrastructure , Spermatogenesis , Spermatozoa/metabolism , Tribolium/physiology
5.
Curr Opin Insect Sci ; 17: 1-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27720067

ABSTRACT

Adult beetles (Coleoptera) are covered primarily by a hard exoskeleton or cuticle. For example, the beetle elytron is a cuticle-rich highly modified forewing structure that shields the underlying hindwing and dorsal body surface from a variety of harmful environmental factors by acting as an armor plate. The elytron comes in a variety of colors and shapes depending on the coleopteran species. As in many other insect species, the cuticular tanning pathway begins with tyrosine and is responsible for production of a variety of melanin-like and other types of pigments. Tanning metabolism involves quinones and quinone methides, which also act as protein cross-linking agents for cuticle sclerotization. Electron microscopic analyses of rigid cuticles of the red flour beetle, Tribolium castaneum, have revealed not only numerous horizontal chitin-protein laminae but also vertically oriented columnar structures called pore canal fibers. This structural architecture together with tyrosine metabolism for cuticle tanning is likely to contribute to the rigidity and coloration of the beetle exoskeleton.


Subject(s)
Pigmentation/genetics , Tribolium/physiology , Animals , Chitin/metabolism , Insect Proteins/metabolism , Tribolium/growth & development , Tribolium/ultrastructure
6.
Bull Entomol Res ; 106(2): 258-67, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26781173

ABSTRACT

Tribolium castaneum Herbst 1797 (Coleoptera: Tenebrionidae), an important pest of stored grains and byproducts, is naturally infected by Gregarina cuneata Stein 1848 (Apicomplexa: Gregarinidae). Changes in the life cycle of insects caused by the parasite development in the midgut were studied. Trophozoites, gamonts (solitary and associated), and gametocysts were present in the midgut of the insects. In young trophozoites, the apical region differentiated into an epimerite that firmly attached the parasite to the host epithelial cells. With maturation, trophozoites developed in gamonts that were associated with the initiation of sexual reproduction in the cell cycle, culminating in the formation of the spherical gametocyst. Morpho-functional analyses indicated that gregarines absorb nutrients from infected cells and can occlude the midgut as they develop. Consequently, nutritional depletion may interfere with the host's physiology, causing decreased growth, delayed development, and high mortality rates of the parasitized insects. These results suggest G. cuneata could be an important biological agent for controlling T. castaneum in integrated pest management programs.


Subject(s)
Apicomplexa/growth & development , Life Cycle Stages , Pest Control, Biological , Tribolium/parasitology , Animals , Apicomplexa/physiology , Apicomplexa/ultrastructure , Female , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Tribolium/growth & development , Tribolium/ultrastructure
7.
Micron ; 73: 21-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25867758

ABSTRACT

Previous studies on the spermatogenesis of tenebrionid beetles showed the unusual formation of two antiparallel sperm bundles per cyst. In this work we reported this feature also in Tribolium castaneum using light and transmission electron microscopy. The sperm structure of T. castaneum, similar to other tenebrionids, consists of a three-layered acrosome, an elongated nucleus and a flagellum with a 9+9+2 axoneme, two accessory bodies and two asymmetric mitochondrial derivatives. The presence of two antiparallel sperm bundles per cyst also in Meloidae and Rhipiphoridae suggests that it is a strong trait synapomorphic for Tenebrionoidea. The huge degeneration of whole sperm cells in several cysts of testes during spermiogenesis is also described.


Subject(s)
Spermatozoa/ultrastructure , Tribolium/physiology , Tribolium/ultrastructure , Acrosome/ultrastructure , Animals , Axoneme/ultrastructure , Cell Nucleus/ultrastructure , Cysts/ultrastructure , Male , Microscopy, Electron, Transmission , Microscopy, Polarization , Phenotype , Sperm Tail/ultrastructure , Spermatogenesis
8.
Insect Biochem Mol Biol ; 60: 7-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25747006

ABSTRACT

Insects have been extraordinary successful in colonizing terrestrial habitats and this success is partly due to a protective cuticle that mainly contains chitin and proteins. The cuticle has been well studied in larvae and adults, but little attention has been paid to the cuticle of the egg. This cuticle is secreted by the serosa, an extraembryonic epithelium that surrounds the yolk and embryo in all insect eggs, but was lost in the Schizophoran flies to which Drosophila belongs. We therefore set out to investigate serosal cuticle formation and function in a beetle (Tribolium castaneum) using RNAi-mediated knockdown of three candidate genes known to structure chitin in the adult cuticle, and we aimed to identify other serosal cuticle genes using RNA sequencing. Knockdown of Knickkopf (TcKnk-1) or Retroactive (TcRtv) affects the laminar structure of the serosal cuticle, as revealed by Transmission Electron Microscopy in knockdown eggs. In the absence of this laminar structure, significantly fewer eggs survive at low humidity compared to wild-type eggs. Survival in dry conditions is also adversely affected when cross-linking among proteins and chitin is prevented by Laccase2 (TcLac-2) RNAi. Finally, we compare the transcriptomes of wild-type eggs to serosa-less eggs and find serosa-biased expression of 21 cuticle-related genes including structural components, chitin deacetylases and chitinases. Our data indicate that the serosal cuticle utilizes the same machinery for structuring the cuticle as adults. We demonstrate that the structure of the cuticle is crucial for desiccation resistance, and we put forward the serosal cuticle of Tribolium as an excellent model to study the ecological properties of the insect cuticle.


Subject(s)
Insect Proteins/physiology , Tribolium/physiology , Animals , Desiccation , Female , Gene Expression , Humidity , Male , Ovum/physiology , Ovum/ultrastructure , RNA Interference , Sequence Analysis, RNA , Serous Membrane/metabolism , Tribolium/ultrastructure
9.
Insect Biochem Mol Biol ; 53: 22-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042128

ABSTRACT

The insect exoskeleton is composed of cuticle primarily formed from structural cuticular proteins (CPs) and the polysaccharide chitin. Two CPs, TcCPR27 and TcCPR18, are major proteins present in the elytron (highly sclerotized and pigmented modified forewing) as well as the pronotum (dorsal sclerite of the prothorax) and ventral abdominal cuticle of the red flour beetle, Tribolium castaneum. Both CPs belong to the CPR family, which includes proteins that have an amino acid sequence motif known as the Rebers & Riddiford (R&R) consensus sequence. Injection of double-stranded RNA (dsRNA) for TcCPR27 and TcCPR18 resulted in insects with shorter, wrinkled, warped and less rigid elytra than those from control insects. To gain a more comprehensive understanding of the roles of CPs in cuticle assembly, we analyzed for the precise localization of TcCPR27 and the ultrastructural architecture of cuticle in TcCPR27- and TcCPR18-deficient elytra. Transmission electron microscopic analysis combined with immunodetection using gold-labeled secondary antibody revealed that TcCPR27 is present in dorsal elytral procuticle both in the horizontal laminae and in vertical pore canals. dsRNA-mediated RNA interference (RNAi) of TcCPR27 resulted in abnormal electron-lucent laminae and pore canals in elytra except for the boundary between these two structures in which electron-dense molecule(s) apparently accumulated. Insects subjected to RNAi for TcCPR18 also had disorganized laminae and pore canals in the procuticle of elytra. Similar ultrastructural defects were also observed in other body wall regions with rigid cuticle such as the thorax and legs of adult T. castaneum. TcCPR27 and TcCPR18 are required for proper formation of the horizontal chitinous laminae and vertical pore canals that are critical for formation and stabilization of rigid adult cuticle.


Subject(s)
Chitin , Epidermis/metabolism , Insect Proteins/metabolism , Tribolium/metabolism , Animals , Epidermis/growth & development , Epidermis/ultrastructure , Gene Expression Regulation, Developmental , Microscopy, Electron, Transmission , Phenotype , RNA Interference , RNA, Double-Stranded , Tribolium/ultrastructure , Wings, Animal/growth & development
10.
Cell Biol Int ; 37(10): 1061-79, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23686847

ABSTRACT

The first ultrastructural and immunomorphological characteristics of the karyosphere (karyosome) and extrachromosomal nuclear bodies in the red flour beetle, Tribolium castaneum, are presented. The karyosphere forms early in the diplotene stage of meiotic prophase by the gathering of all oocyte chromosomes in a limited nuclear volume. Using the BrUTP assay, T. castaneum oocyte chromosomes united in the karyosphere maintain their transcriptional activity until the end of oocyte growth. Hyperphosphorylated RNA polymerase II and basal transcription factors (TFIID and TFIIH) were detected in the perichromatin region of the karyosphere. The T. castaneum karyosphere has an extrachromosomal capsule that separates chromosomes from the rest of the nucleoplasm. Certain structural proteins (F-actin, lamin B) were found in the capsule. Unexpectedly, the karyosphere capsule in T. castaneum oocytes was found to be enriched in TMG-capped snRNAs, which suggests that the capsule is not only a structural support for the karyosphere, but may be involved in biogenesis of snRNPs. We also identified the counterparts of 'universal' extrachromosomal nuclear domains, Cajal bodies (CBs) and interchromatin granule clusters (IGCs). Nuclear bodies containing IGC marker protein SC35 display some features unusual for typical IGCs. SC35 domains in T. castaneum oocytes are predominantly fibrillar complex bodies that do not contain trimethyl guanosine (TMG)-capped small nuclear (sn) RNAs. Microinjections of 2'-O-methyl (U)22 probes into the oocytes allowed revealing poly(A)+ RNAs in these nuclear domains. Several proteins related to mRNA export (heterogeneous ribonucleoprotein core protein A1, export adapters Y14 and Aly and export receptor NXF1) were also detected there. We believe that unusual SC35 nuclear domains of T. castaneum oocytes are possibly involved in mRNP but not snRNP biogenesis.


Subject(s)
Cell Nucleus/ultrastructure , Oocytes/cytology , Tribolium/cytology , Actins/metabolism , Animals , Biomarkers/metabolism , Cell Nucleus/metabolism , Female , Immunohistochemistry , Insect Proteins/metabolism , Microinjections , Oocytes/ultrastructure , Oogenesis , Poly A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Transcription Factor TFIID/metabolism , Transcription Factor TFIIH/metabolism , Transcription, Genetic , Tribolium/ultrastructure , Uridine Triphosphate/analogs & derivatives , Uridine Triphosphate/metabolism , Vitellogenins/metabolism
11.
Arthropod Struct Dev ; 42(1): 47-68, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23010508

ABSTRACT

The morphological features of the third instar larva of the most important insect model, Drosophila melanogaster, are documented for the first time using a broad spectrum of modern morphological techniques. External structures of the body wall, the cephaloskeleton, and the musculature are described and illustrated. Additional information about other internal organs is provided. The systematic implications of the findings are discussed briefly. Internal apomorphic features of Brachycera and Cyclorrhapha are confirmed for Drosophila. Despite the intensive investigations of the phylogeny of the megadiverse Diptera, evolutionary reconstructions are still impeded by the scarcity of anatomical data for brachyceran larvae. The available morphological information for the life stages of three insect model organisms -D. melanogaster (Diptera, Drosophilidae), Manduca sexta (Lepidoptera, Sphingidae) and Tribolium castaneum (Coleoptera, Tenebrionidae) - is addressed briefly. The usefulness of a combination of traditional and innovative techniques for an optimized acquisition of anatomical data for different life stages is highlighted.


Subject(s)
Drosophila melanogaster/anatomy & histology , Animals , Drosophila melanogaster/ultrastructure , Larva/anatomy & histology , Larva/ultrastructure , Manduca/anatomy & histology , Manduca/ultrastructure , Microscopy, Electron, Scanning , Models, Animal , Phylogeny , Tribolium/anatomy & histology , Tribolium/ultrastructure
12.
Tsitologiia ; 55(11): 798-808, 2013.
Article in Russian | MEDLINE | ID: mdl-25509135

ABSTRACT

Structure and composition of the karyosphere (karyosome) capsule were studied in the oocytes of a laboratory insect, Tribolium castaneum, with the use of electron microscopy and immunoelectron cytochemistry. Basing on the study of nuclear structure dynamics, we distinguished 8 stages that characterize the period of oocyte growth. At the diplotene stage, T. castaneum oocyte chromosomes conjoin early into a compact karyosphere, but a significant chromatin condensation does not occur. The process of karyosphere formation is accompanied by the development of an extensive extrachromosome capsule surrounding chromatin. The capsule consists of a material of different morphological types. Significant molecular components of the T. castaneum karyosphere capsule are represented by the proteins of nuclear matrix including F-actin and lamin B. Besides the structural proteins, the Sm proteins of small nuclear (sn) RNPs and mature 2,2,7-trimethyl guanosine (TMG) 5'-capped snRNAs are revealed immunocytochemically in the karyosphere capsule. The obtained data can form a basis for further expansion of ideas on the functions of the karyosphere capsule as a specialized extrachromosomal nuclear domain of the oocytes. We believe that the T. castaneum karyosphere capsule plays not only a structural role, but may be involved directly in the processes related to gene expression.


Subject(s)
Chromatin/ultrastructure , Chromosomes, Insect , Nuclear Matrix/ultrastructure , Oocytes/ultrastructure , Tribolium/ultrastructure , Actins/genetics , Actins/metabolism , Animals , Chromatin/metabolism , Gene Expression , Guanosine/analogs & derivatives , Guanosine/metabolism , Lamin Type B/genetics , Lamin Type B/metabolism , Meiotic Prophase I , Nuclear Matrix/metabolism , Oocytes/growth & development , Oocytes/metabolism , Oogenesis/genetics , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Tribolium/genetics , Tribolium/growth & development
14.
Insect Biochem Mol Biol ; 42(4): 264-76, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22212827

ABSTRACT

Several benzoylphenyl urea-derived insecticides such as diflubenzuron (DFB, Dimilin) are in wide use to control various insect pests. Although this class of compounds is known to disrupt molting and to affect chitin content, their precise mode of action is still not understood. To gain a broader insight into the mechanism underlying the insecticidal effects of benzoylphenyl urea compounds, we conducted a comprehensive study with the model beetle species and stored product pest Tribolium castaneum (red flour beetle) utilizing genomic and proteomic approaches. DFB was added to a wheat flour-based diet at various concentrations and fed to larvae and adults. We observed abortive molting, hatching defects and reduced chitin amounts in the larval cuticle, the peritrophic matrix and eggs. Electron microscopic examination of the larval cuticle revealed major structural changes and a loss of lamellate structure of the procuticle. We used a genomic tiling array for determining relative expression levels of about 11,000 genes predicted by the GLEAN algorithm. About 6% of all predicted genes were more than 2-fold up- or down-regulated in response to DFB treatment. Genes encoding enzymes involved in chitin metabolism were unexpectedly unaffected, but many genes encoding cuticle proteins were affected. In addition, several genes presumably involved in detoxification pathways were up-regulated. Comparative 2D gel electrophoresis of proteins extracted from the midgut revealed 388 protein spots, of which 7% were significantly affected in their levels by DFB treatment as determined by laser densitometry. Mass spectrometric identification revealed that UDP-N-acetylglucosamine pyrophosphorylase and glutathione synthetase were up-regulated. In summary, the red flour beetle turned out to be a good model organism for investigating the global effects of bioactive materials such as insect growth regulators and other insecticides. The results of this study recapitulate all of the different DFB-induced symptoms in a single model insect, which have been previously found in several different insect species, and further illustrate that DFB treatment causes a wide range of effects at the molecular level.


Subject(s)
Diflubenzuron/pharmacology , Tribolium/drug effects , Animals , Chitin/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Gastrointestinal Tract/metabolism , Gene Expression/drug effects , Gene Expression Profiling , Larva/drug effects , Larva/growth & development , Molting/drug effects , Ovum/drug effects , Ovum/metabolism , Proteome/metabolism , Tribolium/metabolism , Tribolium/ultrastructure
15.
Micron ; 42(1): 36-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20837396

ABSTRACT

Microwave radiation and conductive heating were used to completely kill adult Tribolium castaneum (Coleoptera: Tenebrionidae) in wheat flour to protect the flour during storage without significantly effecting its quality. The microstructure of T. castaneum was analyzed to reveal the mechanisms leading to death under microwave and heat treatments. Microwave radiation and conductive heating had different effects on the microstructure of the cuticle of adult T. castaneum and on the ultrastructure of the cells of the epidermis, fat body, and midgut. Both treatments caused a large cavity to appear in the nucleus and the disappearance of mitochondria and the Golgi apparatus. After microwave treatment, there was little change in the surface microstructure but the epidermis was of uneven thickness and the four outer layers of the cuticle were thinner. Nuclear size was essentially unchanged, but fat body cells were fewer and coalesced together. In contrast, conductive heating led to a disordered arrangement of cells on the surface of T. castaneum and indistinct boundaries between layers of the cuticle. The nuclei were enlarged and the fat body cells noticeably fewer and indistinct with a scattered distribution. Thus, microwave treatment produced less severe effects on the surface microstructure and cellular ultrastructure of T. castaneum than did conductive heating. It is concluded that these cellular and surface changes were responsible for the death of T. castaneum.


Subject(s)
Hot Temperature , Microwaves , Tribolium/radiation effects , Tribolium/ultrastructure , Animal Structures/radiation effects , Animal Structures/ultrastructure , Animals , Coleoptera , Organelles/ultrastructure , Triticum
16.
Development ; 135(3): 559-68, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18171683

ABSTRACT

Metamorphosis of holometabolous insects, an elaborate change of form between larval, pupal and adult stages, offers an ideal system to study the regulation of morphogenetic processes by hormonal signals. Metamorphosis involves growth and differentiation, tissue remodeling and death, all of which are orchestrated by the morphogenesis-promoting ecdysteroids and the antagonistically acting juvenile hormone (JH), whose presence precludes the metamorphic changes. How target tissues interpret this combinatorial effect of the two hormonal cues is poorly understood, mainly because JH does not prevent larval-pupal transformation in the derived Drosophila model, and because the JH receptor is unknown. We have recently used the red flour beetle Tribolium castaneum to show that JH controls entry to metamorphosis via its putative receptor Methoprene-tolerant (Met). Here, we demonstrate that Met mediates JH effects on the expression of the ecdysteroid-response gene Broad-Complex (BR-C). Using RNAi and a classical mutant, we show that Tribolium BR-C is necessary for differentiation of pupal characters. Furthermore, heterochronic combinations of retarded and accelerated phenotypes caused by impaired BR-C function suggest that besides specifying the pupal fate, BR-C operates as a temporal coordinator of hormonally regulated morphogenetic events across epidermal tissues. Similar results were also obtained when using the lacewing Chrysopa perla (Neuroptera), a member of another holometabolous group with a primitive type of metamorphosis. The tissue coordination role of BR-C may therefore be a part of the Holometabola groundplan.


Subject(s)
Coleoptera/growth & development , Coleoptera/metabolism , Insect Proteins/metabolism , Juvenile Hormones/metabolism , Metamorphosis, Biological , Receptors, Cell Surface/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Coleoptera/ultrastructure , Conserved Sequence , Female , Gene Expression Regulation, Developmental , Insect Proteins/chemistry , Insect Proteins/genetics , Larva/ultrastructure , Models, Biological , Molecular Sequence Data , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pupa/ultrastructure , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Tribolium/growth & development , Tribolium/ultrastructure
17.
Dev Genes Evol ; 215(1): 13-31, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15645317

ABSTRACT

Mesoderm formation has been extensively analyzed in the long-germ insect Drosophila melanogaster. In Drosophila, both the invagination and specification of the mesoderm is controlled by twist. Here we present a detailed description of mesoderm formation and twist regulation for the short-germ beetle Tribolium castaneum. In contrast to Drosophila, (1) the presumptive mesodermal cells of Tribolium are part of a mitotic domain and divide prior to ventral furrow formation, (2) ventral furrow formation progresses from posterior to anterior, (3) the number of cell layers within the furrow changes from multilayered in caudal to single layered in cephalic regions, and (4) there is a continuous production of mesodermal cells after gastrulation as new segments arise from the posterior growth zone. Tribolium twist (Tc-twist) is initially expressed in all presumptive mesodermal cells; however, after invagination, expression is maintained only in particular locations, which include the anterior compartments of the cephalic segments and a patch of cells at the posterior rim of the growth zone. The growth zone is multilayered with its inner cell layer being continuous with the mesoderm of the newly forming segments where twist expression is re-initiated anterior to the emerging engrailed stripes. A genomic region of Tc-twist was identified which drives ventral expression of a reporter construct in Drosophila. The expression of this Tc-twist construct in the background of Drosophila maternal mutations suggests that the dorsoventral system regulates Tc-twist, but that differences exist in regulation of the Dm-twist and Tc-twist genes by the terminal system.


Subject(s)
Gastrula/physiology , Insect Proteins/metabolism , Mesoderm/physiology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tribolium/embryology , Amino Acid Motifs , Amino Acid Sequence , Animals , Body Patterning , Drosophila/embryology , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins , Embryo, Nonmammalian/ultrastructure , Embryonic Development , Gastrula/ultrastructure , Gene Expression Regulation, Developmental , Genes, Insect , Genes, Reporter , Immunohistochemistry , Insect Proteins/genetics , Mesoderm/ultrastructure , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/ultrastructure , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/ultrastructure , Tribolium/genetics , Tribolium/metabolism , Tribolium/physiology , Tribolium/ultrastructure , Twist-Related Protein 1
18.
Genetics ; 159(4): 1643-8, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11779803

ABSTRACT

The role of Hox genes in the development of insect gnathal appendages has been examined in three insects: the fruitfly, Drosophila melanogaster; the milkweed bug, Oncopeltus fasciatus; and the red flour beetle, Tribolium castaneum. In each of these organisms, the identity of the labium depends on the homeotic genes Sex combs reduced (Scr) and proboscipedia (pb). Loss of pb function in each of the three insects results in homeotic transformation of the labial appendages to legs. In contrast, loss of Scr function yields a different transformation in each species. Interestingly, mutations in Cephalothorax (Cx), the Tribolium ortholog of Scr, transform the labial appendages to antennae, a result seen in the other insects only when both pb and Scr are removed. We show here that the Tribolium labial appendages also develop as antennae in double mutants. Further, we demonstrate that expression of the Tribolium proboscipedia ortholog maxillopedia (mxp) is greatly reduced or absent in the labium of Cx mutant larvae. Thus, in the wild-type labial segment, Cx function is required (directly or indirectly) for mxp transcription. A similar interaction between Scr and pb during Drosophila embryogenesis has been described recently. Thus, this regulatory paradigm appears to be conserved at least within the Holometabola.


Subject(s)
Drosophila Proteins , Homeodomain Proteins/genetics , Insect Proteins/genetics , Transcription Factors/genetics , Tribolium/genetics , Animals , Extremities/embryology , In Situ Hybridization , Larva/genetics , Microscopy, Electron, Scanning , Mutagenesis , Mutation , Phenotype , Protein Binding , RNA, Double-Stranded/genetics , Tribolium/ultrastructure
19.
Dev Genes Evol ; 210(4): 167-79, 2000 Apr.
Article in English | MEDLINE | ID: mdl-11180819

ABSTRACT

Embryogenesis in the beetle Tribolium is of increasing interest to both molecular and evolutionary biology because it differs from the Drosophila paradigm by its type of segment specification (short- vs. long-germ) and by the extensive epithelial envelopes - amnion and serosa - that are typical of most insects but not of higher dipterans. Using scanning electron microscopy of DAPI staged embryos we document development in Tribolium castaneum from blastoderm to completion of the envelopes, recording many details not otherwise accessible; we also provide a time table of the respective stages at 30 degrees C. The nascent blastoderm cells remain basally confluent with the yolksac until after the 13th (=last synchronous) mitotic cycle. The cells in the prospective serosa - the first domain to segregate visibly from the uniform blastoderm - carry surface protrusions likely to contact the overlying vitelline envelope. The embryonic rudiment, the other (and larger) blastodermal domain, gives rise to amnion and germ anlage. In the latter, visible differentiation begins with a "primitive pit" reminiscent of the posterior midgut rudiment of Drosophila. The subsequent invagination of the mesoderm resembles Drosophila gastrulation, except in the head region where the median groove extends through the entire preoral region. The prospective amnion starts differing visibly from the germ anlage during early gastrulation. It then folds underneath the spreading serosa and, advancing with the latter, closes the amniotic cavity at the ventral face of the germband. The largest (=posterior) amniotic fold covers a crestlike protrusion of the yolksac. Together with marked changes in the shape and arrangement of the amnion cells, this protrusion may contribute to the fold's elevation and early progress.


Subject(s)
Blastoderm/ultrastructure , Cell Movement/physiology , Serous Membrane/ultrastructure , Tribolium/embryology , Tribolium/ultrastructure , Amnion/cytology , Amnion/ultrastructure , Animals , Blastoderm/cytology , Blastoderm/physiology , Cell Membrane/genetics , Cell Membrane/physiology , Cell Membrane/ultrastructure , Cell Movement/genetics , Cell Size/genetics , Cell Size/physiology , Gastrula/cytology , Gastrula/ultrastructure , Gene Expression Regulation, Developmental , Microscopy, Electron, Scanning , Pseudopodia/genetics , Pseudopodia/physiology , Pseudopodia/ultrastructure , Serous Membrane/cytology , Serous Membrane/physiology , Tribolium/cytology , Tribolium/genetics
20.
Curr Biol ; 9(22): 1279-87, 1999 Nov 18.
Article in English | MEDLINE | ID: mdl-10574759

ABSTRACT

BACKGROUND: The morphological diversity of arthropods makes them attractive subjects for studying the evolution of developmental mechanisms. Comparative analyses suggest that arthropod diversity has arisen largely as a result of changes in expression patterns of genes that control development. Direct analysis of how a particular gene functions in a given species during development is hindered by the lack of broadly applicable techniques for manipulating gene expression. RESULTS: We report that the Arbovirus Sindbis can be used to deliver high levels of gene expression in vivo in a number of non-host arthropod species without causing cytopathic effects in infected cells or impairing development. Using recombinant Sindbis virus, we investigated the function of the homeotic gene Ultrabithorax in the development of butterfly wings and beetle embryos. Ectopic Ultrabithorax expression in butterfly forewing imaginal discs was sufficient to cause the transformation of characteristic forewing properties in the adult, including scale morphology and pigmentation, to those of the hindwing. Expression of Ultrabithorax in beetle embryos outside of its endogenous expression domain affected normal development of the body wall cuticle and appendages. CONCLUSIONS: The homeotic genes have long been thought to play an important role in the diversification of arthropod appendages. Using recombinant Sindbis virus, we were able to investigate homeotic gene function in non-model arthropod species. We found that Ultrabithorax is sufficient to confer hindwing identity in butterflies and alter normal development of anterior structures in beetles. Recombinant Sindbis virus has broad potential as a tool for analyzing how the function of developmental genes has changed during the diversification of arthropods.


Subject(s)
DNA-Binding Proteins/biosynthesis , Drosophila Proteins , Gene Expression Regulation, Developmental , Gene Expression Regulation, Viral , Genes, Homeobox , Genetic Vectors/genetics , Homeodomain Proteins/biosynthesis , Sindbis Virus/genetics , Transcription Factors , Animals , Artemia/embryology , Artemia/genetics , Butterflies/growth & development , Butterflies/ultrastructure , Cytopathogenic Effect, Viral , DNA-Binding Proteins/genetics , Drosophila melanogaster/genetics , Head/embryology , Hemiptera/embryology , Hemiptera/genetics , Homeodomain Proteins/genetics , Larva , Morphogenesis/genetics , Organ Specificity , Pigmentation/genetics , Pupa , Recombinant Fusion Proteins/analysis , Recombination, Genetic , Species Specificity , Thorax/embryology , Tribolium/embryology , Tribolium/ultrastructure , Wings, Animal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...