Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.071
Filter
1.
Ecotoxicol Environ Saf ; 278: 116433, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714087

ABSTRACT

Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.


Subject(s)
Human Umbilical Vein Endothelial Cells , Interferon Regulatory Factor-1 , Interferon-gamma , Trichloroethylene , Tumor Necrosis Factor-alpha , Trichloroethylene/toxicity , Animals , Humans , Mice , Tumor Necrosis Factor-alpha/metabolism , Interferon Regulatory Factor-1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Endothelial Cells/drug effects , Kidney/drug effects , Acute Kidney Injury/chemically induced
2.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705492

ABSTRACT

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Reactive Oxygen Species , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Animals , Reactive Oxygen Species/metabolism , Rats , Trichloroethylene/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Rotenone/toxicity , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Paraquat/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Oxidative Stress/drug effects , Humans , Environmental Pollutants/toxicity , Rats, Sprague-Dawley
3.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38719742

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Subject(s)
Biodegradation, Environmental , Hydrocarbons, Aromatic , Hydrocarbons, Aromatic/metabolism , Trichloroethylene/metabolism , Sulfonamides/metabolism
4.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Article in English | MEDLINE | ID: mdl-38615641

ABSTRACT

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Subject(s)
DNA, Mitochondrial , Hepatocytes , Oxidative Stress , Toll-Like Receptor 9 , Trichloroethylene , Animals , Mice , Hepatocytes/drug effects , Trichloroethylene/toxicity , Toll-Like Receptor 9/metabolism , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , RAW 264.7 Cells , Chemical and Drug Induced Liver Injury , Macrophage Activation/drug effects , Male , Mice, Inbred C57BL
5.
Water Sci Technol ; 89(8): 1981-1995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678403

ABSTRACT

Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.


Subject(s)
Charcoal , Microplastics , Trichloroethylene , Trichloroethylene/chemistry , Charcoal/chemistry , Adsorption , Microplastics/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Polyethylene/chemistry
6.
Bull Environ Contam Toxicol ; 112(5): 70, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676752

ABSTRACT

Trichloroethylene (TCE) poses a potentially toxic threat to humans and the environment and widely exists in contaminated sites. White rot fungi effectively degrade refractory pollutants, while a few research studies use white rot fungi to degrade TCE. In this study, we investigated TCE biodegradation by white rot fungi and the potential influencing factors in the environment and attempted to research the effect of TCE on the physiological characteristics of white rot fungi. White rot fungi (Trametes versicolor, Pseudotrametes gibbosa, Pycnoporus sanguines and Pleurotus ostreatus) were added to the liquid medium for shock culture. The results revealed that T. versicolor exhibited the most pronounced efficacy in removing TCE, with a degradation rate of 81.10% within a 7 d period. TCE induces and is degraded by cytochrome P450 enzymes. High pH and Cr(VI) adversely affected the effectiveness of the biodegradation of TCE, but the salinity range of 0-1% had less effect on biodegradation. Overall, the effectiveness of degradation of TCE by T. versicolor has been demonstrated, and it provides a reference for the application prospects of white rot fungi in TCE-contaminated soils.


Subject(s)
Biodegradation, Environmental , Trichloroethylene , Trichloroethylene/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Polyporaceae/metabolism
7.
Chemosphere ; 357: 141943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621492

ABSTRACT

In this study, bentonite supporting phosphorus-doped Fe2MnO4 (BPF) was synthesized and applied for PMS activation to degrade TCE. Morphology and structure characterization results indicated the successfully synthesized of BPF, and the BPF/PMS system not only featured high TCE removal (97.4%) but also high reaction rate constant (kobs = 0.0554 min-1) and PMS utilization (70.4%, kobs = 0.0228 min-1). According to the results of various experiments, massive oxygen vacancies on P-Fe2MnO4 alter its charge balance and facilitate the electron transfer process named adjacent transfer (direct electron capture by adsorbed PMS from adjacent TCE). Mn(III) is the main adsorption site for PMS, and the hydroxyl groups on the catalyst (Fe sites of P-Fe2MnO4, Si and Al sites of bentonite) can also offer binding sites for PMS. The hydrogen-bonded PMS on Fe(III) and Mn(III) sites will subsequently accept the discharged electrons to generate free radicals and high-valent metal species. Meanwhile, electron loss of HSO5- that chemically bonded to hydroxyl groups on bentonite will generate SO5•-, which will further produce 1O2 through self-bonding. the active species on the catalyst surface contribute 65% of TCE degradation in the heterogeneous catalytic oxidation system.


Subject(s)
Bentonite , Manganese Compounds , Peroxides , Trichloroethylene , Bentonite/chemistry , Catalysis , Peroxides/chemistry , Trichloroethylene/chemistry , Manganese Compounds/chemistry , Adsorption , Oxidation-Reduction , Ferric Compounds/chemistry , Environmental Restoration and Remediation/methods , Phosphorus/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry
8.
Huan Jing Ke Xue ; 45(2): 1080-1089, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471945

ABSTRACT

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are typical volatile halogenated organic compounds in groundwater that pose serious threats to the ecological environment and human health. To obtain an anaerobic microbial consortium capable of efficiently dechlorinating PCE and TCE to a non-toxic end product and to explore its potential in treating contaminated groundwater, an anaerobic microbial consortium W-1 that completely dechlorinated PCE and TCE to ethylene was obtained by repeatedly feeding PCE or TCE into the contaminated groundwater collected from an industrial site. The dechlorination rates of PCE and TCE were (120.1 ±4.9) µmol·ï¼ˆL·d)-1 and (172.4 ±21.8) µmol·ï¼ˆL·d)-1 in W-1, respectively. 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) showed that the relative abundance of Dehalobacter increased from 1.9% to 57.1%, with the gene copy number increasing by 1.7×107 copies per 1 µmol Cl- released when 98.3 µmol of PCE was dechlorinated to cis-1,2-dichloroethylene (cis-1,2-DCE). The relative abundance of Dehalococcoides increased from 1.1% to 53.8% when cis-1,2-DCE was reductively dechlorinated to ethylene. The growth yield of Dehalococcoides gene copy number increased by 1.7×108 copies per 1 µmol Cl- released for the complete reductive dechlorination of PCE to ethylene. The results indicated that Dehalobacter and Dehalococcoides cooperated to completely detoxify PCE. When TCE was used as the only electron acceptor, the relative abundance of Dehalococcoides increased from (29.1 ±2.4)% to (7.7 ±0.2)%, and gene copy number increased by (1.9 ±0.4)×108 copies per 1 µmol Cl- released, after dechlorinating 222.8 µmol of TCE to ethylene. The 16S rRNA gene sequence of Dehalococcoides LWT1, the main functional dehalogenating bacterium in enrichment culture W-1, was obtained using PCR and Sanger sequencing, and it showed 100% similarity with the 16S rRNA gene sequence of D. mccartyi strain 195. The anaerobic microbial consortium W-1 was also bioaugmented into the groundwater contaminated by TCE at a concentration of 418.7 µmol·L-1. The results showed that (69.2 ±9.8)% of TCE could be completely detoxified to ethylene within 28 days with a dechlorination rate of (10.3 ±1.5) µmol·ï¼ˆL·d)-1. This study can provide the microbial resource and theoretical guidance for the anaerobic microbial remediation in PCE or TCE-contaminated groundwater.


Subject(s)
Chloroflexi , Ethylene Dichlorides , Tetrachloroethylene , Trichloroethylene , Humans , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Ethylenes , Dichloroethylenes , Biodegradation, Environmental , Chloroflexi/genetics
9.
Environ Sci Technol ; 58(14): 6274-6283, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38531380

ABSTRACT

Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.


Subject(s)
Groundwater , Trichloroethylene , Trichloroethylene/metabolism , Acetylene/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Biomass
10.
Chemosphere ; 355: 141726, 2024 May.
Article in English | MEDLINE | ID: mdl-38521105

ABSTRACT

Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Carboxymethylcellulose Sodium , Iron , Sulfur , Polymers
11.
Food Chem Toxicol ; 187: 114594, 2024 May.
Article in English | MEDLINE | ID: mdl-38485042

ABSTRACT

Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.


Subject(s)
Trichloroethylene , Humans , Animals , Mice , Trichloroethylene/toxicity , Trichloroethylene/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Solvents , Gap Junctions/metabolism , Inflammation/metabolism
12.
Environ Pollut ; 348: 123768, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38493868

ABSTRACT

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Trichloroethylene/metabolism , Biodegradation, Environmental , Carbon , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Hydrogen , Hydrogen-Ion Concentration
13.
Chemosphere ; 354: 141634, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462189

ABSTRACT

The complexity of the subsurface contaminated by chlorinated solvents such as trichloroethylene (TCE) makes it challenging to gain a complete understanding of contamination distribution and establish a conceptual site model (CSM). High-resolution vertical contaminant concentration profiling across both the unsaturated zone and the saturated aquifer is desirable for mapping the distribution of contamination. A Fick's law-based polydimethylsiloxane (PDMS) dialysis passive sampler was developed and evaluated on a field scale for its potential application. This study tests the passive sampler at two TCE contaminated sites, and the sampling results were compared with the results from different sampling methods based on the relative percent difference. The PDMS dialysis passive sampler obtained more representative soil gas concentrations in the unsaturated zone than a portable monitoring and sampling device, which caused soil gas flow disturbance by soil gas pumping during sample collection. In the saturated aquifer sampling, the results obtained by the PDMS dialysis passive sampler correlated well with those obtained by a commercial polyethylene passive diffusion bag, and exhibited higher sensitivity under low TCE concentration conditions. Furthermore, the PDMS dialysis passive samplers were densely deployed inside each monitoring well at multiple depths, at two sites, to achieve high-resolution monitoring across the unsaturated zone and saturated aquifer. Based on the PDMS dialysis sampler data, a more comprehensive three-dimensional CSM was systematically established.


Subject(s)
Trichloroethylene , Water Pollutants, Chemical , Solvents/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Renal Dialysis , Trichloroethylene/analysis , Dimethylpolysiloxanes , Soil
14.
Ecotoxicol Environ Saf ; 274: 116174, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471344

ABSTRACT

Trichloroethylene (TCE)-induced hypersensitivity syndrome (THS) has been a concern for many researchers in the field of environmental and occupational health. Currently, there is no specific treatment for THS, leaving patients to contend with severe infections arising from extensive skin lesions, consequently leading to serious adverse effects. However, the pathogenesis of severe skin damage in THS remains unclear. This study aims to investigate the specific danger signals and mechanisms underlying skin damage in THS through in vivo and in vitro experiments. We identified that cell supernatant containing 15 kDa granulysin (GNLY), released from activated CD3-CD56+NK cells or CD3+CD56+NKT cells in PBMC induced by TCE or its metabolite, promoted apoptosis in HaCaT cells. The apoptosis level decreased upon neutralization of GNLY in the supernatant by a GNLY-neutralizing antibody in HaCaT cells. Subcutaneous injection of recombinant 15 kDa GNLY exacerbated skin damage in the THS mouse model and better mimicked patients' disease states. Recombinant 15 kDa GNLY could directly induce cellular communication disorders, inflammation, and apoptosis in HaCaT cells. In addition to its cytotoxic effects, GNLY released from TCE-activated NK cells and NKT cells or synthesized GNLY alone could induce aberrant expression of the E3 ubiquitin ligase PDZRN3, causing dysregulation of the ubiquitination of the cell itself. Consequently, this resulted in the persistent opening of gap junctions composed of connexin43, thereby intensifying cellular inflammation and apoptosis through the "bystander effect". This study provides experimental evidence elucidating the mechanisms of THS skin damage and offers a novel theoretical foundation for the development of effective therapies targeting severe dermatitis induced by chemicals or drugs.


Subject(s)
Trichloroethylene , Ubiquitin-Protein Ligases , Animals , Mice , Connexin 43/metabolism , Hypersensitivity/genetics , Hypersensitivity/metabolism , Inflammation/pathology , Killer Cells, Natural , Leukocytes, Mononuclear , Skin Diseases/chemically induced , Skin Diseases/genetics , Trichloroethylene/toxicity , Ubiquitin-Protein Ligases/metabolism , Humans
15.
Environ Pollut ; 347: 123683, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38428797

ABSTRACT

Remedial actions for groundwater contamination such as containment, in-situ remediation, and pump-and-treat have been developed. This study investigates the hydraulic containment of Trichloroethylene (TCE) contaminated groundwater by using pulsed pump-and-treat technology. The hypothetical research site assumed the operation of pulsed pump-and-treat to manage groundwater contaminated with 0.1 mg/L of TCE. at the pump-and-treat facility. Numerical models, employing MODFLOW and MT3DMS for groundwater flow and contamination simulations, were used for case studies to evaluate the performance and risks of pump-and-treat operation strategies. Evaluation criteria included capture width, removal efficiency, and contaminant leakage. Health risks from TCE leakage were assessed using a vapor intrusion risk assessment tool in adjacent areas. In the facility-scale case study, the capture width of the pump-and-treat was controlled by pumping/injection well operations, including schedules and rates. Pumping/injection well configurations impacted facility efficiencies. Pulsed operation led to TCE leakage downstream. Site-scale case studies simulated contaminant transport through pump-and-treat considering various operation stages (continuous; pulsed), as well as various reactions of TCE in subsurface environment (non-reactive; sorption; sorption and biodegradation). Assuming non-reactive tracer, TCE in groundwater was effectively blocked during continuous operation stage but released downstream in the following pulsed operation stage. Considering chemical reactions, the influences of the pump-and-treat operation followed similar trends of the non-reactive tracer but occurred at delayed times. Groundwater contamination levels were reduced through biodegradation. Cancer and non-cancer risks could occur at points of exposure (POEs) where the contamination levels approached or fell below TCE groundwater standards.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Trichloroethylene/metabolism , Water Pollutants, Chemical/analysis , Gases , Biodegradation, Environmental
16.
Methods Mol Biol ; 2761: 499-510, 2024.
Article in English | MEDLINE | ID: mdl-38427258

ABSTRACT

Trichloroethylene, a chlorinated solvent widely used as a degreasing agent, is a common environmental contaminant. Emerging evidence suggests that chronic exposure to trichloroethylene (TCE) contributes to the development of Parkinson's disease (PD). TCE induced LRRK2 kinase activity in the rat brain and produced a significant dopaminergic lesion in the nigrostriatal tract with elevated oxidative stress. Here we have utilized TCE-induced PD model for the assessment of test drug. Oral gavage administration of TCE at a dose of 1000 mg/kg/day for 6 weeks was utilized to induced PD. Muscle grip strength was estimated by rotarod and grid performance test. Motor activity by actophotometer and locomotor stability were assessed by forelimb locomotor scale (FLS) and forelimb step alternation test (FSAT). However, the postural stability was assessed by postural stability test (PST). Biochemical estimation consists of determination of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), GSH level (reduced glutathione), and nitrite concentration.


Subject(s)
Parkinson Disease , Trichloroethylene , Rats , Animals , Trichloroethylene/toxicity , Rats, Wistar , Solvents , Oxidative Stress
17.
Toxicol Sci ; 199(2): 289-300, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38518092

ABSTRACT

Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.


Subject(s)
DNA Methylation , Th1 Cells , Trichloroethylene , Animals , Trichloroethylene/toxicity , DNA Methylation/drug effects , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Female , Male , Mice , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred MRL lpr , Gene Expression Regulation/drug effects , Interferon-gamma/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/chemically induced , Autoimmune Diseases/genetics , Epigenesis, Genetic/drug effects , Autoimmunity/drug effects
18.
Sci Total Environ ; 923: 171378, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447712

ABSTRACT

Trichloroethylene (TCE) is a common environmental contaminant that can cause a severe allergic reaction called TCE hypersensitivity syndrome, which often implicates the patient's kidneys. Our previous study revealed that C5b-9-induced tubular ferroptosis is involved in TCE-caused kidney damage. However, the study did not explain how tubule-specific C5b-9 causes free iron overload, a key event in ferroptosis. Here, we aimed to explore the role of NCOA4-mediated ferritinophagy in C5b-9-induced iron overload and ferroptosis in TCE-sensitized mice. Our results showed that TCE sensitization does not affect iron import or export, but does affect iron storage, causing ferritin degradation and free iron overload. In addition, mitochondrial ROS was upregulated, and these changes were blocked by C5b-9 inhibition. Interestingly, TCE-induced ferritin degradation and ferroptosis were significantly antagonized by the application of the mitochondrial ROS inhibitor, Mito-TEMPO. Moreover, all of these modes of action were further verified in C5b-9-attack signalling HK-2 cells. Further investigation demonstrated that C5b-9-upregulated mitochondrial ROS induced a marked increase in nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy. In addition, the application of NCOA4 small interfering RNA not only significantly reversed ferritinophagy caused by C5b-9 but also reduced C5b-9-induced ferroptosis in HK-2 cells. Taken together, these results suggest that tubule-specific C5b-9 deposition activates NCOA4 through the upregulation of mitochondrial ROS, causing ferritin degradation and elevated free iron, which ultimately leads to tubular epithelial cell ferroptosis and kidney injury in TCE-sensitized mice.


Subject(s)
Ferroptosis , Iron Overload , Trichloroethylene , Animals , Mice , Humans , Trichloroethylene/toxicity , Complement Membrane Attack Complex/metabolism , Reactive Oxygen Species/metabolism , Iron/toxicity , Iron/metabolism , Ferritins/metabolism , Epithelial Cells
19.
J Hazard Mater ; 468: 133761, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38364580

ABSTRACT

Co-contaminants and complex subsurface conditions pose great challenges to site remediation. This study demonstrates the potential of electrokinetic bioremediation (EK-BIO) in treating co-contaminants of chlorinated solvents and heavy metals in low-permeability soils with elevated sulfate. EK-BIO columns were filled with field soils, and were fed by the electrolyte containing 20 mg/L trichloroethylene (TCE), 250 µM Cr(VI), 25 µM As(III), 10 mM lactate, and 10 mM sulfate. A dechlorinating consortium containing Dehalococcoides (Dhc) was injected several times during a 199-d treatment at ∼1 V/cm. Sulfate reduction, Cr/As immobilization, and complete TCE biodechlorination were observed sequentially. EK-BIO facilitated the delivery of lactate, Cr(VI)/As(III), and sulfate to the soils, creating favorable reductive conditions for contaminant removal. Supplementary batch experiments and metagenomic/transcriptomic analysis suggested that sulfate promoted the reductive immobilization of Cr(VI) by generating sulfide species, which subsequently enhanced TCE biodechlorination by alleviating Cr(VI) toxicity. The dechlorinating community displayed a high As(III) tolerance. Metagenomic binning analysis revealed the dechlorinating activity of Dhc and the potential synergistic effects from other bacteria in mitigating heavy metal toxicity. This study justified the feasibility of EK-BIO for co-contaminant treatment and provided mechanistic insights into EK-BIO treatment.


Subject(s)
Chromium , Trichloroethylene , Biodegradation, Environmental , Sulfates , Soil , Sulfur Oxides , Lactic Acid
20.
Environ Res ; 248: 118338, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38316390

ABSTRACT

The study investigated the influences of pure H2 and O2 introduction, simulating gases produced from the electrokinetic-enhanced bioremediation (EK-Bio), on TCE degradation, and the dynamic changes of the indigenous microbial communities. The dissolved hydrogen (DH) and oxygen (DO) concentrations ranged from 0.2 to 0.7 mg/L and 2.6 to 6.6 mg/L, respectively. The biological analysis was conducted by 16S rRNA sequencing and functional gene analyses. The results showed that the H2 introduction enhanced TCE degradation, causing a 90.4% TCE removal in the first 4 weeks, and 131.1 µM was reduced eventually. Accordingly, cis-dichloroethylene (cis-DCE) was produced as the only product. The following three ways should be responsible for this promoted TCE degradation. Firstly, the high DH rapidly reduced the oxidation-reduction potential (ORP) value to around -500 mV, beneficial to TCE microbial dechlorination. Secondly, the high DH significantly changed the community and promoted the enrichment of TCE anaerobic dechlorinators, such as Sulfuricurvum, Sulfurospirillum, Shewanella, Geobacter, and Desulfitobacterium, and increased the abundance of dechlorination gene pceA. Thirdly, the high DH promoted preferential TCE dechlorination and subsequent sulfate reduction. However, TCE bio-remediation did not occur in a high DO environment due to the reduced aerobic function or lack of functional bacteria or co-metabolic substrate. The competitive dissolved organic carbon (DOC) consumption and unfriendly microbe-microbe interactions also interpreted the non-degradation of TCE in the high DO environment. These results provided evidence for the mechanism of EK-Bio. Providing anaerobic obligate dechlorinators, and aerobic metabolic bacteria around the electrochemical cathodes and anodes, respectively, or co-metabolic substrates to the anode can be feasible methods to promote remediation of TCE-contaminated shallow aquifer under EK-Bio technology.


Subject(s)
Trichloroethylene , Biodegradation, Environmental , Trichloroethylene/analysis , Trichloroethylene/metabolism , RNA, Ribosomal, 16S , Bacteria/metabolism , Hydrogen/analysis , Hydrogen/metabolism , Oxygen/analysis , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...