Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters











Publication year range
1.
Braz J Microbiol ; 55(2): 1679-1691, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393617

ABSTRACT

Fungal plant pathogens are responsible for serious losses in many economically important crop species worldwide. Due to the use of fungicides and the fungi genome plasticity, multi-drug resistant strains are emerging as a new generation of pathogens, causing an expansive range of superficial and systemic plant infections, or new opportunistic fungal pathogens for humans. The group of antagonistic fungi Trichoderma spp. has been widely used to enhance plant growth and for the control of different pathogens affecting crops. Although Neurospora crassa is not a mycoparasitic fungus, its secretion of secondary metabolites with antimicrobial activity has been described. In this work, the effect of crude extract of the monoculture of Trichoderma asperellum T8a or the co-culture with N. crassa as an inhibitory treatment against the fungal pathogens Botrytis cinerea and Fusarium solani was evaluated. The findings demonstrate that the secondary metabolites contained in the T. asperellum crude extract have a clear fungistatic activity against B. cinerea and F. solani. Interestingly, this fungistatic activity highly increases when T. asperellum is co-cultivated with the non-pathogenic fungus N. crassa. Moreover, the co-culture crude extract also showed antifungal activity on post-harvest fruits, and no toxic effects on Murine fibroblast L929 (CCL-1) and murine macrophages RAW 264.7 (TIB-71) were observed. All these results together are solid evidence of the potential of the co-culture crude extract of T. asperellum and N. crassa, as an antifungal agent against phytopathogenic fungi, or post-harvest fruits during the transportation or commercialization time.


Subject(s)
Botrytis , Coculture Techniques , Fruit , Fusarium , Trichoderma , Fusarium/drug effects , Fusarium/growth & development , Fruit/microbiology , Fruit/chemistry , Botrytis/drug effects , Botrytis/growth & development , Trichoderma/metabolism , Trichoderma/genetics , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Neurospora crassa/drug effects , Neurospora crassa/metabolism , RAW 264.7 Cells , Complex Mixtures/pharmacology , Complex Mixtures/chemistry
2.
Sci Rep ; 14(1): 2466, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291044

ABSTRACT

Fungi of the Trichoderma genus are called "biostimulants" because they promote plant growth and development and induce disease resistance. We used conventional transcriptome and gene co-expression analyses to understand the molecular response of the plant Arabidopsis thaliana to inoculation with Trichoderma atroviride or Trichoderma virens. The transcriptional landscape of the plant during the interaction with these fungi showed a reduction in functions such as reactive oxygen species production, defense mechanisms against pathogens, and hormone signaling. T. virens, as opposed to T. atroviride, was more effective at downregulating genes related to terpenoid metabolism, root development, and chemical homeostasis. Through gene co-expression analysis, we found functional gene modules that closely link plant defense with hypoxia. Notably, we found a transcription factor (locus AT2G47520) with two functional domains of interest: a DNA-binding domain and an N-terminal cysteine needed for protein stability under hypoxia. We hypothesize that the transcription factor can bind to the promoter sequence of the GCC-box that is connected to pathogenesis by positioned weight matrix analysis.


Subject(s)
Arabidopsis , Trichoderma , Arabidopsis/metabolism , Trichoderma/genetics , Disease Resistance , Transcription Factors/metabolism , Hypoxia/metabolism , Plant Roots/metabolism
3.
Microbiol Spectr ; 11(6): e0260723, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37943049

ABSTRACT

IMPORTANCE: In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.


Subject(s)
Trichoderma , Animals , Trichoderma/genetics , Signal Transduction , Mycelium , Reproduction , Oxidative Stress , Gene Expression Regulation, Fungal , Spores, Fungal/metabolism
4.
Mol Genet Genomics ; 298(3): 735-754, 2023 May.
Article in English | MEDLINE | ID: mdl-37017807

ABSTRACT

Trichoderma atroviride and Trichoderma harzianum are widely used as commercial biocontrol agents against plant diseases. Recently, T. harzianum IOC-3844 (Th3844) and T. harzianum CBMAI-0179 (Th0179) demonstrated great potential in the enzymatic conversion of lignocellulose into fermentable sugars. Herein, we performed whole-genome sequencing and assembly of the Th3844 and Th0179 strains. To assess the genetic diversity within the genus Trichoderma, the results of both strains were compared with strains of T. atroviride CBMAI-00020 (Ta0020) and T. reesei CBMAI-0711 (Tr0711). The sequencing coverage value of all genomes evaluated in this study was higher than that of previously reported genomes for the same species of Trichoderma. The resulting assembly revealed total lengths of 40 Mb (Th3844), 39 Mb (Th0179), 36 Mb (Ta0020), and 32 Mb (Tr0711). A genome-wide phylogenetic analysis provided details on the relationships of the newly sequenced species with other Trichoderma species. Structural variants revealed genomic rearrangements among Th3844, Th0179, Ta0020, and Tr0711 relative to the T. reesei QM6a reference genome and showed the functional effects of such variants. In conclusion, the findings presented herein allow the visualization of genetic diversity in the evaluated strains and offer opportunities to explore such fungal genomes in future biotechnological and industrial applications.


Subject(s)
Trichoderma , Phylogeny , Trichoderma/genetics , Genomics
5.
Protoplasma ; 260(5): 1257-1269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36877382

ABSTRACT

The modulation of plant growth and development through reactive oxygen species (ROS) is a hallmark during the interactions with microorganisms, but how fungi and their molecules influence endogenous ROS production in the root remains unknown. In this report, we correlated the biostimulant effect of Trichoderma atroviride with Arabidopsis root development via ROS signaling. T. atroviride enhanced ROS accumulation in primary root tips, lateral root primordia, and emerged lateral roots as revealed by total ROS imaging through the fluorescent probe H2DCF-DA and NBT detection. Acidification of the substrate and emission of the volatile organic compound 6-pentyl-2H-pyran-2-one appear to be major factors by which the fungus triggers ROS accumulation. Besides, the disruption of plant NADPH oxidases, also known as respiratory burst oxidase homologs (RBOHs) including ROBHA, RBOHD, but mainly RBOHE, impaired root and shoot fresh weight and the root branching enhanced by the fungus in vitro. RbohE mutant plants displayed poor lateral root proliferation and lower superoxide levels than wild-type seedlings in both primary and lateral roots, indicating a role for this enzyme for T. atroviride-induced root branching. These data shed light on the roles of ROS as messengers for plant growth and root architectural changes during the plant-Trichoderma interaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Trichoderma , Trichoderma/genetics , Reactive Oxygen Species/metabolism , Arabidopsis Proteins/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Plant Roots , Gene Expression Regulation, Plant
6.
Planta ; 257(2): 31, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36602606

ABSTRACT

MAIN CONCLUSION: Molecular studies have elucidated Trichoderma's biocontrol mechanisms. Since fungicides have limited use, Trichoderma could control disease by new metabolic routes and epigenetic alterations. Due to environmental and health hazards, agrochemicals have been a concern since they were introduced in agriculture. Trichoderma, a well-known fungal genus with different mechanisms of action, is an alternative to pesticides and a great tool to help minimize disease incidence. Trichoderma-treated plants mainly benefit from disease control and growth promotion through priming, and these fungi can modulate plants' gene expression by boosting their immune system, accelerating their response to threats, and building stress tolerance. The latest studies suggest that epigenetics is required for plant priming and could be essential for growth promotion, expanding the possibilities for producing new resistant plant varieties. Trichoderma's propagules can be mass produced and formulated depending on the delivery method. Microsclerotia-based bioproducts could be a promising way of increasing the reliability and durability of marketed products in the field, as well as help guarantee longer shelf life. Developing novel formulations and selecting efficient Trichoderma strains can be tiresome, but patent search indicates an increase in the industrialization and commercialization of technologies and an expansion of companies' involvement in research and development in this field. Although Trichoderma is considered a well-known fungal genus, it still attracts the attention of large companies, universities, and research institutes around the world.


Subject(s)
Mycoses , Trichoderma , Trichoderma/genetics , Reproducibility of Results , Plants/microbiology , Agriculture , Plant Diseases/prevention & control , Plant Diseases/microbiology
7.
J Exp Bot ; 74(6): 2016-2028, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36575905

ABSTRACT

Beneficial interactions between plant roots and Trichoderma species lead to both local and systemic enhancements of the plant immune system through a mechanism known as priming of defenses. Previously, we have reported a number of genes and proteins that are differentially regulated in distant tissues of maize plants following inoculation with Trichoderma atroviride. To further investigate the mechanisms involved in the systemic activation of plant responses, here we have further evaluated the regulatory aspects of a selected group of genes when priming is triggered in maize plants. Time-course experiments from the beginning of the interaction between T. atroviride and maize roots followed by leaf infection with Colletotrichum graminicola allowed us to identify a gene set regulated by priming in the leaf tissue. In the same experiment, phytohormone measurements revealed a decrease in jasmonic acid concentration while salicylic acid increased at 2 d and 6 d post-inoculation. In addition, chromatin structure and modification assays showed that chromatin was more open in the primed state compared with unprimed control conditions, and this allowed for quicker gene activation in response to pathogen attack. Overall, the results allowed us to gain insights on the interplay between the phytohormones and epigenetic regulatory events in the systemic and long-lasting regulation of maize plant defenses following Trichoderma inoculation.


Subject(s)
Trichoderma , Zea mays , Zea mays/genetics , Zea mays/metabolism , Trichoderma/genetics , Trichoderma/metabolism , Salicylic Acid/metabolism , Plant Leaves/metabolism , Plant Diseases/genetics , Plant Roots/metabolism
8.
ISME J ; 16(1): 149-158, 2022 01.
Article in English | MEDLINE | ID: mdl-34282283

ABSTRACT

The capability to respond to wounding is a process shared by organisms of different kingdoms that can result in the regeneration of whole-body parts or lost structures or organs. Filamentous fungi constitute a rich food source that ensures survival and reproduction of their predators and are therefore continuously exposed to mechanical damage. Nevertheless, our understanding of how fungi respond to wounding and predators is scarce. Fungi like plants and animals respond to injury recognizing Damage- and Microbe-Associated Molecular Patterns (DAMPs/MAMPs) that activate Ca2+ and Mitogen-Activated Protein Kinase dependent signaling for the activation of defense mechanisms. During herbivory, plants, in addition to activating pathways related to injury, activate specific responses to combat their predators. Using a transcriptional approach, we studied the capacity of the filamentous fungus Trichoderma atroviride to activate specific responses to injury and attack by different arthropods. Attack by Drosophila melanogaster inhibited the transcriptional activation of genes required for hyphal regeneration, and the fungal innate immune and chemical defense responses. We also provide mechanistic insight of this inhibition involving components of the D. melanogaster salivary glands that repress the expression of a set of genes and block hyphal regeneration.


Subject(s)
Trichoderma , Animals , Defense Mechanisms , Drosophila , Drosophila melanogaster/genetics , Hypocreales , Trichoderma/genetics , Trichoderma/metabolism
9.
Plant J ; 109(4): 873-890, 2022 02.
Article in English | MEDLINE | ID: mdl-34807478

ABSTRACT

Trichoderma atroviride is a root-colonizing fungus that confers multiple benefits to plants. In plants, small RNA (sRNA)-mediated gene silencing (sRNA-MGS) plays pivotal roles in growth, development, and pathogen attack. Here, we explored the role of core components of Arabidopsis thaliana sRNA-MGS pathways during its interaction with Trichoderma. Upon interaction with Trichoderma, sRNA-MGS-related genes paralleled the expression of Arabidopsis defense-related genes, linked to salicylic acid (SA) and jasmonic acid (JA) pathways. SA- and JA-related genes were primed by Trichoderma in leaves after the application of the well-known pathogen-associated molecular patterns flg22 and chitin, respectively. Defense-related genes were primed in roots as well, but to different extents and behaviors. Phenotypical characterization of mutants in AGO genes and components of the RNA-dependent DNA methylation (RdDM) pathway revealed that different sets of sRNA-MGS-related genes are essential for (i) the induction of systemic acquired resistance against Botrytis cinerea, (ii) the activation of the expression of plant defense-related genes, and (iii) root colonization by Trichoderma. Additionally, plant growth induced by Trichoderma depends on functional RdDM. Profiling of DNA methylation and histone N-tail modification patterns at the Arabidopsis Nitrile-Specifier Protein-4 (NSP4) locus, which is responsive to Trichoderma, showed altered epigenetic modifications in RdDM mutants. Furthermore, NSP4 is required for the induction of systemic acquired resistance against Botrytis and avoidance of enhanced root colonization by Trichoderma. Together, our results indicate that RdDM is essential in Arabidopsis to establish a beneficial relationship with Trichoderma. We propose that DNA methylation and histone modifications are required for plant priming by the beneficial fungus against B. cinerea.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Disease Resistance/genetics , Gene Silencing , Hypocreales/genetics , Nitriles/metabolism , RNA/metabolism , Arabidopsis Proteins/metabolism , Botrytis , Cyclopentanes , Gene Expression Regulation, Plant , Hypocreales/metabolism , Oxylipins , Plant Diseases/genetics , Plant Diseases/immunology , Plant Roots/metabolism , Salicylic Acid/metabolism , Trichoderma/genetics , Trichoderma/metabolism
10.
Mycologia ; 113(6): 1136-1155, 2021.
Article in English | MEDLINE | ID: mdl-34473608

ABSTRACT

A study was performed on a collection of 84 isolates from decaying plant tissues and soils in Argentina previously identified as Trichoderma harzianum. Based on multiple phenotypic characters and multilocus phylogenetic analyses, 10 species were distinguished, three of which are described as new species: T. austroindianum, T. hortense, and T. syagri. Among the remaining seven identified species, the following five can be added to the Argentine mycobiota: T. afarasin, T. afroharzianum, T. endophyticum, T. guizhouense, and T. neotropicale. Trichoderma afroharzianum and T. endophyticum were the most frequent species found in the samples. In addition, a collection of isolates previously identified as T. harzianum with antagonistic abilities were reidentified as T. afroharzianum, thus highlighting the importance of correct identification of biocontrol species.


Subject(s)
Trichoderma , Argentina , Ecosystem , Hypocreales , Phylogeny , Trichoderma/genetics
11.
Mycologia ; 113(5): 1056-1072, 2021.
Article in English | MEDLINE | ID: mdl-34128770

ABSTRACT

The hyperdiverse genus Trichoderma is one of most useful groups of microbes for a number of human activities, and their accurate identification is crucial. The structural simplicity and lack of distinctive phenotypic variation in this group enable the use of DNA-based species delimitation methods in combination with phylogenies (and morphology when feasible) to establish well-supported boundaries among species. Our study employed a multilocus phylogeny and four DNA-based methods (automated barcode gap discovery [ABGD], statistical parsimony [SPN], generalized mixed Yule coalescent [GMYC], and Bayesian phylogenetics and phylogeography [BPP]) for four molecular markers (acl1, act, rpb2, and tef1) to delimit species of two lineages of Trichoderma. Although incongruence among these methods was observed in our analyses, the genetic distance (ABGD) and coalescence (BPP) methods and the multilocus phylogeny strongly supported and confirmed recognition of 108 and 39 different species in the Harzianum and Longibrachiatum lineages, including three new species associated with cacao farms in northern Peru, namely, T.awajun, sp. nov., T.jaklitschii, sp. nov., and T.peruvianum, sp. nov. Morphological distinctions between the new species and their close relatives are primarily related to growth rates, colony appearance, and size of phialides and conidia. This study confirmed that an integrative approach (DNA-based methods, multilocus phylogeny, and phenotype) is more likely to reliably verify supported species boundaries in Trichoderma.


Subject(s)
Cacao , Trichoderma , Bayes Theorem , Humans , Peru , Phylogeny , Soil , Trichoderma/genetics
12.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925273

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei is used on an industrial scale to produce enzymes of biotechnological interest. This fungus has a complex cellulolytic system involved in the degradation of lignocellulosic biomass. However, several aspects related to the regulation of the expression of holocellulolytic genes and the production of cellulases by this fungus are still understood. METHODS: Here, we constructed a null mutant strain for the xyloglucanase cel74a gene and performed the characterization of the Δcel74a strain to evaluate the genetic regulation of the holocellulases during sugarcane bagasse (SCB) cultivation. RESULTS: Our results demonstrate that the deletion of xyloglucanase cel74a may impact the regulation of holocellulase expression during SCB cultivation. The expression of cellulases cel7a, cel7b, and cel6a was reduced in Δcel74a strain, while the hemicellulases xyn1 and xyn2 were increased in the presence of SCB. The cel74a mutation also affected the xyloglucan hydrolysis patterns. In addition, CEL74A activity was modulated in the presence of calcium, suggesting that this ion may be required for efficient degradation of xyloglucan. CONCLUSIONS: CEL74A affects the regulation of holocellulolytic genes and the efficient degradation of SCB in T. reesei. This data makes a significant contribution to our understanding of the carbon utilization of fungal strains as a whole.


Subject(s)
Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hypocreales/genetics , Biomass , Cellulases/genetics , Cellulases/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Hydrolysis , Hypocreales/metabolism , Saccharum/metabolism , Trichoderma/genetics , Trichoderma/metabolism
13.
BMC Genomics ; 21(1): 757, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33138770

ABSTRACT

BACKGROUND: Unveiling fungal genome structure and function reveals the potential biotechnological use of fungi. Trichoderma harzianum is a powerful CAZyme-producing fungus. We studied the genomic regions in T. harzianum IOC3844 containing CAZyme genes, transcription factors and transporters. RESULTS: We used bioinformatics tools to mine the T. harzianum genome for potential genomics, transcriptomics, and exoproteomics data and coexpression networks. The DNA was sequenced by PacBio SMRT technology for multiomics data analysis and integration. In total, 1676 genes were annotated in the genomic regions analyzed; 222 were identified as CAZymes in T. harzianum IOC3844. When comparing transcriptome data under cellulose or glucose conditions, 114 genes were differentially expressed in cellulose, with 51 being CAZymes. CLR2, a transcription factor physically and phylogenetically conserved in Trichoderma spp., was differentially expressed under cellulose conditions. The genes induced/repressed under cellulose conditions included those important for plant biomass degradation, including CIP2 of the CE15 family and a copper-dependent LPMO of the AA9 family. CONCLUSIONS: Our results provide new insights into the relationship between genomic organization and hydrolytic enzyme expression and regulation in T. harzianum IOC3844. Our results can improve plant biomass degradation, which is fundamental for developing more efficient strains and/or enzymatic cocktails to produce hydrolytic enzymes.


Subject(s)
Trichoderma , Carbohydrate Metabolism , Cellulose/metabolism , Genomics , Hypocreales , Trichoderma/genetics , Trichoderma/metabolism
14.
Fungal Biol ; 124(10): 854-863, 2020 10.
Article in English | MEDLINE | ID: mdl-32948273

ABSTRACT

Trichoderma species play important roles in nature as plant growth promotors and antagonists of phytopathogenic fungi, and are used as models to study photomorphogenesis. Molecular tools have been implemented to manipulate and improve these fungi. However, instability of transformants or very low frequency of homologous recombination has been reported. Here, we report the fate of transforming DNA, demonstrating that it can follow two different fates. When a vector contains sequences also present in the Trichodermaatroviride genome, it mainly integrates by homologous recombination generating stable recombinant strains. In contrast, vectors with no sequence homology to the T. atroviride genome generate unstable transformants, losing the transforming DNA in the first generation of conidia produced without selection where, surprisingly, the vector behaves as autoreplicative. Integration by homologous recombination was demonstrated when transformants were generated with a truncated version of the blr2 gene, resulting in insertional mutants with phenotypes identical to those of knockout mutants. Our results indicate that T. atroviride is highly efficient in integrating DNA by homologous recombination and that plasmid vectors with no sequence homology to the genome are maintained for several generations in T. atroviride if kept under selective pressure even though they lacked fungal autonomous replication sequences.


Subject(s)
Homologous Recombination , Transformation, Genetic , Trichoderma , Genetic Vectors , Hypocreales , Trichoderma/genetics
15.
Braz J Microbiol ; 51(3): 989-997, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32333271

ABSTRACT

Fungi in the genus Trichoderma are notorious producers of secondary metabolites with diverse applications, such as antibacterial, antifungal, and plant growth-promoting properties. Peptaibols are linear peptides produced by such fungi, with more than 440 compounds described to date, including tricholongins, longibrachins, trichobrachins, and trichovirins. Peptaibols are synthesized by non-ribosomal peptide synthetases and they have several biological activities. Our research group isolated four peptaibols (6DP2, 6DP3, 6DP4, and 6DP5) with antifungal activity against the plant pathogen Colletotrichum gloeosporioides and the proteasome (a cancer chemotherapy target) from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. The ethyl acetate extract of this endophyte showed activity of 6.01% and 75% against C. gloeosporioides and the proteasome, respectively. The isolated compounds were identified by MS/MS and compared to literature data, suggesting the presence of trilongins BI, BII, BIII, and BIV, which are peptaibols containing 20 amino acid residues. The minimum inhibitory concentration against C. gloeosporioides was 40 µM for trilongin BI, 320 µM for trilongin BII, 160 µM for trilongin BIII, and 310 µM for trilongin BIV. BI-BIV trilongins inhibited proteasome ChTL activity, with IC50 values of 6.5 ± 2.7; 4.7 ± 1.8; 6.3 ± 2.2; and 2.7 ± 0.5 µM, respectively. The compounds were tested ex vivo against the intracellular amastigotes of Leishmania (L.) infantum but showed no selectivity. It is the first report of trilongins BI-BIV with antifungal activity against C. gloeosporioides and the proteasome target.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Begoniaceae/microbiology , Peptaibols/pharmacology , Trichoderma/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Colletotrichum/drug effects , Endophytes , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Peptaibols/chemistry , Peptaibols/isolation & purification , Phylogeny , Proteasome Inhibitors/pharmacology , Trichoderma/classification , Trichoderma/genetics , Trichoderma/isolation & purification
16.
PLoS One ; 15(3): e0228485, 2020.
Article in English | MEDLINE | ID: mdl-32130211

ABSTRACT

Fifty four Trichoderma strains were isolated from soil samples collected from garlic and onion crops in eight different sites in Brazil and were identified using phylogenetic analysis based on combined ITS region, tef1-α, cal, act and rpb2 sequences. The genetic variability of the recovered Trichoderma species was analysed by AFLP and their phenotypic variability determined using MALDI-TOF. The strain clusters from both typing techniques coincided with the taxonomic determinations made from phylogenetic analysis. The phylogenetic analysis showed the occurrence of Trichoderma asperellum, Trichoderma asperelloides, Trichoderma afroharzianum, Trichoderma hamatum, Trichoderma lentiforme, Trichoderma koningiopsis, Trichoderma longibrachiatum and Trichoderma erinaceum, in the soil samples. We also identified and describe two new Trichoderma species, both in the harzianum clade of section Pachybasium, which we have named Trichoderma azevedoi sp. nov. and Trichoderma peberdyi sp. nov. The examined strains of both T. azevedoi (three strains) and T. peberdyi (12 strains) display significant genotypic and phenotypic variability, but form monophyletic clades with strong bootstrap and posterior probability support and are morphologically distinct from their respective most closely related species.


Subject(s)
Garlic/microbiology , Onions/microbiology , Soil Microbiology , Trichoderma/classification , Trichoderma/isolation & purification , Amplified Fragment Length Polymorphism Analysis , Biodiversity , Brazil , DNA, Fungal/analysis , DNA, Fungal/genetics , Mycological Typing Techniques/methods , Phylogeny , Sequence Analysis, DNA/methods , Species Specificity , Trichoderma/cytology , Trichoderma/genetics
17.
Microb Cell Fact ; 19(1): 69, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32188455

ABSTRACT

BACKGROUND: Trichoderma species are among the most effective cell factories to produce recombinant proteins, whose productivity relies on the molecular toolkit and promoters available for the expression of the target protein. Although inducible promoter systems have been developed for producing recombinant proteins in Trichoderma, constitutive promoters are often a desirable alternative. Constitutive promoters are simple to use, do not require external stimuli or chemical inducers to be activated, and lead to purer enzyme preparations. Moreover, most of the promoters for homologous and heterologous expression reported in Trichoderma have been commonly evaluated by directly assessing production of industrial enzymes, requiring optimization of laborious protocols. RESULTS: Here we report the identification of Pccg6, a novel Trichoderma atroviride constitutive promoter, that has similar transcriptional strength as that of the commonly used pki1 promoter. Pccg6 displayed conserved arrangements of transcription factor binding sites between promoter sequences of Trichoderma ccg6 orthologues genes, potentially involved in their regulatory properties. The predicted ccg6-encoded protein potentially belongs to the SPE1/SPI1 protein family and shares high identity with CCG6 orthologue sequences from other fungal species including Trichoderma reesei, Trichoderma virens, Trichoderma asperellum, and to a lesser extent to that of Neurospora crassa. We also report the use of the Pccg6 promoter to drive the expression of PTXD, a phosphite oxidoreductase of bacterial origin, which allowed T. atroviride to utilize phosphite as a sole source of phosphorus. We propose ptxD as a growth reporter gene that allows real-time comparison of the functionality of different promoters by monitoring growth of Trichoderma transgenic lines and enzymatic activity of PTXD. Finally, we show that constitutive expression of ptxD provided T. atroviride a competitive advantage to outgrow bacterial contaminants when supplied with phosphite as a sole source of phosphorus. CONCLUSIONS: A new constitutive promoter, ccg6, for expression of homologous and heterologous proteins has been identified and tested in T. atroviride to express PTXD, which resulted in an effective and visible phenotype to evaluate transcriptional activity of sequence promoters. Use of PTXD as a growth marker holds great potential for assessing activity of other promoters and for biotechnological applications as a contamination control system.


Subject(s)
Genes, Fungal , Promoter Regions, Genetic , Trichoderma/genetics , Bacterial Proteins/genetics , Cloning, Molecular , Oxidoreductases/genetics , Recombinant Proteins/genetics
18.
BMC Res Notes ; 12(1): 663, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31627730

ABSTRACT

OBJECTIVE: Trichoderma species are found in soil and in association with plants. They can act directly or indirectly in the biological control of plant diseases and in the promotion of plant growth, being among the most used fungi in the formulation of bioproducts applied to agricultural systems. The main objective of this study was to characterize at a first-tier level a collection of 67 Trichoderma isolates from various tropical sources, based solely on sequencing of the internal transcribed spacer (ITS) region of the rRNA genes. Our goal was to provide a preliminary idea of the baseline diversity in this collection, to combine this information later with an array of other isolate-specific physiological data. This study provides a required knowledge at molecular level for assessment of this germplasm potential as a source of biotechnological products for beneficial effects in plants. RESULTS: Sequencing of the ITS region showed that the 67 Trichoderma isolates belonged in 11 species: T. asperellum, T. atroviride, T. brevicompactum, T. harzianum, T. koningiopsis, T. longibrachiatum, T. pleuroticola, T. reesei, T. spirale, T. stromaticum and T. virens. A total of 40.3% of the isolates were very closely related to each other and similar to T. harzianum. The baseline genetic diversity found indicates that the collection has different genotypes, which can be exploited further as a source of bioproducts, aiming at providing beneficial effects to plants of interest to cope with biotic and abiotic stresses.


Subject(s)
DNA, Ribosomal Spacer/genetics , Genetic Variation , RNA, Ribosomal/genetics , Trichoderma/genetics , Tropical Climate , DNA, Fungal/analysis , DNA, Fungal/genetics , Ecosystem , Genotype , Phylogeny , Sequence Analysis, DNA/methods , Species Specificity , Trichoderma/classification , Trichoderma/growth & development
19.
Molecules ; 24(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652666

ABSTRACT

Trichothecene mycotoxins are recognized as highly bioactive compounds that can be used in the design of new useful bioactive molecules. In Trichoderma brevicompactum, the first specific step in trichothecene biosynthesis is carried out by a terpene cyclase, trichodiene synthase, that catalyzes the conversion of farnesyl diphosphate to trichodiene and is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin, a trichothecene-type toxin, which is a valuable tool in preparing new molecules with a trichothecene skeleton. In this work, we developed the hemisynthesis of trichodermin and trichodermol derivatives in order to evaluate their antimicrobial and cytotoxic activities and to study the chemo-modulation of their bioactivity. Some derivatives with a short chain at the C-4 position displayed selective antimicrobial activity against Candida albicans and they showed MIC values similar to those displayed by trichodermin. It is important to highlight the cytotoxic selectivity observed for compounds 9, 13, and 15, which presented average IC50 values of 2 µg/mL and were cytotoxic against tumorigenic cell line MCF-7 (breast carcinoma) and not against Fa2N4 (non-tumoral immortalized human hepatocytes).


Subject(s)
Trichodermin/analogs & derivatives , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Candida albicans/drug effects , Cell Line , Female , Hepatocytes/drug effects , Humans , MCF-7 Cells , Mycotoxins/pharmacology , Rabbits , Trichoderma/enzymology , Trichoderma/genetics , Trichoderma/metabolism , Trichodermin/chemical synthesis , Trichodermin/chemistry , Trichodermin/pharmacology
20.
Microbiol Res ; 227: 126296, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31421712

ABSTRACT

Heat shock proteins (Hsp) are important factors in the response of organisms to oscillations in environmental conditions. Although Hsp have been studied for a long time, little is known about this protein class in Trichoderma species. Here we studied the expression of Hsp genes during T. asperellum growth, and mycoparasitism against two phytopathogens: Sclerotinia sclerotiorum and Fusarium oxysporum, as well as during thermal stress. The expression levels of these genes were observed by real-time PCR and they showed to be differentially expressed under these conditions. We verified that the TaHsp26c, TaHsp70b and TaHsp70c genes were differentially expressed over time, indicating that these genes can be developmentally regulated in T. asperellum. Except for TaHsp26a, all other genes analyzed were induced in the post-contact condition when T. asperellum was cultured in a confrontation plate assay against itself. Additionally, TaHsp26b, TaHsp26c, TaHsp90, TaHsp104a and TaHsp104b were induced during initial contact between T. asperellum hyphae, suggesting that these proteins must play a role in the organism´s self-recognition mechanism. When we examined gene expression during mycoparasitism, we observed that some genes were induced both by S. sclerotiorum and F. oxysporum, while others were not induced during interaction with either of the phytopathogens. Furthermore, we observed some genes induced only during confrontation against S. sclerotiorum, indicating that the expression of Hsp genes during mycoparasitism seems to be modulated by the phytopathogen. To assess whether such genes are expressed during temperature oscillations, we analyzed their transcription levels during thermal and cold shock. We observed that except for the TaHsp70c gene, all others presented high transcript levels when T. asperellum was submitted to high temperature (38 °C), indicating their importance in the response to heat stress. The TaHsp70c gene was significantly induced only in cold shock at 4 °C. Our results show the importance of Hsp proteins during self-recognition, mycoparasitism and thermal stress in T. asperellum.


Subject(s)
Gene Expression Regulation, Fungal/genetics , Genes, Fungal/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/physiology , Trichoderma/genetics , Amino Acid Sequence , Ascomycota/genetics , Fusarium/genetics , Heat-Shock Response/genetics , Hyphae/genetics , Hyphae/growth & development , Microbial Interactions , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction , Sequence Alignment , Stress, Physiological/genetics , Temperature , Transcriptome , Trichoderma/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL