Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 135: 43-50, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28606423

ABSTRACT

Trichodesmium is an enigmatic bloom forming, non-heterocystous cyanobacterium reported most frequently in the coastal waters of India. However, the toxigenic potential of this globally significant N2 fixing cyanobacterium has not been characterized. In this study, we report for the first time the presence of potent multi-class neurotoxins such as Anatoxin-a, Saxitoxins, Gonyautoxin and hepatotoxins like MC-LR, MC-YA from a bloom material of Trichodesmium sp. MBDU 524 collected at the Gulf of Mannar region. Toxins were determined using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis of HPLC purified aqueous and solvent fractions. Molecular phylogenetic analysis through 16S rRNA gene sequencing showed the close relationship with Trichodesmium erythraeum clade. The toxigenic potential was validated through brine shrimp toxicity assay and showed 100% mortality after 48 h of incubation. The results suggest the potential toxigenic and environmental impacts of Trichodesmium bloom sample from the Gulf of Mannar region.


Subject(s)
Eutrophication , Marine Toxins/analysis , Neurotoxins/analysis , Trichodesmium/chemistry , Animals , Artemia/drug effects , Indian Ocean , Marine Toxins/toxicity , Phylogeny , RNA, Ribosomal, 16S , Toxicity Tests, Acute , Trichodesmium/classification , Trichodesmium/genetics
2.
ISME J ; 11(9): 2090-2101, 2017 09.
Article in English | MEDLINE | ID: mdl-28534879

ABSTRACT

Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a profound influence on global biogeochemistry, by injecting 'new' nitrogen into the low nutrient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource gradient in the western North Atlantic to examine microbiome community structure, functional diversity and metabolic contributions to the holobiont. Here we demonstrate the presence of a core Trichodesmium microbiome that is modulated to suit different ocean regions, and contributes over 10 times the metabolic potential of Trichodesmium to the holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional diversity within the microbiome is likely an integral facet of Trichodesmium physiological ecology across the oligotrophic oceans where this biogeochemically significant diazotroph thrives.


Subject(s)
Seawater/microbiology , Trichodesmium/isolation & purification , Nitrogen/metabolism , Nitrogen Fixation , Oceans and Seas , Phylogeny , Trichodesmium/classification , Trichodesmium/genetics , Trichodesmium/metabolism
3.
Environ Microbiol Rep ; 8(6): 1058-1066, 2016 12.
Article in English | MEDLINE | ID: mdl-27753237

ABSTRACT

Populations of nitrogen-fixing cyanobacteria in the genus Trichodesmium are critical to ocean ecosystems, yet predicting patterns of Trichodesmium distribution and their role in ocean biogeochemistry is an ongoing challenge. This may, in part, be due to differences in the physiological ecology of Trichodesmium species, which are not typically considered independently in field studies. In this study, the abundance of the two dominant Trichodesmium clades (Clade I and Clade III) was investigated during a survey at Station ALOHA in the North Pacific Subtropical Gyre (NPSG) using a clade-specific qPCR approach. While Clade I dominated the Trichodesmium community, Clade III abundance was >50% in some NPSG samples, in contrast to the western North Atlantic where Clade III abundance was always <10%. Clade I populations were distributed down to depths >80 m, while Clade III populations were only observed in the mixed layer and found to be significantly correlated with depth and temperature. These data suggest active niche partitioning of Trichodesmium species from different clades, as has been observed in other cyanobacteria. Tracking the distribution and physiology of Trichodesmium spp. would contribute to better predictions of the physiological ecology of this biogeochemically important genus in the present and future ocean.


Subject(s)
Seawater/microbiology , Trichodesmium/classification , Trichodesmium/isolation & purification , Pacific Ocean , Real-Time Polymerase Chain Reaction , Trichodesmium/genetics
4.
Environ Microbiol ; 18(12): 5151-5160, 2016 12.
Article in English | MEDLINE | ID: mdl-27581522

ABSTRACT

Nitrogen-fixing cyanobacteria in the genus Trichodesmium play a critical role in the productivity of the tropical and subtropical oligotrophic oceans. The ecological success of these populations is likely associated with the diverse microbial interactions occurring within the Trichodesmium holobiont, especially between Trichodesmium and heterotrophic bacterial epibionts. Yet, the composition of the Trichodesmium holobiont and the processes governing microbial assemblage are not well documented. Here, we used high-resolution 16S rDNA amplicon sequencing to examine the diversity of Trichodesmium and associated epibionts across different ocean regions and colony morphologies (puffs and rafts). Trichodesmium Clade I (i.e., T. thiebautii-like) dominated the colonies in all ocean basins regardless of morphology, although the Trichodesmium community structure significantly varied between morphologies in some regions. On average, Alphaproteobacteria (i.e., Thalassobius), Gammaproteobacteria (i.e., Pseudoalteromonas), Sphingobacteria (i.e., Microscilla and Vibrio) and Flavobacteria dominated the epibiont communities, but community composition and structure significantly differed between regions. Epibionts from the two colony morphologies were taxonomically and functionally distinct in the North Atlantic and North Pacific. These findings suggest that the colony types might define two distinct niches and that epibiont assemblage might be driven in part by selective processes, where epibionts are selected according to their influence on colony metabolism.


Subject(s)
Biodiversity , Seawater/microbiology , Trichodesmium/isolation & purification , Nitrogen/metabolism , Nitrogen Fixation , Oceans and Seas , Phylogeny , Trichodesmium/classification , Trichodesmium/genetics , Trichodesmium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...