Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 306: 108267, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31330453

ABSTRACT

Fusarium incarnatum-equiseti species complex (FIESC) is commonly detected in Brazilian rice, but knowledge of the species limits and their toxigenic potential is lacking. Seventy strains morphologically identified as FIESC-like, isolated from the major rice-growing regions of Brazil, were subjected to sequencing of EF-1α gene. Among them, 18 strains were selected and analyzed for their RPB2 gene sequences. Nine phylogenetic species were identified, among which eight matched the previously reported FIESC 4 (F. lacertarum), 6, 16, 17 (F. pernambucanum), 20 (F. caatingaense), 24, 26 and 29. One new phylogenetic species was identified, and named FIESC 38. Five strains formed new singleton lineages. The most dominant species were FIESC 26 (22/70 strains) and FIESC 38 (21/70), the newly identified species. The incarnatum morphotype was dominant (10 phylogenetic species) over the equiseti (4 species). Among 46 strains selected to represent all species, only 16 strains produced detectable levels of mycotoxins in vitro. FIESC 26 produced ZEA and FIESC 38 produced both ZEA and DON. ZEA was produced by nine isolates of three other species, among which few isolates produced trichothecenes: DON (5/46), NIV (3/46), 4-ANIV (2/46), 15-ADON (1/46) and 3-ADON (1/46). The T-2 and HT-2 mycotoxins were not detected. Our results contribute novel information on species limits and mycotoxin production within cereal-infecting FIESC in the southern hemisphere and provide baseline data for further exploring morphological differences among the species.


Subject(s)
Fusarium/classification , Fusarium/pathogenicity , Mycotoxins/metabolism , Oryza/microbiology , Trichothecenes/metabolism , Brazil , Edible Grain/microbiology , Fusarium/genetics , Fusarium/isolation & purification , Mycotoxins/genetics , Peptide Elongation Factor 1/genetics , Phylogeny , RNA Polymerase II/genetics , Trichothecenes/genetics
2.
Fungal Genet Biol ; 119: 29-46, 2018 10.
Article in English | MEDLINE | ID: mdl-30121242

ABSTRACT

Trichothecenes are terpenoid toxins produced by multiple fungal species with diverse lifestyles. In these fungi, the trichothecene biosynthetic gene (tri) cluster includes a gene encoding a Cys2His2 Zn-finger protein (TRI6). Analyses of plant pathogenic Fusarium species indicate that tri6 regulates tri gene expression. Here, we analyzed TRI6 function in the saprotrophic fungus Trichoderma arundinaceum, which produces the antimicrobial trichothecene harzianum A (HA). Deletion of the TRI6-encoding gene, tri6, blocked HA production and reduced expression of tri genes, and mevalonate biosynthetic genes required for synthesis of farnesyl diphosphate (FPP), the primary metabolite that feeds into trichothecene biosynthesis. In contrast, tri6 deletion did not affect expression of ergosterol biosynthetic genes required for synthesis of ergosterol from FPP, but did increase ergosterol production, perhaps because increased levels of FPP were available for ergosterol synthesis in the absence of trichothecene production. RNA-seq analyses indicated that genes in 10 of 49 secondary metabolite (SM) biosynthetic gene clusters in T. arundinaceum exhibited increased expression and five exhibited reduced expression in a tri6 deletion mutant (Δtri6). Despite the metabolic and transcriptional changes, Δtri6 mutants were not reduced in their ability to inhibit growth of fungal plant pathogens. Our results indicate that T. arundinaceum TRI6 regulates expression of both tri and mevalonate pathway genes. It remains to be determined whether the effects of tri6 deletion on expression of other SM clusters resulted because TRI6 can bind to promoter regions of cluster genes or because trichothecene production affects other SM pathways.


Subject(s)
Trichoderma/genetics , Trichothecenes/genetics , Base Sequence/genetics , Ergosterol/metabolism , Fusarium/genetics , Gene Expression Regulation, Fungal , Secondary Metabolism/genetics , Sequence Deletion/genetics , Transcriptome/genetics
3.
Toxins (Basel) ; 10(8)2018 08 10.
Article in English | MEDLINE | ID: mdl-30103473

ABSTRACT

Fusarium head blight (FHB) of cereals is the major head disease negatively affecting grain production worldwide. In 2016 and 2017, serious outbreaks of FHB occurred in wheat crops in Poland. In this study, we characterized the diversity of Fusaria responsible for these epidemics using TaqMan assays. From a panel of 463 field isolates collected from wheat, four Fusarium species were identified. The predominant species were F. graminearum s.s. (81%) and, to a lesser extent, F. avenaceum (15%). The emergence of the 15ADON genotype was found ranging from 83% to 87% of the total trichothecene genotypes isolated in 2016 and 2017, respectively. Our results indicate two dramatic shifts within fungal field populations in Poland. The first shift is associated with the displacement of F. culmorum by F. graminearum s.s. The second shift resulted from a loss of nivalenol genotypes. We suggest that an emerging prevalence of F. graminearum s.s. may be linked to boosted maize production, which has increased substantially over the last decade in Poland. To detect variation within Tri core clusters, we compared sequence data from randomly selected field isolates with a panel of strains from geographically diverse origins. We found that the newly emerged 15ADON genotypes do not exhibit a specific pattern of polymorphism enabling their clear differentiation from the other European strains.


Subject(s)
Fusarium/genetics , Trichothecenes/genetics , Triticum/microbiology , DNA, Fungal/genetics , Environmental Monitoring , Fusarium/isolation & purification , Genotype , Poland
4.
Toxins (Basel) ; 10(3)2018 03 05.
Article in English | MEDLINE | ID: mdl-29510600

ABSTRACT

Flavonoids are a group of hydroxylated polyphenolic compounds widely distributed in the plant kingdom. Biosynthesis of these compounds involves type III PKSs, whose presence has been recently predicted in some fungal species through genome sequencing efforts. In this study, for the first time it was found that Fusaria produce flavonoids on solid YES medium. Naringenin, as the central precursor of all flavonoids, was produced at highest quantities, followed by quercetin, kaempferol, apigenin and luteolin. In plants, flavonoids are involved in the protection of cereals to a wide range of stresses, including host defense against Fusaria. Under in vitro conditions, strains of Fusarium culmorum and F. graminearum sensu stricto were incubated at levels of flavonoids close to amounts produced by cereals in response to fungal infection. The amounts of exogenous naringenin, apigenin, luteolin, kaempferol and quercetin were reduced and converted by fungi to the other flavonoid derivatives. Treatment of fungi with naringenin derivatives led to the inhibition of naringenin production. Correspondingly, the production of fungal-derived phenolic acids decreased in flavonoid treated samples, although this effect appeared to be dependent on the strain, flavonoid molecule and its concentration. Fusaria showed high variability in trichothecene production in response to flavonoids. With emphasis on quercetin, mycotoxin accumulation in the media was significantly decreased by luteolin, kaempferol, naringenin and apigenin. However, in some cases, apigenin led to the increase of mycotoxin content in the media. Gene expression experiments of Tri genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of mycotoxin production by flavonoids occurred at the transcriptional level. However, the changes in Tri transcript levels were not significant in most apigenin and all kaempferol-treated cultures. In this study, a link was established between antioxidant and antiradical properties of flavonoids and their effects on fungi.


Subject(s)
Flavonoids/metabolism , Flavonoids/pharmacology , Fusarium/drug effects , Trichothecenes/metabolism , Fusarium/genetics , Fusarium/metabolism , Gene Expression Regulation, Fungal/drug effects , Trichothecenes/genetics
5.
Toxins (Basel) ; 9(9)2017 08 23.
Article in English | MEDLINE | ID: mdl-28832503

ABSTRACT

Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6. To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae.


Subject(s)
Fusarium/genetics , Trichothecenes/genetics , Amplified Fragment Length Polymorphism Analysis , Fusarium/metabolism , Fusarium/physiology , Genetic Variation , Phenotype , Plant Diseases , Reproduction , Trichothecenes/biosynthesis
6.
Toxins (Basel) ; 9(9)2017 08 28.
Article in English | MEDLINE | ID: mdl-28846647

ABSTRACT

Plant-derived compounds for reducing the mycotoxin load in food and feed have become a rapidly developing research field of importance for plant breeding efforts and in the search for natural fungicides. In this study, toxigenic strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to sinapic acid on solid YES media at levels close to those reported in wheat bran. Fusaria produced phenolic acids, whose accumulation was decreased by exogenous sinapic acid. Strains exposed to the lowest doses of sinapic acid showed more efficient reduction of phenolic acid production than fungi kept at higher concentrations of this compound. Fungi reduced exogenous sinapic acid, leading to the formation of syringic aldehyde. Treatment with sinapic acid led to a dramatic accumulation of its parent compound ferulic acid, presumably due to inhibition of the further conversion of this phenolic compound. Exogenous sinapic acid decreased the production of trichothecenes by fungi. Higher doses of sinapic acid resulted in more efficient reduction of mycotoxin accumulation in the media. Gene expression studies of Tri genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of mycotoxin production by sinapic acid occurred at the transcriptional level. Fusaria respond to sinapic acid by stimulation of ergosterol biosynthesis.


Subject(s)
Coumaric Acids/pharmacology , Fusarium/drug effects , Phenols/metabolism , Trichothecenes/metabolism , Coumaric Acids/metabolism , Fusarium/metabolism , Gene Expression/drug effects , Trichothecenes/genetics
7.
Sci Rep ; 6: 36350, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27853184

ABSTRACT

Trichothecene genotype composition, mycotoxin production, genetic diversity, and population structure were analyzed, using 185 Fusarium strains collected from wheat (Triticum aestivum L.) throughout the Jiangsu province during 1976, 1983, 1998, 2006, and 2014. The results showed that 3-acetyldeoxynivalenol (3ADON) was consistently the predominant type in this region over 40 years, and the nivalenol (NIV) type has emerged since 1998. Long-term rotation of wheat and rice (Oryza sativa L.), rather than fungicide application, crop fitness, or weather conditions, might be the main cause of this phenomenon. The genetic diversity results from two toxin synthetic genes, Pks4 and Tri10, and variable number of tandem repeat (VNTR) markers revealed the largest variance within the population in 1998, which was also the year with the highest production of mycotoxins. Population differentiation analysis indicated that major temporal population comparisons from the same area were not significantly differentiated. Our results showed that dominant species could maintain genetic stability for a long time, and Pks4 would be of utility in genetic and population studies.


Subject(s)
Fusarium/genetics , Mycotoxins/analysis , Oryza/microbiology , China , Fusarium/classification , Fusarium/metabolism , Genetic Variation , Genotype , Minisatellite Repeats , Mycotoxins/genetics , Mycotoxins/metabolism , Oryza/growth & development , Trichothecenes/analysis , Trichothecenes/genetics , Triticum/growth & development
8.
Toxins (Basel) ; 8(11)2016 11 12.
Article in English | MEDLINE | ID: mdl-27845742

ABSTRACT

Recent studies on a field population of F. graminearum sensu stricto from Argentina revealed an atypical panel of strains identified through PCR genotyping as 15ADON genotypes, but producing high levels of 3ADON. Based on representative strain CBS 139514, we asked if the discrepancy between the trichothecene genotype and chemotype might result from an inter-chemotype recombination of the chemotype-determining genes. To answer this, we sequenced the complete core Tri gene cluster (around 30,200 bp) from this strain and compared its sequence to sequence data of typical type B trichothecene genotypes/chemotypes. Sequence alignment showed that CBS 139514 has an identical sequence within the entire core Tri cluster to the 15ADON genotype. The revealed discrepancy underlines the need for using both molecular and chemical methods for reliable characterization of toxigenic strains of Fusarium.


Subject(s)
Fusarium/genetics , Fusarium/metabolism , Trichothecenes/biosynthesis , Trichothecenes/genetics , Argentina , DNA, Fungal/analysis , Genes, Fungal , Genotype
9.
Fungal Genet Biol ; 95: 39-48, 2016 10.
Article in English | MEDLINE | ID: mdl-27497828

ABSTRACT

Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective constraint.


Subject(s)
Evolution, Molecular , Fusarium/genetics , Genes, Fungal/genetics , Phylogeny , Trichothecenes/genetics , Amino Acid Sequence , Biodiversity , Canada , DNA, Fungal/analysis , DNA, Fungal/genetics , Edible Grain/microbiology , Fungal Proteins/genetics , Fusarium/classification , Fusarium/metabolism , Geography , Plant Diseases/microbiology , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Species Specificity , Trichothecenes/biosynthesis , Trichothecenes/chemistry , United States
10.
Int J Food Microbiol ; 234: 24-35, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27376677

ABSTRACT

DNA-based phylogenetic analyses have resolved the fungal genus Fusarium into multiple species complexes. The F. incarnatum-equiseti species complex (FIESC) includes fusaria associated with several diseases of agriculturally important crops, including cereals. Although members of FIESC are considered to be only moderately aggressive, they are able to produce a diversity of mycotoxins, including trichothecenes, which can accumulate to harmful levels in cereals. High levels of cryptic speciation have been detected within the FIESC. As a result, it is often necessary to use approaches other than morphological characterization to distinguish species. In the current study, we used a polyphasic approach to characterize a collection of 69 FIESC isolates recovered from cereals in Europe, Turkey, and North America. In a species phylogeny inferred from nucleotide sequences from four housekeeping genes, 65 of the isolates were resolved within the Equiseti clade of the FIESC, and four isolates were resolved within the Incarnatum clade. Seven isolates were resolved as a genealogically exclusive lineage, designated here as FIESC 31. Phylogenies based on nucleotide sequences of trichothecene biosynthetic genes and MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) were largely concordant with phylogeny inferred from the housekeeping gene. Finally, Liquid Chromatography (Time-Of-Flight) Mass Spectrometry [LC-(TOF-)MS(/MS)] revealed variability in mycotoxin production profiles among the different phylogenetic species investigated in this study.


Subject(s)
Edible Grain/microbiology , Fusarium/classification , Fusarium/genetics , Genes, Essential/genetics , Mycotoxins/biosynthesis , Trichothecenes/biosynthesis , Base Sequence , Europe , Fusarium/isolation & purification , Fusarium/metabolism , Mycotoxins/genetics , North America , Phylogeny , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trichothecenes/genetics , Turkey
11.
Phytopathology ; 106(8): 920-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27050573

ABSTRACT

Fusarium graminearum is a destructive pathogen of cereals that can cause stalk rot in maize. Stalk rot results in yield losses due to impaired grain filling, premature senescence, and lodging, which limits production and harvesting of ears. In addition, mycotoxins can make infected tissues unfit for silage. Our objectives were to evaluate the natural variation in stalk rot resistance among maize inbreds, to establish whether deoxynivalenol (DON)- and zearalenone (ZEA)-deficient strains are pathogenic on a panel of diverse inbreds, and to quantify the accumulation of DON in infected stalk tissue. Wild-type F. graminearum and mycotoxin mutants (DON and ZEA) were used to separately inoculate stalks of 9-week-old plants of 20 inbreds in the greenhouse. Plants were evaluated for lesion area at the inoculation point at 0, 2, 14, and 28 days postinoculation and tissues around lesions were sampled to determine the DON content. Regardless of their ability to produce DON or ZEA, all tested F. graminearum strains caused stalk rot; however, significant differences in disease levels were detected. Among the tested inbreds, Mp717 was resistant to all three F. graminearum strains while Mp317 and HP301 were only partially resistant. Accumulation of DON was significantly lower in infected stalks of the resistant and partially resistant inbreds than the susceptible inbreds. Analysis of the 20 inbreds using data from 17 simple-sequence repeats revealed population structure among the individuals; however, there was no association between genetic clustering and stalk rot resistance. These findings are an additional step toward breeding maize inbreds suitable for planting in fields infested with F. graminearum.


Subject(s)
Fusarium/metabolism , Plant Diseases/microbiology , Trichothecenes/metabolism , Zea mays/microbiology , Zearalenone/metabolism , DNA, Plant/genetics , Fusarium/genetics , Gene Expression Regulation, Fungal/physiology , Genetic Predisposition to Disease , Mutation , Trichothecenes/genetics , Zea mays/genetics , Zearalenone/genetics
12.
Genet Mol Res ; 15(1): 15017270, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26985955

ABSTRACT

Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.


Subject(s)
Fusarium/classification , Gene Expression Profiling/methods , Trichothecenes/genetics , Trichothecenes/metabolism , Triticum/microbiology , DNA, Fungal/genetics , Fusarium/genetics , Fusarium/isolation & purification , Fusarium/metabolism , Gene Expression Regulation, Fungal , Genetic Variation , Genetics, Population , Genotype , Mycotoxins/genetics , Mycotoxins/metabolism , Phylogeny , Uruguay
13.
Anal Bioanal Chem ; 408(3): 895-903, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26608283

ABSTRACT

A nanobody (N-28) which can act as a deoxynivalenol (DON) antigen has been generated, and its residues Thr102-Ser106 were identified to bind with anti-DON monoclonal antibody by alanine-scanning mutagenesis. Site-saturation mutagenesis was used to analyze the plasticity of five residues and to improve the sensitivity of the N-28-based immunoassay. After mutagenesis, three mutants were selected by phage immunoassay and were sequenced. The half-maximal inhibitory concentrations of the immunoassay based on mutants N-28-T102Y, N-28-V103L, and N-28-Y105F were 24.49 ± 1.0, 51.83 ± 2.5, and 35.65 ± 1.6 ng/mL, respectively, showing the assay was, respectively, 3.2, 1.5, and 2.2 times more sensitive than the wild-type-based assay. The best mutant, N-28-T102Y, was used to develop a competitive phage ELISA to detect DON in cereals with high specificity and accuracy. In addition, the structural properties of N-28-T102Y and N-28 were investigated, revealing that the affinity of N-28-T102Y decreased because of increased steric hindrance with the large side chain. The lower-binding-affinity antigen mimetic may contribute to the improvement of the sensitivity of competitive immunoassays. These results demonstrate that nanobodies would be a favorable tool for engineering. Moreover, our results have laid a solid foundation for site-saturation mutagenesis of antigen-mimicking nanobodies to improve immunoassay sensitivity for small molecules.


Subject(s)
Antigens/chemistry , Immunoassay/instrumentation , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Trichothecenes/chemistry , Antigens/genetics , Antigens/immunology , Immunoassay/methods , Molecular Mimicry , Mutagenesis , Single-Chain Antibodies/immunology , Trichothecenes/genetics , Trichothecenes/immunology
14.
Biosci Biotechnol Biochem ; 80(2): 414-7, 2016.
Article in English | MEDLINE | ID: mdl-26413981

ABSTRACT

Disruption of two Fusarium genes that negatively regulate trichothecene biosynthesis was reported to cause a drastic increase in trichothecene production. However, careful inspection of these genes revealed that neither was significantly related to trichothecene production. Agmatine medium maintained the expression of trichothecene genes at significant levels, resulting in a 2-3-fold increase in the final yield, as compared to glutamine medium.


Subject(s)
Fungal Proteins/genetics , Fusarium/genetics , Gene Expression Regulation, Fungal , Transcription Factors/genetics , Trichothecenes/biosynthesis , Agmatine/metabolism , Agmatine/pharmacology , Culture Media/pharmacology , Fungal Proteins/metabolism , Fusarium/drug effects , Fusarium/metabolism , Gene Deletion , Glutamine/metabolism , Glutamine/pharmacology , Transcription Factors/metabolism , Transcription, Genetic , Trichothecenes/genetics
15.
Toxins (Basel) ; 7(11): 4577-94, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26556373

ABSTRACT

Fusarium goolgardi, isolated from the grass tree Xanthorrhoea glauca in natural ecosystems of Australia, is closely related to fusaria that produce a subgroup of trichothecene (type A) mycotoxins that lack a carbonyl group at carbon atom 8 (C-8). Mass spectrometric analysis revealed that F. goolgardi isolates produce type A trichothecenes, but exhibited one of two chemotypes. Some isolates (50%) produced multiple type A trichothecenes, including 4,15-diacetoxyscirpenol (DAS), neosolaniol (NEO), 8-acetylneosolaniol (Ac-NEO) and T-2 toxin (DAS-NEO-T2 chemotype). Other isolates (50%) produced only DAS (DAS chemotype). In the phylogenies inferred from DNA sequences of genes encoding the RNA polymerase II largest (RPB1) and second largest (RPB2) subunits as well as the trichothecene biosynthetic genes (TRI), F. goolgardi isolates were resolved as a monophyletic clade, distinct from other type A trichothecene-producing species. However, the relationships of F. goolgardi to the other species varied depending on whether phylogenies were inferred from RPB1 and RPB2, the 12-gene TRI cluster, the two-gene TRI1-TRI16 locus, or the single-gene TRI101 locus. Phylogenies based on different TRI loci resolved isolates with different chemotypes into distinct clades, even though only the TRI1-TRI16 locus is responsible for structural variation at C-8. Sequence analysis indicated that TRI1 and TRI16 are functional in F. goolgardi isolates with the DAS-NEO-T2 chemotype, but non-functional in isolates with DAS chemotype due to the presence of premature stop codons caused by a point mutation.


Subject(s)
Fusarium/genetics , Fusarium/metabolism , Trichothecenes/biosynthesis , Trichothecenes/genetics , Amino Acid Sequence , Australia , Base Sequence , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Ecosystem , Gas Chromatography-Mass Spectrometry , Genes, Fungal/genetics , Molecular Sequence Data , Multigene Family , Phylogeny , Species Specificity , Trees/microbiology
16.
Int J Food Microbiol ; 214: 123-128, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26276561

ABSTRACT

Fusarium head blight (FHB) is a devastating disease of wheat (Triticum aestivum L.) caused by a mycotoxigenic fungus Fusarium graminearum resulting in significantly decreased yields and accumulation of toxic trichothecenes in grains. We tested 7 major secondary metabolites from wheat for their effect on trichothecene production in liquid cultures of F. graminearum producing trichothecene 15-acetyldeoxynivalenol (15-ADON). 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) benzoxazinoid completely abolished toxin production without any apparent effect on fungal growth. DIMBOA strongly affected the expression of Tri6, encoding a major transcriptional regulator of several genes of the trichothecene biosynthesis pathway. DIMBOA also repressed expression of Tri5, encoding trichodiene synthase, the first enzyme in the trichothecene biosynthesis pathway. Thus, DIMBOA could play an important role against the accumulation of trichothecenes in wheat grain. Breeding or engineering of wheat with increased levels of benzoxazinoids could provide varieties with increased resistance against trichothecene contamination of grain and lower susceptibility to FHB.


Subject(s)
Benzoxazines/pharmacology , Fungal Proteins/antagonists & inhibitors , Fusarium/drug effects , Transcription Factors/antagonists & inhibitors , Trichothecenes/biosynthesis , Triticum/microbiology , Benzoxazines/metabolism , Carbon-Carbon Lyases/biosynthesis , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/metabolism , Plant Diseases/microbiology , Transcription Factors/genetics , Trichothecenes/genetics
17.
J Environ Sci Health B ; 50(5): 361-7, 2015.
Article in English | MEDLINE | ID: mdl-25826104

ABSTRACT

The analysis was conducted using 50 isolates of fungi of the genus Fusarium belonging to the species classified as major trichothecene mycotoxin producers: F. graminearum, F. culmorum, F. sporotrichioides, and F. poae. The tested fungi were isolated from ears of cereal crops in southern Poland during the two growing seasons (2011 and 2012). The aim of this study was to evaluate the prevalence of genes involved in the biosynthesis of trichothecene mycotoxins using the specific PCR tests. Molecular analyses indicated that the genes responsible for the production of trichothecenes (Tri3, Tri5, Tri7, Tri13) were abundant in the examined genetic material. The tested fungal isolates were characterized by a large diversity in terms of the number and composition of the possessed Tri genes. On the other hand, 14 of 50 isolates were found not to carry any of Tri genes.


Subject(s)
Edible Grain/chemistry , Edible Grain/microbiology , Fusarium/genetics , Fusarium/metabolism , Mycotoxins/biosynthesis , Trichothecenes/biosynthesis , Trichothecenes/genetics , Food Contamination/analysis , Mycotoxins/genetics , Poland , Prevalence
18.
Mol Plant Pathol ; 16(9): 987-99, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25781642

ABSTRACT

Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Gene Expression Regulation, Fungal , Transcription Factors/metabolism , Trichothecenes/biosynthesis , Ammonium Compounds/metabolism , Arginine/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fusarium/genetics , Membrane Transport Proteins/genetics , Mitogen-Activated Protein Kinases/metabolism , Nitrogen/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction , Trichothecenes/genetics , Up-Regulation
19.
Phytopathology ; 105(5): 695-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25651052

ABSTRACT

In order to test the hypothesis that the trichothecene genotype composition of local populations of Fusarium graminearum is structured by specific habitats, a collection of 1,407 isolates was obtained from overwintered maize stubble, mature maize ears and wheat spikes, and the atmosphere 1.5 m aboveground during the flowering stage of these crops. These isolates were sampled at three diverse agricultural locations in New York State: namely, Aurora (sampled in 2012 and 2013) in central New York, Belmont (sampled in 2013) in southwestern New York, and Willsboro (sampled in 2013) in northeastern New York. Approximately 100 isolates of F. graminearum from each habitat were collected within a 10-mile2 area in each location. Polymerase chain reaction assays were used to identify three main B-trichothecene genotypes--3-acetyldeoxynivalenol (3-ADON), 15-ADON, or nivalenol (NIV)--based on amplification of portions of Tri3 and Tri12 genes. All but the NIV genotype were detected. The 15-ADON genotype predominated in most locations; frequencies were 92% (652/709) at Aurora, 78% (332/379) at Belmont, and 53% (167/319) at Willsboro. Frequencies of any genotype did not differ in general among the four habits in each location. An exception was in Aurora 2012, where only 5 in 24 3-ADON isolates were found in samplings from the air and grains of both crops. As viewed by the composition of trichothecene genotypes, local populations of F. graminearum appear not to be structured by these four habitats inclusive of pathogenic and saprophytic phases of the fungus life cycle. The similar frequency of 3-ADON and 15-ADON in eastern New York (Willsboro), which is less than 400 km away from the Aurora sampling location in the central area of the state, suggests that regional populations may be differentiated based on selection associated with climatic or landscape features not currently identified.


Subject(s)
Fusarium/genetics , Plant Diseases/microbiology , Trichothecenes/genetics , Triticum/microbiology , Zea mays/microbiology , Agriculture , Atmosphere , Genotype , New York
20.
Phytopathology ; 105(2): 246-54, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25121641

ABSTRACT

A multiyear survey of >200 wheat fields in Paraná (PR) and Rio Grande do Sul (RS) states was conducted to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in the southern Brazilian wheat agroecosystem. Five species and three trichothecene genotypes were found among 671 FGSC isolates from Fusarium head blight (FHB)-infected wheat heads: F. graminearum (83%) of the 15-acetyldeoxynivalenol (15-ADON) genotype, F. meridionale (12.8%) and F. asiaticum (0.4%) of the nivalenol (NIV) genotype, and F. cortaderiae (2.5%) and F. austroamericanum (0.9%) with either the NIV or the 3-ADON genotype. Regional differences in FGSC composition were observed, with F. meridionale and the NIV type being significantly (P<0.001) more prevalent in PR (>28%) than in RS (≤9%). Within RS, F. graminearum was overrepresented in fields below 600 m in elevation and in fields with higher levels of FHB incidence (P<0.05). Species composition was not significantly influenced by previous crop or the stage of grain development at sampling. Habitat-specific differences in FGSC composition were evaluated in three fields by characterizing a total of 189 isolates collected from corn stubble, air above the wheat canopy, and symptomatic wheat kernels. Significant differences in FGSC composition were observed among these habitats (P<0.001). Most strikingly, F. meridionale and F. cortaderiae of the NIV genotype accounted for the vast majority (>96%) of isolates from corn stubble, whereas F. graminearum with the 15-ADON genotype was dominant (>84%) among isolates from diseased wheat kernels. Potential differences in pathogenic fitness on wheat were also suggested by a greenhouse competitiveness assay in which F. graminearum was recovered at much higher frequency (>90%) than F. meridionale from four wheat varieties inoculated with an equal mixture of F. graminearum and F. meridionale isolates. Taken together, the data presented here suggest that FGSC composition and, consequently, the trichothecene contamination in wheat grown in southern Brazil is influenced by host adaptation and pathogenic fitness. Evidence that F. meridionale and F. cortaderiae with the NIV genotype are regionally significant contributors to FHB may have significant implications for food safety and the economics of cereal production.


Subject(s)
Fusarium/physiology , Plant Diseases/microbiology , Trichothecenes/genetics , Triticum/microbiology , Zea mays/microbiology , Agriculture , Brazil , Ecosystem , Edible Grain/microbiology , Fusarium/genetics , Fusarium/growth & development , Genotype , Geography
SELECTION OF CITATIONS
SEARCH DETAIL
...