Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 455
Filter
1.
Cell Biol Toxicol ; 40(1): 41, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833095

ABSTRACT

Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21 , Hippocampus , Neurons , Trichothecenes , Up-Regulation , Animals , Trichothecenes/toxicity , Trichothecenes/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/cytology , Mice , Neurons/drug effects , Neurons/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Up-Regulation/drug effects , Cell Proliferation/drug effects , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line , 3' Untranslated Regions/genetics , Neurogenesis/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Stability/drug effects , Cell Cycle Checkpoints/drug effects , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Methylation/drug effects
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 634-644, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38511207

ABSTRACT

The deoxynivalenol (DON)-contaminated feeds can impair chicken gut barrier function, disturb the balance of the intestinal microbiota, decrease chicken growth performance and cause major economic loss. With the aim of investigating the ameliorating effects of baicalin on broiler intestinal barrier damage and gut microbiota dysbiosis induced by DON, a total of 150 Arbor Acres broilers are used in the present study. The morphological damage to the duodenum, jejunum, and ileum caused by DON is reversed by treatment with different doses of baicalin, and the expression of tight junction proteins (ZO-1, claudin-1, and occludin) is also significantly increased in the baicalin-treated groups. Moreover, the disturbance of the intestinal microbiota caused by DON-contaminated feed is altered by baicalin treatment. In particular, compared with those in the DON group, the relative abundances of Lactobacillus, Lachnoclostridium, Ruminiclostridium and other beneficial microbes in the baicalin-treated groups are significantly greater. However, the percentage of unclassified_f__Lachnospiraceae in the baicalin-treated groups is significantly decreased in the DON group. Overall, the current results demonstrate that different doses of baicalin can improve broiler intestinal barrier function and the ameliorating effects on broiler intestinal barrier damage may be related to modulations of the intestinal microbiota.


Subject(s)
Flavonoids , Gastrointestinal Microbiome , Trichothecenes , Animals , Chickens , Trichothecenes/metabolism , Trichothecenes/pharmacology , Jejunum/metabolism , Animal Feed/analysis
3.
J Nat Prod ; 87(2): 315-321, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38262446

ABSTRACT

Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.


Subject(s)
Antimalarials , Malaria , Plasmodium , Trichothecenes , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Trichothecenes/pharmacology , Malaria/drug therapy , Malaria/parasitology , Liver , Plasmodium falciparum
4.
Org Biomol Chem ; 21(42): 8521-8527, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37819425

ABSTRACT

Podostroma cornu-damae, commonly referred to as the red deer's horn mushroom due to its distinct resemblance to the antlers of a deer, is a lethal toxic mushroom that causes vomiting, dehydration, diarrhea, disturbance of consciousness, and even death. In continuation of our research aiming to investigate the novel structural and/or biological principles present in Korean wild mushrooms, a new N-hydroxyphenylalanine-phenylalanine dipeptide, N-hydroxy-Phe-Phe (1), and three known macrocyclic trichothecenes, satratoxin H (2), 12'-episatratoxin H (3), and roridin F (4), were isolated from the MeOH extract of a plate culture of the poisonous mushroom P. cornu-damae. The chemical structure of the new dipeptide (1) was determined by analyzing 1D and 2D NMR spectra and high-resolution (HR)-electrospray ionization mass spectroscopy (ESIMS), along with a computational method combined with a statistical procedure (DP4+), and its absolute configuration was unambiguously assigned by quantum chemical ECD calculations. To the best of our knowledge, compound 1 is the first dipeptide found in P. cornu-damae. Upon evaluating the cytotoxicity of compounds 1-4 against four human-derived cancer cell lines namely SK-OV-3, SK-MEL-2, A549, and HCT15, 12'-episatratoxin H (3) displayed potent cytotoxic effects toward all four cell lines tested, with IC50 values ranging from 0.7 to 2.8 nM, which was found to be stronger than that of doxorubicin. Satratoxin H (2) also demonstrated moderate cytotoxic potency against all four cell lines, with IC50 values ranging from 1.93 to 4.22 µM. Our findings provide experimental data supporting the potential of the poisonous mushroom P. cornu-damae as a source of anticancer agents.


Subject(s)
Agaricales , Antineoplastic Agents , Deer , Trichothecenes , Humans , Animals , Agaricales/chemistry , Trichothecenes/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Dipeptides/pharmacology , Cell Line, Tumor
5.
Pestic Biochem Physiol ; 194: 105506, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532325

ABSTRACT

Fusarium head blight caused by Fusarium asiaticum is an important cereal crop disease, and the trichothecene mycotoxins produced by F. asiaticum can contaminate wheat grain, which is very harmful to humans and animals. To effectively control FHB in large areas, the application of fungicides is the major strategy; however, the application of different types of fungicides has varying influences on the accumulation of trichothecene mycotoxins in F. asiaticum. In this study, phenamacril inhibited trichothecene mycotoxin accumulation in F. asiaticum; however, carbendazim (N-1H-benzimidazol-2-yl-carbamic acid, methyl ester) induced trichothecene mycotoxin accumulation. Additionally, phenamacril led to a lower level of reactive oxygen species (ROS) by inducing gene expression of the catalase and superoxide dismutase (SOD) pathways in F. asiaticum, whereas carbendazim stimulated ROS accumulation by inhibiting gene expression of the catalase and SOD pathways. Based on these results, we conclude that phenamacril and carbendazim regulate trichothecene mycotoxin synthesis by affecting ROS levels in F. asiaticum.


Subject(s)
Fungicides, Industrial , Fusarium , Mycotoxins , Trichothecenes , Humans , Catalase/metabolism , Reactive Oxygen Species/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Trichothecenes/pharmacology , Trichothecenes/metabolism , Mycotoxins/metabolism , Mycotoxins/pharmacology , Plant Diseases
6.
Mycotoxin Res ; 39(3): 219-231, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37256505

ABSTRACT

Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism. We observed a significantly higher COX5B and MHCII expression in enterocytes of DON-fed pigs compared to CON-fed pigs and a marked increase in GAPDH and SLC7A11 in DON-fed pigs, but we could not confirm this in vitro in IPEC-1. In vitro, functional metabolic analyses were performed with a seahorse analyzer. A significant increase of non-mitochondrial respiration was observed in all DON-treatment groups (50-2000 ng/mL). The oxygen consumption of cells, which were cultured on membranes, was examined with a fiber-glass electrode. Here, we found significantly lower values for DON 200- and DON 2000-treatment group. The effect on ribosomes was investigated using biorthogonal non-canonical amino acid tagging (BONCAT) to tag newly synthesized proteins. A significantly reduced amount was found in almost all DON-treatment groups. Our findings clearly show that apical and basolateral DON-treatment of epithelial cell layer results in decreasing amounts of newly synthesized proteins. Furthermore, our study shows that DON affects enterocyte metabolism in vivo and in vitro.


Subject(s)
Mycotoxins , Trichothecenes , Swine , Animals , Cell Line , Trichothecenes/pharmacology , Mycotoxins/metabolism , Epithelial Cells
7.
Phytochemistry ; 209: 113645, 2023 May.
Article in English | MEDLINE | ID: mdl-36924814

ABSTRACT

Eight myrochromanol analogues, including three pairs of epimers at C-2 with the myrochromanol scaffold and two examples of myrochromanol with sugar moiety linked at C-4, together with twelve trichothecene derivatives were isolated from the cultures of a shellfish-derived fungus Albifimbria verrucaria CD1-4. Among them, eight compounds named 2-epi-myrochromanol, ent-myrochromanol B, 4-epi-myrochromanol B, 2-epi-myrochromanol A, myrochromanosides A and B, 6',7'-erythro-(2'E,4'Z)-trichoverrol B, 3R,8S-dihyroxyroridin H were previously undescribed fungal metabolites. Their planar structures and relative configurations were established by 1D and 2D NMR, and HR-MS data analysis, and their absolute configurations were determined using the modified Mosher's method and electronic circular dichrosim calculations. Almost all isolates were evaluated for growth rate inhibition of three marine harmful microalgae Chattonella marina, Heterosigma akashiwo, and Prorocentrum donghaiense, and lethal activity to one marine zooplankton, Artemia salina. Myrochromanosides A and B exhibited obvious inhibitory against three tested microalgae with IC50 values in the range of 9.2-108.9 µM. 8α-Hydroxyroridin H, roridin A and verrucarin A exhibited significant inhibition against P. donghaiense with IC50 values of 6.1, 5.8, and 6.0 µM and toxicity against brine shrimp larvae with LC50 values of 1.4, 2.8, and 0.26 µM, respectively.


Subject(s)
Trichothecenes , Trichothecenes/pharmacology , Trichothecenes/chemistry , Magnetic Resonance Spectroscopy , Shellfish , Molecular Structure
8.
Biomolecules ; 12(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35740903

ABSTRACT

The secondary metabolites of Fusarium sporotrichioides, an endophytic fungus with anti-tumor activity isolated from Rauvolfia yunnanensis Tsiang, were investigated. Five trichothecenes, including one previously undescribed metabolite, were isolated and identified. Their structures were elucidated by means of extensive spectroscopic methods; the absolute configuration of compound 1 was determined by the ECD method. Surprisingly, 8-n-butyrylneosolaniol (3) exhibited stronger anti-tumor activity than T-2 toxin against Huh-7 cell line, with an IC50 value of 265.9 nM. 8-n-butyrylneosolaniol (3) promoted apoptosis induction in Huh-7 cells. Moreover, cell cycle analysis showed that cell cycle arrest caused by 8-n-butyrylneosolaniol (3) at the G2/M phase resulted in cell proliferation inhibition and pro-apoptotic activity. Further studies showed a significant decrease in mitochondrial membrane permeabilization and a significant increase in ROS generation, which led to the activation of caspase cascades and subsequent cleavage of PARP fragments. In conclusion, 8-n-butyrylneosolaniol (3) induced cell apoptosis in Huh-7 cells via the mitochondria-mediated apoptotic signaling pathway, which could be a leading compound for anti-tumor agents.


Subject(s)
Neoplasms , Trichothecenes , Apoptosis , Caspases , Cell Cycle Checkpoints , Cell Line, Tumor , Fungi/metabolism , Reactive Oxygen Species/metabolism , Trichothecenes/pharmacology
9.
J Adv Res ; 38: 1-12, 2022 05.
Article in English | MEDLINE | ID: mdl-35572400

ABSTRACT

Introduction: Fusarium graminearum is a most destructive fungal pathogen that causes Fusarium head blight (FHB) disease in cereal crops, resulting in severe yield loss and mycotoxin contamination in food and feed. Silver nanoparticles (AgNPs) are extensively applied in multiple fields due to their strong antimicrobial activity and are considered alternatives to fungicides. However, the antifungal mechanisms and the effects of AgNPs on mycotoxin production have not been well characterized. Objectives: This study aimed to investigate the antifungal activity and mechanisms of AgNPs against both fungicide-resistant and fungicide-sensitive F. graminearum strains, determine their effects on mycotoxin deoxynivalenol (DON) production, and evaluate the potential of AgNPs for FHB management in the field. Methods: Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence microscopy were used to examine the fungal morphological changes caused by AgNPs. In addition, RNA-Seq, qRT-PCR, and western blotting were conducted to detect gene transcription and DON levels. Results: AgNPs with a diameter of 2 nm exhibited effective antifungal activity against both fungicide-sensitive and fungicide-resistant strains of F. graminearum. Further studies showed that AgNP application could impair the development, cell structure, cellular energy utilization, and metabolism pathways of this fungus. RNA-Seq analysis and sensitivity determination revealed that AgNP treatment significantly induced the expression of azole-related ATP-binding cassette (ABC) transporters without compromising the control efficacy of azoles in F. graminearum. AgNP treatment stimulated the generation of reactive oxygen species (ROS), subsequently induced transcription of DON biosynthesis genes, toxisome formation, and mycotoxin production. Conclusion: This study revealed the underlying mechanisms of AgNPs against F. graminearum, determined their effects on DON production, and evaluated the potential of AgNPs for controlling fungicide-resistant F. graminearum strains. Together, our findings suggest that combinations of AgNPs with DON-reducing fungicides could be used for the management of FHB in the future.


Subject(s)
Fungicides, Industrial , Fusarium , Metal Nanoparticles , Mycotoxins , Trichothecenes , Antifungal Agents/pharmacology , Azoles/metabolism , Azoles/pharmacology , Fungicides, Industrial/metabolism , Fungicides, Industrial/pharmacology , Fusarium/genetics , Fusarium/metabolism , Mycotoxins/metabolism , Mycotoxins/pharmacology , Silver/metabolism , Silver/pharmacology , Trichothecenes/metabolism , Trichothecenes/pharmacology
10.
Ecotoxicol Environ Saf ; 236: 113470, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35395601

ABSTRACT

The complex microbial community in food environment is a major problem of human or animal health and safety. Mycotoxins and food-borne bacteria can both induce inflammation in the body and cause a series of changes in biological functions. In this study, mice were gavaged with low doses of ZEA, DON, or ZEA + DON, and then infected with L. monocytogenes. A cytokine microarray, including 40 inflammation-related serum cytokines, and proteomics were used to verify the effects of ZEA, DON, and ZEA + DON on the host inflammation and biological function after L. monocytogenes infection. The results showed that mononucleosis after bacterial infection was inhibited by ZEA, DON, and ZEA + DON, while the balance of macrophage differentiation was shifted toward M2-type. ZEA, DON, and ZEA + DON decreased the levels of serum proinflammatory cytokines IL-1ß and IL-12 after infection. In addition, the signal of the NF-κB pathway was inhibited. Proteomic results showed that ZEA, DON, and ZEA + DON led to biological dysfunction in ribosomal and metabolic cells, primarily leading to abnormal ribosomal hyperfunction. This study showed that ZEA, DON, and ZEA + DON can aggravate disease progression by inhibiting the inflammatory response following foodborne bacterial infection. These metabolites may also disrupt normal biological functions, which may lead to ribosomal hyperfunction, making bacterial clearance more difficult.


Subject(s)
Trichothecenes/pharmacology , Zearalenone , Animals , Cytokines/metabolism , Inflammation/chemically induced , Mice , Proteomics
11.
Mar Drugs ; 20(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35200610

ABSTRACT

Eight trichothecenes, including four new compounds 1-4 and four known entities 5-8, together with one known cyclonerane (9) were isolated from the solid-state fermentation of Trichoderma brevicompactum NTU439 isolated from the marine alga Mastophora rosea. The structures of 1-9 were determined by 1D/2D NMR (nuclear magnetic resonance), MS (mass spectrometry), and IR (infrared spectroscopy) spectroscopic data. All of the compounds were evaluated for cytotoxic activity against HCT-116, PC-3, and SK-Hep-1 cancer cells by the SRB assay, and compound 8 showed promising cytotoxic activity against all three cancer cell lines with the IC50 values of 3.3 ± 0.3, 5.3 ± 0.3, and 1.8 ± 0.8 µM, respectively. Compounds 1-2, 4-6, and 7-8 potently inhibited LPS-induced NO production, and compounds 5 and 8 showed markedly inhibited gelatinolysis of MMP-9 in S1 protein-stimulated THP-1 monocytes.


Subject(s)
Antineoplastic Agents/pharmacology , Hypocreales/metabolism , Trichothecenes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , HCT116 Cells , Humans , Inhibitory Concentration 50 , Liver Neoplasms/drug therapy , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , PC-3 Cells , Prostatic Neoplasms/drug therapy , Rhodophyta/microbiology , Trichothecenes/chemistry , Trichothecenes/isolation & purification
12.
BMC Plant Biol ; 22(1): 84, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35209839

ABSTRACT

BACKGROUND: Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica, in vitro. However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta. The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta, without affecting the host crop development and yield. RESULTS: In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre-Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM (P < 0. 0001). In planta assessment (in a S. hermonthica-sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass (P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis (P < 0.0001). CONCLUSIONS: Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica. Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.


Subject(s)
Fusarium/metabolism , Herbicides/pharmacology , Plant Weeds/drug effects , Trichothecenes/pharmacology , Germination/drug effects , Seeds/drug effects , Soil Microbiology , Striga , Trichothecenes/metabolism
13.
Toxins (Basel) ; 14(1)2022 01 10.
Article in English | MEDLINE | ID: mdl-35051025

ABSTRACT

Chronic exposure to the mycotoxin deoxynivalenol (DON) from grain-based food and feed affects human and animal health. Known consequences include entereopathogenic and immunotoxic defects; however, the neurotoxic potential of DON has only come into focus more recently due to the observation of behavioural disorders in exposed farm animals. DON can cross the blood-brain barrier and interfere with the homeostasis/functioning of the nervous system, but the underlying mechanisms of action remain elusive. Here, we have investigated the impact of DON on mouse astrocyte and microglia cell lines, as well as on primary hippocampal cultures by analysing different toxicological endpoints. We found that DON has an impact on the viability of both glial cell types, as shown by a significant decrease of metabolic activity, and a notable cytotoxic effect, which was stronger in the microglia. In astrocytes, DON caused a G1 phase arrest in the cell cycle and a decrease of cyclic-adenosine monophosphate (cAMP) levels. The pro-inflammatory cytokine tumour necrosis factor (TNF)-α was secreted in the microglia in response to DON exposure. Furthermore, the intermediate filaments of the astrocytic cytoskeleton were disturbed in primary hippocampal cultures, and the dendrite lengths of neurons were shortened. The combined results indicated DON's considerable potential to interfere with the brain cell physiology, which helps explain the observed in vivo neurotoxicological effects.


Subject(s)
Astrocytes/drug effects , Hippocampus/drug effects , Microglia/drug effects , Neurotoxins/pharmacology , Trichothecenes/pharmacology , Animals , Astrocytes/pathology , Cell Line , Hippocampus/physiopathology , Mice , Mice, Inbred C57BL , Microglia/pathology
14.
Br J Nutr ; 128(2): 161-171, 2022 07 28.
Article in English | MEDLINE | ID: mdl-34519265

ABSTRACT

This study assessed the molecular mechanism of EPA or DHA protection against intestinal porcine epithelial cell line 1 (IPEC-1) cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA + DON group and the DHA + DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+ and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.


Subject(s)
Intestines , Trichothecenes , Animals , Swine , Reactive Oxygen Species/metabolism , Trichothecenes/metabolism , Trichothecenes/pharmacology , Epithelial Cells/metabolism , Endoplasmic Reticulum Stress
15.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769473

ABSTRACT

Deoxynivalenol (DON), a frequent mycotoxin worldwide, impairs human and animal health. The response of microRNAs, small non-coding RNAs, to DON has been scarcely investigated, but holds remarkable potential for biomarker applications. Hence, we aimed to investigate DON-induced changes in the microRNA expression in porcine liver, jejunum and serum by combining targeted and untargeted analyses. Piglets received uncontaminated feed or feed containing 900 µg/kg and 2500 µg/kg DON for four weeks, followed by a wash-out period. In tissue, only slight changes in microRNA expression were detected, with ssc-miR-10b being downregulated in liver of DON-exposed piglets. In serum, several microRNAs were differentially expressed upon DON exposure, four of which were validated by qPCR (ssc-miR-16, ssc-miR-128, ssc-miR-451, ssc-miR-205). The serum microRNA response to DON increased over time and declined after removal of contaminated diets. Receiver operating curve analyses for individual microRNAs were significant, and a combination of the four microRNAs increased the predictive capacity for DON exposure. Predicted microRNA target genes showed enrichment of several pathways including PIK3-AKT, Wnt/ß-catenin, and adherens junctions. This study gives, for the first time, a comprehensive view of the porcine microRNA response to DON, providing a basis for future research on microRNAs as biomarkers for mycotoxins.


Subject(s)
Biomarkers, Pharmacological/analysis , Dietary Exposure/analysis , MicroRNAs/analysis , Trichothecenes/pharmacology , Animal Feed/adverse effects , Animals , Biomarkers, Pharmacological/metabolism , Circulating MicroRNA/analysis , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Dietary Exposure/adverse effects , Female , Food Contamination/analysis , Gene Expression Profiling , Jejunum/drug effects , Jejunum/metabolism , Liver/drug effects , Liver/metabolism , MicroRNAs/blood , MicroRNAs/genetics , Mycotoxins/pharmacology , Swine , Toxicity Tests/veterinary
16.
Toxins (Basel) ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34678989

ABSTRACT

Trichothecenes are a family of major secondary metabolites produced by some common filamentous fungi, including plant pathogenic and entomopathogenic fungi. It may be considered difficult to conduct a comparison between the toxicities of trichothecenes with consideration of different conditions and cell lines. In the current study, we developed an in vitro assay based on a commercially available system to estimate the translation inhibition, that is, the main toxicity, of trichothecenes. The assay was applied to estimate the inhibition of protein synthesis by trichothecenes. Initially, we examined the assay using trichothecene dissolved in water followed by an assessment of trichothecene solutions dissolved in acetonitrile. The obtained data showed that the assay tolerated the small amount of acetonitrile. The assay examined in this study has the advantages of a short operation time (one day), ease of use, and data stability, as it is a non-cell-based assay whose components are commercially available. It is expected that this assay will contribute to the evaluation of the toxicity of a vast number of trichothecenes.


Subject(s)
In Vitro Techniques , Mycotoxins/pharmacology , Protein Processing, Post-Translational/drug effects , Trichothecenes/pharmacology , Proteomics
17.
Eur J Pharmacol ; 912: 174572, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34656606

ABSTRACT

Propolis, a compound produced by honeybees, has long been used in food and beverages to improve health and prevent diseases. We previously reported that the ethanol extracts of Brazilian green propolis and its constituents artepillin C, kaempferide, and kaempferol mitigate oxidative stress-induced cell death via oxytosis/ferroptosis. Here, we investigated the potential of Brazilian green propolis and its constituents to protect against endoplasmic reticulum stress in the mouse hippocampal cell line HT22. Ethanol extracts of Brazilian green propolis, artepillin C, and kaempferol attenuated tunicamycin-induced unfolded protein response and cell death. Interestingly, artepillin C inhibited both tunicamycin-induced protein aggregation in HT22 cells and the spontaneous protein aggregation of mutant canine superoxide dismutase 1 (E40K-SOD1-EGFP) in Neuro2a cells. These findings indicate that in addition to oxidative stress, the ethanol extracts of Brazilian green propolis help prevent endoplasmic reticulum stress-related neuronal cell death, which is proposedly involved in several neurodegenerative diseases. Moreover, artepillin C, a major constituent of Brazilian green propolis, may exhibit chemical chaperone-like properties.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Phenylpropionates/pharmacology , Propolis/chemistry , Propolis/pharmacology , Protective Agents/pharmacology , Protein Aggregates/drug effects , Animals , Brazil , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Cinnamates/pharmacology , Coumaric Acids/pharmacology , Ethanol/chemistry , Eukaryotic Initiation Factor-2/metabolism , Flavonoids/pharmacology , Hippocampus/cytology , Hippocampus/drug effects , Kaempferols/pharmacology , Membrane Proteins/metabolism , Mice , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Trichothecenes/pharmacology , Tunicamycin/toxicity , eIF-2 Kinase/metabolism
18.
Chem Biol Interact ; 348: 109640, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34506767

ABSTRACT

Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.


Subject(s)
Intestines/cytology , Lauric Acids/pharmacology , Signal Transduction/drug effects , Stem Cells/cytology , Trichothecenes/pharmacology , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
19.
Article in English | MEDLINE | ID: mdl-34500088

ABSTRACT

The main toxic effects of deoxynivalenol (DON) are the result of long-term accumulation, and there are no obvious clinical signs at the early stage. Specific metabolites in blood and urine can be used as biomarkers and become an important diagnostic indicator for DON poisoning monitoring. This study aimed to reveal the differences in DON-induced metabolites in the serum and urine of weaned rabbits. Thirty-two weaned rabbits were divided into two groups: control group and DON group. Both groups of rabbits were fed a basic diet. Rabbits in the DON group were administered 1.5 mg/kg b.w. DON by intraperitoneal injection on an empty stomach in the morning every two days. Rabbits in the control group were injected with the same amount of saline every two days in the same way. After the 25-day trial, serum and urine samples from different experimental periods were collected. The results based on the LC-MS/MS method showed that DON can be metabolized rapidly in blood, and urine is the main metabolic pathway for DON. Data based on metabolomics illustrated that underlying biomarkers in serum were mainly involved in glycerophospholipid metabolism, tryptophan metabolism and pentose and glucuronate interconversions, while those in urine samples were involved in caffeine metabolism, glycine, serine and threonine metabolism, and terpenoid backbone biosynthesis. Correlation analysis suggested that DON can induce changes in certain disease-related metabolites in serum and urine. In conclusion, the pathogenic mechanism of DON includes multiple levels, indicating that DON poisoning is caused by multiple factors acting on multiple links.


Subject(s)
Rabbits/blood , Rabbits/urine , Trichothecenes/pharmacology , Animals , Biomarkers/blood , Biomarkers/urine , Chromatography, Liquid , Diet , Metabolome , Tandem Mass Spectrometry , Weaning
20.
Bioorg Med Chem ; 47: 116372, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34454129

ABSTRACT

Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids. All obtained derivatives were submitted to antiproliferative assays against four cancer cells (MCF-7, MDA MB-231, PC-3, and DU145) and two normal cell lines (MCF-10A and PNT-2) to evaluate their cytotoxicity. In general, the best activity was observed for compound6e, derived from drupanin, which exhibited half-maximal inhibitory concentration (IC50) of 9.6 ± 3 µM and selectivity index (SI) of 5.5 against MCF-7 cells.In silicostudies demonstrated that these derivatives present coherent docking interactions and binding modes against AKR1C3, which might represent a possible mechanism of inhibition in MCF-7 cells.


Subject(s)
Amino Acids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cinnamates/pharmacology , Phenylpropionates/pharmacology , Propolis/chemistry , Trichothecenes/pharmacology , Amino Acids/analysis , Amino Acids/chemical synthesis , Antineoplastic Agents, Phytogenic/analysis , Antineoplastic Agents, Phytogenic/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cinnamates/analysis , Cinnamates/chemical synthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenylpropionates/analysis , Phenylpropionates/chemical synthesis , Propolis/analysis , Propolis/chemical synthesis , Propolis/pharmacology , Structure-Activity Relationship , Trichothecenes/analysis , Trichothecenes/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...