Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.336
Filter
1.
Nat Commun ; 15(1): 4847, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844467

ABSTRACT

The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.


Subject(s)
Fatty Acids, Unsaturated , Lipase , Lipoproteins, VLDL , Liver , Mice, Knockout , Triglycerides , Animals , Lipase/metabolism , Lipase/genetics , Liver/metabolism , Triglycerides/metabolism , Mice , Lipoproteins, VLDL/metabolism , Humans , Fatty Acids, Unsaturated/metabolism , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Mice, Inbred C57BL , Lipolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Acyltransferases , Phospholipases A2, Calcium-Independent
2.
Cell Commun Signal ; 22(1): 304, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831326

ABSTRACT

Elevated concentrations of palmitate in serum of obese individuals can impair endothelial function, contributing to development of cardiovascular disease. Although several molecular mechanisms of palmitate-induced endothelial dysfunction have been proposed, there is no consensus on what signaling event is the initial trigger of detrimental palmitate effects. Here we report that inhibitors of ER stress or ceramid synthesis can rescue palmitate-induced autophagy impairment in macro- and microvascular endothelial cells. Furthermore, palmitate-induced cholesterol synthesis was reverted using these inhibitors. Similar to cell culture data, autophagy markers were increased in serum of obese individuals. Subsequent lipidomic analysis revealed that palmitate changed the composition of membrane phospholipids in endothelial cells and that these effects were not reverted upon application of above-mentioned inhibitors. However, ER stress inhibition in palmitate-treated cells enhanced the synthesis of trilglycerides and restored ceramide levels to control condition. Our results suggest that palmitate induces ER-stress presumably by shift in membrane architecture, leading to impaired synthesis of triglycerides and enhanced production of ceramides and cholesterol, which altogether enhances lipotoxicity of palmitate in endothelial cells.


Subject(s)
Endoplasmic Reticulum Stress , Endothelial Cells , Endoplasmic Reticulum Stress/drug effects , Humans , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Autophagy/drug effects , Triglycerides/metabolism , Cholesterol/metabolism , Palmitates/pharmacology , Ceramides/metabolism
3.
Food Res Int ; 187: 114421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763671

ABSTRACT

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Subject(s)
Bile Acids and Salts , Digestion , Emulsions , Lipolysis , Phospholipids , Triglycerides , Emulsions/chemistry , Triglycerides/metabolism , Triglycerides/chemistry , Bile Acids and Salts/metabolism , Humans , Phospholipids/chemistry , Phospholipids/metabolism , Digestion/physiology , Lipase/metabolism , Intestine, Small/metabolism , Surface-Active Agents/chemistry
4.
Nat Commun ; 15(1): 3962, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730247

ABSTRACT

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Subject(s)
Chalcones , Adult , Aged , Female , Humans , Male , Middle Aged , Adiponectin/metabolism , Adiponectin/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Blood Pressure/drug effects , Cardiovascular Diseases/drug therapy , Chalcones/therapeutic use , Chalcones/pharmacology , Fatty Liver/drug therapy , Fatty Liver/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Propionates , Triglycerides/blood , Triglycerides/metabolism
5.
Reprod Domest Anim ; 59(5): e14595, 2024 May.
Article in English | MEDLINE | ID: mdl-38773768

ABSTRACT

Oocyte maturation involves both nuclear and cytoplasmic maturation. Mogroside V (MV) has been shown to enhance nuclear maturation, mitochondrial content, and developmental potential of porcine oocyte during in vitro maturation (IVM). However, the impact of MV on cytoplasmic maturation and its underlying mechanisms are not understood. This study aimed to assess the effect of MV on cytoplasmic maturation. Germinal vesicle (GV) oocytes treated with MV exhibited a noticeable increase in cortical granules (CGs) formation. Additionally, MV enhanced the expression of NNAT and improved glucose uptake in mature oocytes. Further insights were gained through Smart-seq2 analysis of RNA isolated from 100 oocytes. A total of 11,274 and 11,185 transcripts were identified in oocytes treated with and without MV, respectively. Among quantified genes, 438 differentially expressed genes (DEGs) were identified for further analysis. Gene Ontology (GO) enrichment analysis indicated that these DEGs were primarily involved in DNA repair regulation, cellular response to DNA damage, intracellular components, and organelles. Furthermore, the DEGs were significantly enriched in three KEGG pathways: fatty acid synthesis, pyruvate metabolism, and WNT signalling. To validate the results, lipid droplets (LD) and triglyceride (TG) were examined. MV led to an increase in the accumulation of LD and TG production in mature oocytes. These findings suggest that MV enhances cytoplasmic maturation by promoting lipid droplet synthesis. Overall, this study provides valuable insights into the mechanisms through which MV improves oocyte quality during IVM. The results have significant implications for research in livestock reproduction and offer guidance for future studies in this field.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Animals , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Female , Swine , Lipid Droplets/metabolism , Diterpenes/pharmacology , Triglycerides/metabolism , Triterpenes
6.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732511

ABSTRACT

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Subject(s)
Choline , Dietary Supplements , Ethanol , Liver , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Choline/administration & dosage , Male , Liver/metabolism , Liver/drug effects , Mice , Fatty Liver/prevention & control , Fatty Liver/etiology , Triglycerides/metabolism , PPAR alpha/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Glucose Intolerance/prevention & control , Lipid Metabolism/drug effects
7.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732546

ABSTRACT

In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.


Subject(s)
Fat Substitutes , Milk, Human , Rats, Sprague-Dawley , Triglycerides , Animals , Milk, Human/chemistry , Triglycerides/metabolism , Humans , Rats , Fat Substitutes/pharmacology , Male , Lipid Metabolism/drug effects , Glycerides/metabolism , Glycerides/pharmacology , Metabolomics/methods , Lipidomics , Oxidative Stress/drug effects , Female
8.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732582

ABSTRACT

Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and pseudo germ-free mice. The results showed that HEE effectively diminished hepatic lipid accumulation, ameliorated liver function, reduced inflammatory cytokine levels and blood lipid profiles, and regulated blood glucose levels. HEE facilitated triglyceride breakdown, suppressed fatty acid synthesis, and enhanced intestinal health by modulating the diversity of the gut microbiota and the production of short-chain fatty acids in the gut. In addition, HEE apparently helps to increase the presence of beneficial genera of bacteria, thereby influencing the composition of the gut microbiota, and the absence of gut flora affects the efficacy of HEE. These findings reveal the potential of hawthorn for the prevention and treatment of NAFLD and provide new perspectives on the study of functional plants to improve liver health.


Subject(s)
Crataegus , Gastrointestinal Microbiome , Lipid Metabolism , Liver , Non-alcoholic Fatty Liver Disease , Plant Extracts , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/microbiology , Plant Extracts/pharmacology , Animals , Crataegus/chemistry , Liver/metabolism , Liver/drug effects , Mice , Male , Lipid Metabolism/drug effects , Mice, Inbred C57BL , Ethanol , Disease Models, Animal , Triglycerides/blood , Triglycerides/metabolism , Cytokines/metabolism , Fatty Acids, Volatile/metabolism
9.
World J Surg Oncol ; 22(1): 126, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725003

ABSTRACT

PURPOSE: This study investigated the changes in the fasting blood glucose (FBG), fasting triglyceride (FTG), and fasting total cholesterol (FTC) levels during neoadjuvant therapy (NAT) for human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) and the association with pathologic complete response (pCR). METHODS: Relevant data from Sichuan Cancer Hospital from June 2019 to June 2022 were collected and analyzed, and FBG, FTG, and FTC were divided into baseline, change, and process groups, which were grouped to analyze the changes after receiving NAT and the association with pCR. RESULTS: In the estrogen receptor (ER)-negative subgroup, patients with low levels of FTG in the process group were more likely to achieve pCR compared to high levels, and in the progesterone receptor (PR)-negative subgroup, patients with lower FTG compared to higher FTG after receiving NAT was more likely to achieve pCR. CONCLUSIONS: Patients with HER2-positive BC undergoing NAT develop varying degrees of abnormalities (elevated or decreased) in FBG, FTG, and FTC; moreover, the status of FTG levels during NAT may predict pCR in ER-negative or PR-negative HER2-positive BC.Early monitoring and timely intervention for FTG abnormalities may enable this subset of patients to increase the likelihood of obtaining a pCR along with management of abnormal markers.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoadjuvant Therapy , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Receptor, ErbB-2/metabolism , Neoadjuvant Therapy/methods , Middle Aged , Prognosis , Biomarkers, Tumor/metabolism , Follow-Up Studies , Blood Glucose/analysis , Blood Glucose/metabolism , Adult , Receptors, Estrogen/metabolism , Triglycerides/blood , Triglycerides/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Receptors, Progesterone/metabolism , Cholesterol/metabolism , Cholesterol/blood , Aged , Pathologic Complete Response
10.
FASEB J ; 38(9): e23643, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703030

ABSTRACT

Secreted phospholipase A2s are involved in the development of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease, which have become serious and growing health concerns worldwide. Integration of genome-wide association study and gene co-expression networks analysis showed that the secreted phospholipase A2 group XIIA (PLA2G12A) may participate in hepatic lipids metabolism. Nevertheless, the role of PLA2G12A in lipid metabolism and its potential mechanism remain elusive. Here, we used AAV9 vector carrying human PLA2G12A gene to exogenously express hPLA2G12A in the liver of mice. We demonstrated that the overexpression of hPLA2G12A resulted in a significant decrease in serum lipid levels in wild-type mice fed with chow diet or high-fat diet (HFD). Moreover, hPLA2G12A treatment protected against diet-induced obesity and insulin resistance in mice fed a HFD. Notably, we found that hPLA2G12A treatment confers protection against obesity and hyperlipidemia independent of its enzymatic activity, but rather by increasing physical activity and energy expenditure. Furthermore, we demonstrated that hPLA2G12A treatment induced upregulation of ApoC2 and Cd36 and downregulation of Angptl8, which contributed to the increase in clearance of circulating triglycerides and hepatic uptake of fatty acids without affecting hepatic de novo lipogenesis, very low-density lipoprotein secretion, or intestinal lipid absorption. Our study highlights the potential of PLA2G12A gene therapy as a promising approach for treating obesity, insulin resistance and T2DM.


Subject(s)
Diet, High-Fat , Energy Metabolism , Insulin Resistance , Mice, Inbred C57BL , Obesity , Triglycerides , Animals , Obesity/metabolism , Obesity/etiology , Mice , Triglycerides/metabolism , Triglycerides/blood , Male , Diet, High-Fat/adverse effects , Humans , Liver/metabolism , Lipid Metabolism
11.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794745

ABSTRACT

Obesity is primarily exacerbated by excessive lipid accumulation during adipogenesis, with triacylglycerol (TG) as a major lipid marker. However, as the association between numerous lipid markers and various health conditions has recently been revealed, investigating the lipid metabolism in detail has become necessary. This study investigates the lipid metabolic effects of Hydrangea serrata (Thunb.) Ser. hot water leaf extract (WHS) on adipogenesis using LC-MS-based lipidomics analysis of undifferentiated, differentiated, and WHS-treated differentiated 3T3-L1 cells. WHS treatment effectively suppressed the elevation of glycerolipids, including TG and DG, and prevented a molecular shift in fatty acyl composition towards long-chain unsaturated fatty acids. This shift also impacted glycerophospholipid metabolism. Additionally, WHS stabilized significant lipid markers such as the PC/PE and LPC/PE ratios, SM, and Cer, which are associated with obesity and related comorbidities. This study suggests that WHS could reduce obesity-related risk factors by regulating lipid markers during adipogenesis. This study is the first to assess the underlying lipidomic mechanisms of the adipogenesis-inhibitory effect of WHS, highlighting its potential in developing natural products for treating obesity and related conditions. Our study provides a new strategy for the development of natural products for the treatment of obesity and related diseases.


Subject(s)
3T3-L1 Cells , Adipogenesis , Hydrangea , Lipid Metabolism , Lipidomics , Plant Extracts , Plant Leaves , Adipogenesis/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Mice , Hydrangea/chemistry , Lipid Metabolism/drug effects , Water/chemistry , Adipocytes/drug effects , Adipocytes/metabolism , Triglycerides/metabolism , Obesity/prevention & control
12.
Sci Rep ; 14(1): 12295, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811812

ABSTRACT

Intramuscular fat (IMF) in pork holds significant importance for economic performance within the pig industry and dietary calcium supplementation enhances the accumulation of intramuscular fat. Additionally, calcium ions inhibit translation and reduce protein synthesis. However, the mechanism by which calcium regulates IMF deposition in muscle through translation remains largely unknown. In this study, we compared the ribosome profiles of the longissimus dorsi muscles of Duroc × Landrace × Large white pigs from the normal calcium (NC) group or calcium supplement (HC) group by Ribo-seq, and RNA-seq. By integrating multiple-omics analysis, we further discovered 437 genes that were transcriptionally unchanged but translationally altered and these genes were significantly enriched in the oxidative phosphorylation signaling pathway. Furthermore, experimental data showed that inhibiting the expression of COX10 and mtND4L increased triglyceride accumulation in C2C12 cells, providing new targets for intramuscular fat deposition. Finally, this work links dietary calcium, translation regulation and IMF deposition, providing a new strategy for both meat quality and economic performance within the pig industry.


Subject(s)
Calcium, Dietary , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Swine , Calcium, Dietary/metabolism , Adipose Tissue/metabolism , Dietary Supplements , Mice , Protein Biosynthesis/drug effects , Triglycerides/metabolism , Calcium/metabolism
13.
Int J Food Sci Nutr ; 75(4): 385-395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38690724

ABSTRACT

There are conflicting animal experiments on the effect of trimethylamine N-oxide (TMAO), the dietary metabolite, on non-alcoholic fatty liver disease (NAFLD). This study aims to determine the effect of TMAO on NAFLD. A diet containing 0.3% TMAO was fed to farnesoid X receptor (Fxr)-null mice, a model of NAFLD, for 13 weeks. Fxr-null mice fed TMAO showed significant reductions in liver damage markers but not wild-type mice. Hepatic bile acid and cholesterol levels were significantly decreased, and triacylglycerol levels tended to decrease in TMAO-fed Fxr-null mice. Changes in mRNA levels of hepatic bile acid and cholesterol transporters and synthetic enzymes were observed, which could explain the decreased hepatic bile acid and cholesterol levels in Fxr-null mice given the TMAO diet but not in the wild-type mice. These results suggest that TMAO intake ameliorates liver damage in Fxr-null mice, further altering bile acid/cholesterol metabolism in an FXR-independent manner.


Subject(s)
Bile Acids and Salts , Cholesterol , Liver , Methylamines , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Receptors, Cytoplasmic and Nuclear , Animals , Methylamines/metabolism , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cholesterol/blood , Cholesterol/metabolism , Liver/metabolism , Liver/drug effects , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Male , Triglycerides/metabolism , Mice, Inbred C57BL , Disease Models, Animal , RNA, Messenger/metabolism
14.
New Phytol ; 243(1): 284-298, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38730535

ABSTRACT

Autophagy is a central degradative pathway highly conserved among eukaryotes, including microalgae, which remains unexplored in extremophilic organisms. In this study, we described and characterized autophagy in the newly identified extremophilic green microalga Chlamydomonas urium, which was isolated from an acidic environment. The nuclear genome of C. urium was sequenced, assembled and annotated in order to identify autophagy-related genes. Transmission electron microscopy, immunoblotting, metabolomic and photosynthetic analyses were performed to investigate autophagy in this extremophilic microalga. The analysis of the C. urium genome revealed the conservation of core autophagy-related genes. We investigated the role of autophagy in C. urium by blocking autophagic flux with the vacuolar ATPase inhibitor concanamycin A. Our results indicated that inhibition of autophagic flux in this microalga resulted in a pronounced accumulation of triacylglycerols and lipid droplets (LDs). Metabolomic and photosynthetic analyses indicated that C. urium cells with impaired vacuolar function maintained an active metabolism. Such effects were not observed in the neutrophilic microalga Chlamydomonas reinhardtii. Inhibition of autophagic flux in C. urium uncovered an active recycling of LDs through lipophagy, a selective autophagy pathway for lipid turnover. This study provided the metabolic basis by which extremophilic algae are able to catabolize lipids in the vacuole.


Subject(s)
Autophagy , Chlamydomonas , Lipid Metabolism , Photosynthesis , Chlamydomonas/metabolism , Photosynthesis/drug effects , Extremophiles/metabolism , Lipid Droplets/metabolism , Vacuoles/metabolism , Phylogeny , Triglycerides/metabolism , Macrolides
15.
Cell Rep ; 43(5): 114238, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748875

ABSTRACT

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Subject(s)
Diet, High-Fat , ELAV-Like Protein 1 , Intestinal Absorption , Triglycerides , Triglycerides/metabolism , Triglycerides/biosynthesis , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Mice , Diet, High-Fat/adverse effects , Humans , Mice, Inbred C57BL , Male , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Obesity/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Fats/metabolism , Dietary Fats/pharmacology , Mice, Knockout , 3' Untranslated Regions/genetics , Acyltransferases
16.
Food Chem ; 452: 139289, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38713979

ABSTRACT

To verfy their difference from isolated fatty acids, the absolute kinetics of peroxidation was studied for seven triglyceride-based oils of olive (OLI-1, OLI-2), high-oleic sunflower (SUN-HO), high-oleic and high-linoleic safflower (SAF-HO, SAF-HL) grapeseed (GRA) and borage (BOR), by oxygen uptake monitoring, using 2,6-di-tert-butyl-4-methoxyphenol and 2,2,5,7,8-pentamethyl-6-chromanol as reference inhibitors. Propagation constants (kp/M-1 s-1 at 303 K in PhCl) were respectively 34.8 ± 2.3, 35.1 ± 1.8, 40.6 ± 5.5, 36.0 ± 7.7, 160.8 ± 5.1, 145.1 ± 24.5, 275.1 ± 63.8, while oxidizability responded to empirical equation kp(2kt)-½/M-½s-½ = 1.63 × 10-3[allyl >CH2/M] + 1.82 × 10-2[bisallyl >CH2/M], based on fatty acids residues assessed by GC-MS. Peroxidation kinetics was markedly different from that of isolated fatty acids. The H-bond basicity of all oils was measured by FT-IR affording Abraham's ßH2 values in the range 0.55 ± 0.03. H-bonding explained the protection of oils measured for seven reference phenolic antioxidants, except for the catechols quercetin and caffeic acid phenethyl ester, which were 2-to-4-folds more effective than expected, supporting a proposed different mechanism.


Subject(s)
Antioxidants , Lipid Peroxidation , Plant Oils , Triglycerides , Kinetics , Plant Oils/chemistry , Antioxidants/chemistry , Lipid Peroxidation/drug effects , Triglycerides/chemistry , Triglycerides/metabolism , Oxidation-Reduction
17.
Nat Commun ; 15(1): 3690, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750012

ABSTRACT

Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).


Subject(s)
Athletes , Diabetes Mellitus, Type 2 , Insulin Resistance , Lipid Metabolism , Humans , Male , Diabetes Mellitus, Type 2/metabolism , Adult , Middle Aged , Endurance Training , Muscle, Skeletal/metabolism , Triglycerides/metabolism
18.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791126

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.


Subject(s)
Fatty Acid-Binding Proteins , Fatty Liver , Glutathione Transferase , Up-Regulation , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Animals , Humans , Mice , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Liver/metabolism , Fatty Liver/drug therapy , Up-Regulation/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Diet, High-Fat/adverse effects , Male , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Lipid Metabolism/drug effects , Oleic Acid/metabolism , Hep G2 Cells , Triglycerides/metabolism , Isoenzymes
19.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791514

ABSTRACT

Supplementation with fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) effectively reduces acute and chronic alcohol-induced hepatic steatosis. We aimed to find molecular mechanisms underlying the effects of n-3 PUFAs in alcohol-induced hepatic steatosis. Because free fatty acid receptor 4 (FFA4, also known as GPR120) has been found as a receptor for n-3 PUFAs in an ethanol-induced liver steatosis model, we investigated whether n-3 PUFAs protect against liver steatosis via FFA4 using AH7614, an FFA4 antagonist, and Ffa4 knockout (KO) mice. N-3 PUFAs and compound A (CpdA), a selective FFA4 agonist, reduced the ethanol-induced increase in lipid accumulation in hepatocytes, triglyceride content, and serum ALT levels, which were not observed in Ffa4 KO mice. N-3 PUFAs and CpdA also reduced the ethanol-induced increase in lipogenic sterol regulatory element-binding protein-1c expression in an FFA4-dependent manner. In Kupffer cells, treatment with n-3 PUFA and CpdA reversed the ethanol-induced increase in tumor necrosis factor-α, cyclooxygenase-2, and NLR family pyrin domain-containing 3 expression levels in an FFA4-dependent manner. In summary, n-3 PUFAs protect against ethanol-induced hepatic steatosis via the anti-inflammatory actions of FFA4 on Kupffer cells. Our findings suggest FFA4 as a therapeutic target for alcoholic hepatic steatosis.


Subject(s)
Ethanol , Fatty Acids, Omega-3 , Fatty Liver, Alcoholic , Kupffer Cells , Mice, Knockout , Receptors, G-Protein-Coupled , Animals , Fatty Acids, Omega-3/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Kupffer Cells/metabolism , Kupffer Cells/drug effects , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/prevention & control , Fatty Liver, Alcoholic/drug therapy , Male , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Protective Agents/pharmacology , Triglycerides/metabolism
20.
Phytomedicine ; 129: 155691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744232

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with few therapeutic options currently available. Traditional Chinese medicine has been used for thousands of years and exhibited remarkable advantages against such complicated disease for its "multi-component, multi-target and multi-pathway" characteristics. Compound Shouwu Jiangzhi Granule (CSJG) is a clinical empirical prescription for the treatment of NAFLD, but its pharmacological mechanism remains unknown. METHODS: The clinical efficacy of CSJG was retrospectively analyzed in NAFLD patients by comparing blood biomarkers levels and liver MR images before and after CSJG treatment. Then, high-fat/high-fructose (HFHF) diet-induced NAFLD mice were used to further confirm CSJG's effect against hepatic lipid accumulation through hepatic lipid determination and histopathological staining of liver samples. Next, the ingredients of CSJG were determined, and network pharmacology analysis was performed to predict potential targets of CSJG, followed by quantitative PCR (qPCR) and western blotting for verification. Then, lipidomics study was carried out to further explore the anti-NAFLD mechanism of CSJG from the perspective of triacylglyceride (TAG) synthesis but not free fatty acid (FFA) synthesis. The enzymes involved in this process were assayed by qPCR and western blotting. The potential interactions between the key enzymes of TAG synthesis and the active ingredients of CSJG were analyzed by molecular docking. RESULTS: CSJG attenuated blood lipid levels and hepatic fat accumulation in both NAFLD patients and mice. Although network pharmacology analysis revealed the FFA synthesis pathway, CSJG only slightly affected it. Through lipidomics analysis, GSJG was found to significantly block the synthesis of diglycerides (DAGs) and TAGs in the liver, with decreased DGAT2 and increased PLD1 protein expression, which diverted DAGs from the synthesis of TAGs to the production of PEs, PCs and PAs and thus lowed TAGs level. Molecular docking suggested that rhein, luteolin and liquiritigenin from CSJG might be involved in this regulation. CONCLUSION: Clinical and experimental evidence demonstrated that CSJG is a promising agent for the treatment of NAFLD. CSJG regulated TAGs synthesis to alleviate hepatic lipid accumulation. Rhein, luteolin and liquiritigenin from CSJG might play a role in it.


Subject(s)
Drugs, Chinese Herbal , Lipid Metabolism , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Triglycerides , Animals , Drugs, Chinese Herbal/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism , Triglycerides/blood , Humans , Male , Liver/drug effects , Liver/metabolism , Mice , Lipid Metabolism/drug effects , Retrospective Studies , Female , Diet, High-Fat , Disease Models, Animal , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...