Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.716
Filter
1.
Sci Rep ; 14(1): 20370, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223267

ABSTRACT

Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified. The results of our study indicate that T3 treatment promotes browning of WAT through inhibition of the PI3K/AKT signalling pathway; these findings offer novel perspectives regarding the potential of localised therapies for addressing WAT volume in individuals with obesity.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Thermogenesis , Triiodothyronine , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adipose Tissue, White/metabolism , Mice , Adipose Tissue, Brown/metabolism , Male , Humans , Obesity/metabolism , Mice, Inbred C57BL , Energy Metabolism
2.
Cells ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39195232

ABSTRACT

From birth to adulthood, the mammalian heart grows primarily through increasing cardiomyocyte (CM) size, which is known as maturational hypertrophic growth. The Hippo-YAP signaling pathway is well known for regulating heart development and regeneration, but its roles in CM maturational hypertrophy have not been clearly addressed. Vestigial-like 4 (VGLL4) is a crucial component of the Hippo-YAP pathway, and it functions as a suppressor of YAP/TAZ, the terminal transcriptional effectors of this signaling pathway. To develop an in vitro model for studying CM maturational hypertrophy, we compared the biological effects of T3 (triiodothyronine), Dex (dexamethasone), and T3/Dex in cultured neonatal rat ventricular myocytes (NRVMs). The T3/Dex combination treatment stimulated greater maturational hypertrophy than either the T3 or Dex single treatment. Using T3/Dex treatment of NRVMs as an in vitro model, we found that activation of VGLL4 suppressed CM maturational hypertrophy. In the postnatal heart, activation of VGLL4 suppressed heart growth, impaired heart function, and decreased CM size. On the molecular level, activation of VGLL4 inhibited the PI3K-AKT pathway, and disrupting VGLL4 and TEAD interaction abolished this inhibition. In conclusion, our data suggest that VGLL4 suppresses CM maturational hypertrophy by inhibiting the YAP/TAZ-TEAD complex and its downstream activation of the PI3K-AKT pathway.


Subject(s)
Cardiomegaly , Myocytes, Cardiac , Transcription Factors , Animals , Rats , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Dexamethasone/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription Factors/metabolism , Triiodothyronine/pharmacology , YAP-Signaling Proteins/metabolism
3.
BMC Pulm Med ; 24(1): 405, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180004

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF), an interstitial lung disease, is characterized by the exacerbation of progressive pulmonary fibrosis (PF). IPF primarily affects older individuals and can lead to respiratory failure. This study aimed to assess the effects of triiodothyronine (T3) treatment on the lung microbiome of mice with PF. METHODS: Mice were perfused with bleomycin (BLM) to establish a PF model. Using a randomized design, 40 female specific pathogen-free (SPF) C57BL6/N mice were divided into four groups: saline, saline + T3, BLM, and BLM + T3. Histological morphology was assessed through Hematoxylin and Eosin staining as well as Masson's Trichrome staining. For the identification of lung bacteria, 16S rRNA gene sequencing was employed. An Enzyme-Linked Immunosorbent Assay was used to measure total T3 (TT3), free T3 (FT3, and reverse T3 (rT3) levels in the peripheral serum. RESULTS: T3 treatment ameliorated BLM-induced lung fibrosis and structural damage. The microbiome experienced a decrease in the abundance of Proteobacteria, Bacteroides, and Actinomycetes and an increase in the abundance of Firmicutes when exposed to BLM; however, T3 treatment reversed this effect. The four groups showed no significant difference in alpha microbiome diversity (P > 0.05). Serum concentrations of TT3 and FT3 were positively correlated with microbiome abundance (P < 0.05). Administration of T3 enhanced the microbiota in PF without affecting the diversity and biological functions of the microbiome (P > 0.05). CONCLUSION: The administration of T3 demonstrated a favorable impact on the lung microbiota of mice afflicted with PF, thereby partially substantiating the potential role of T3 as a therapeutic agent in the management of PF.


Subject(s)
Bleomycin , Disease Models, Animal , Lung , Mice, Inbred C57BL , Microbiota , RNA, Ribosomal, 16S , Triiodothyronine , Animals , Mice , Triiodothyronine/blood , Triiodothyronine/pharmacology , Microbiota/drug effects , Lung/pathology , Lung/microbiology , Female , RNA, Ribosomal, 16S/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/microbiology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/microbiology
4.
PLoS One ; 19(7): e0307696, 2024.
Article in English | MEDLINE | ID: mdl-39038022

ABSTRACT

It has been reported that Ywhah (14-3-3η) reduces glycolysis. However, it remains unclear about the downstream mechanism by which glycolysis is regulated by 14-3-3η in cardiac hypertrophy. As an important regulator, Yes-associated protein (YAP) interacts with 14-3-3η to participate in the initiation and progression of various diseases in vivo. In this study, the model of H9C2 cardiomyocyte hypertrophy was established by triiodothyronine (T3) or rotenone stimulation to probe into the action mechanism of 14-3-3η. Interestingly, the overexpression of 14-3-3η attenuated T3 or rotenone induced cardiomyocyte hypertrophy and decreased glycolysis in H9C2 cardiomyocytes, whereas the knockdown of 14-3-3η had an opposite effect. Mechanistically, 14-3-3η can reduce the expression level of YAP and bind to it to reduce its nuclear translocation. In addition, changing YAP may affect the expression of lactate dehydrogenase A (LDHA), a glycolysis-related protein. Meanwhile, LDHA is also a possible target for 14-3-3η to mediate glycolysis based on changes in pyruvate, a substrate of LDHA. Collectively, 14-3-3η can suppress cardiomyocyte hypertrophy via decreasing the nucleus translocation of YAP and glycolysis, which indicates that 14-3-3η could be a promising target for inhibiting cardiac hypertrophy.


Subject(s)
14-3-3 Proteins , Cardiomegaly , Glycolysis , L-Lactate Dehydrogenase , Myocytes, Cardiac , Triiodothyronine , YAP-Signaling Proteins , Animals , Rats , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cell Line , Isoenzymes/metabolism , Isoenzymes/genetics , L-Lactate Dehydrogenase/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , YAP-Signaling Proteins/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000540

ABSTRACT

Thyroid hormone (TH) plays an essential role in cell proliferation, differentiation, and metabolism. Experimental and clinical studies have shown a potential association between TH signaling and retinal degeneration. The suppression of TH signaling protects cone photoreceptors in mouse models of retinal degeneration, whereas excessive TH signaling induces cone degeneration, manifested as reduced light response and a loss of cones. This work investigates the genes/transcriptomic alterations that might be involved in TH-induced cone degeneration in mice using single-cell RNA sequencing (scRNAseq) analysis. One-month-old C57BL/6 mice received triiodothyronine (T3, 20 µg/mL in drinking water) for 4 weeks as a model of hyperthyroidism/excessive TH signaling. At the end of the experiments, retinal cells were dissociated, and cell viability was analyzed before being subjected to scRNAseq. The resulting data were analyzed using the Seurat package and visualized using the Loupe browser. Among 155,866 single cells, we identified 14 cell clusters, representing various retinal cell types, with rod and cone clusters comprising 76% and 4.1% of the total cell population, respectively. Cone cluster transcriptomes demonstrated the most alterations after the T3 treatment, with 450 differentially expressed genes (DEGs), accounting for 38.5% of the total DEGs. Statistically significant changes in the expression of genes in the cone cluster revealed that phototransduction and oxidative phosphorylation were impaired after the T3 treatment, along with mitochondrial dysfunction. A pathway analysis also showed the activation of the sensory neuronal/photoreceptor stress pathways after the T3 treatment. Specifically, the eukaryotic initiation factor-2 signaling pathway and the cAMP response element-binding protein signaling pathway were upregulated. Thus, excessive TH signaling substantially affects cones at the transcriptomic level. The findings from this work provide an insight into how excessive TH signaling induces cone degeneration.


Subject(s)
Light Signal Transduction , Mitochondria , Retinal Cone Photoreceptor Cells , Signal Transduction , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/drug effects , Mice , Mitochondria/metabolism , Thyroid Hormones/metabolism , Mice, Inbred C57BL , Gene Expression Profiling , Transcriptome , Energy Metabolism , Triiodothyronine/pharmacology , Retinal Degeneration/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology
6.
J Cancer Res Ther ; 20(3): 755-762, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-39023579

ABSTRACT

BACKGROUND AND OBJECTIVES: Hepatocellular carcinoma (HCC) is a primary cancer that poorly responds to treatment. Molecular cancer studies led to the development of kinase inhibitors, among which sorafenib stands out as a multi-kinase inhibitor approved by FDA for first line use in HCC patients. However, the efficiency of sorafenib was shown to be counteracted by numerous subcellular pathways involving the effector kinase AKT, causing resistance and limiting its survival benefit. On the way of breaking such resistance mechanisms and increase the efficiency of sorafenib, deeper understanding of hepatocellular physiology is essential. Thyroid hormones were shown to be metabolized in liver and inevitably affect the molecular behaviour of hepatocytes. Interestingly, thyroid hormone T3 was also demonstrated to be potentially influential in liver regeneration and treatment with this hormone reportedly led to a decrease in HCC tumor growths. In this study, we aimed to uncover the impact of T3 hormone on the cytotoxic response to sorafenib in HCC in vitro. MATERIALS AND METHODS: We pre-treated the HCC cell line Huh-7 with T3 prior to sorafenib exposure both in 2D and 3D culture. We checked cell viability with MTT assay in 2D culture and measured the sizes of 3D spheroids with bright-field microscopy followed by a surface analysis with ImageJ. We also performed scratch assay to measure cell migration as well as western blot and qPCR to uncover affected pathways. RESULTS: We observed an additive effect to sorafenib's cytotoxicity both in 2D and 3D culture. Cell migration assay also confirmed our finding and pointed out a benefit of T3 hormone in HCC cell migration. Western blot experiments showed that T3 exerts its additive effect by suppressing AKT expression upon sorafenib treatment both at protein and gene expression levels. CONCLUSION: Our results open a promising new avenue in increasing sorafenib's cytotoxicity where thyroid hormone T3 is utilized to modulate AKT expression to combat resistance, and warrant further studies in the field.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Proto-Oncogene Proteins c-akt , Sorafenib , Triiodothyronine , Humans , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sorafenib/pharmacology , Triiodothyronine/pharmacology
7.
Physiol Behav ; 283: 114601, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838800

ABSTRACT

AIM: The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS: A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS: Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION: Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.


Subject(s)
Body Weight , Eating , Energy Metabolism , Gastrointestinal Hormones , Infusions, Intraventricular , Thyroid Gland , Animals , Energy Metabolism/drug effects , Energy Metabolism/physiology , Male , Body Weight/drug effects , Eating/drug effects , Eating/physiology , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Rats , Gastrointestinal Hormones/metabolism , Gastrointestinal Hormones/administration & dosage , Uncoupling Protein 1/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Neuropeptides/metabolism , Neuropeptides/administration & dosage , Thyrotropin/blood , Thyrotropin/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Thyroxine/blood , Thyroxine/administration & dosage , Drinking/drug effects , Triiodothyronine/administration & dosage , Triiodothyronine/blood , Triiodothyronine/pharmacology , Rats, Wistar , Hypothalamus/metabolism , Hypothalamus/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects
8.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38862394

ABSTRACT

Alloxan-induced diabetic rats present with hypothyroidism. When treated with triiodothyronine (T3), glycemia and proinflammatory cytokine expression are downregulated, improving insulin sensitivity. The effectiveness of associating T3 with insulin (replacement dose [6 U] and [3 U]) in controlling glycemia was investigated in this experimental model. Male Wistar rats were made diabetic by alloxan injection and sorted into groups treated or not with insulin (3 or 6 U) associated or not with T3 (1.5 µg 100 g-1 BW) for 28 days. Nondiabetic rats constituted the control group. Fasting glycemia, glucose decay rate, and thyrotropin (TSH) were measured in the blood/serum of all animals. Immunoblotting was used to assess total GLUT4 expression in skeletal muscles and epididymal white adipose tissue. Cytokine and nuclear factor-κB (NF-κB) expression were measured in these tissues and liver. Diabetic rats presented with increased fasting glycemia, inflammatory cytokines, and NF-κB expression, TSH levels, and insulin resistance. In diabetic rats treated with T3 and/or insulin, these parameters were decreased, whereas GLUT4 and anti-inflammatory cytokine expression were increased. T3 combined with 3-U insulin restored the parameters to values of the control group and was more effective at controlling glycemia than 6-U insulin. Thus, a combination of T3 and insulin might represent a promising strategy for diabetes management since it reduces the insulin requirement by half and improves glycemic control of diabetic rats, which could postpone insulin resistance that develops with chronic insulin administration. These findings open a perspective for using thyroid analogues that provide tissue-specific effects, which might result in a potentially more effective treatment of diabetes.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Glucose Transporter Type 4 , Insulin , NF-kappa B , Rats, Wistar , Triiodothyronine , Animals , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Triiodothyronine/blood , Triiodothyronine/pharmacology , Rats , Glucose Transporter Type 4/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , NF-kappa B/metabolism , Insulin Resistance , Alloxan , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Thyrotropin/blood , Cytokines/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
9.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920666

ABSTRACT

Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.


Subject(s)
Circadian Rhythm , Hepatocytes , Triiodothyronine , Hepatocytes/metabolism , Animals , Triiodothyronine/pharmacology , Triiodothyronine/metabolism , Mice , Thyroid Hormones/metabolism , Cell Line , Fatty Liver/metabolism , Fatty Liver/pathology , Circadian Clocks/genetics
10.
Endocrine ; 85(3): 1075-1090, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38713329

ABSTRACT

INTRODUCTION: Natriuretic peptide receptor-A (NPR-A) signaling system is considered as an intrinsic productive mechanism of the heart that opposes abnormal cardiac remodeling and hypertrophic growth. NPR-A is coded by Npr1 gene, and its expression is downregulated in the hypertrophied heart. AIM: We sought to examine the levels of Npr1 gene transcription in triiodo-L-thyronine (T3) treated hypertrophied cardiomyocyte (H9c2) cells, in vitro, and also the involvement of ß-adrenergic receptor (ß-AR) - Reactive oxygen species (ROS) signaling system in the down-regulation of Npr1 transcription also studied. MAIN METHODS: Anti-hypertrophic Npr1 gene transcription was monitored in control and T3-treated (dose and time dependent) H9c2 cells, using a real time PCR method. Further, cell size, intracellular cGMP, ROS, hypertrophy markers (ANP, BNP, α-sk, α-MHC and ß-MHC), ß-AR, and protein kinase cGMP-dependent 1 (PKG-I) genes expression were also determined. The intracellular cGMP and ROS levels were determined by ELISA and DCF dye method, respectively. In addition, to neutralize T3 mediated ROS generation, H9c2 cells were treated with T3 in the presence and absence of antioxidants [curcumin (CU) or N-acetyl-L-cysteine (NAC)]. RESULTS: A dose dependent (10 pM, 100 pM, 1 nM and 10 nM) and time dependent (12 h, 24 h and 48 h) down-regulation of Npr1 gene transcription (20, 39, 60, and 74% respectively; 18, 55, and 85%, respectively) were observed in T3-treated H9c2 cells as compared with control cells. Immunofluorescence analysis also revealed that a marked down regulation of NPR- A protein in T3-treated cells as compared with control cells. Further, a parallel downregulation of cGMP and PKG-I (2.4 fold) were noticed in the T3-treated cells. In contrast, a time dependent increased expression of ß-AR (60, 72, and 80% respectively) and ROS (26, 48, and 74%, respectively) levels were noticed in T3-treated H9c2 cells as compared with control cells. Interestingly, antioxidants, CU or NAC co-treated T3 cells displayed a significant reduction in ROS (69 and 81%, respectively) generation and to increased Npr1 gene transcription (81 and 88%, respectively) as compared with T3 alone treated cells. CONCLUSION: Our result suggest that down regulation of Npr1 gene transcription is critically involved in T3- induced hypertrophic growth in H9c2 cells, and identifies the cross-talk between T3-ß-AR-ROS and NPR-A signaling.


Subject(s)
Down-Regulation , Reactive Oxygen Species , Receptors, Atrial Natriuretic Factor , Signal Transduction , Triiodothyronine , Animals , Rats , Cell Line , Cyclic GMP/metabolism , Down-Regulation/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Triiodothyronine/pharmacology , Receptors, Adrenergic, beta/metabolism
11.
Thyroid ; 34(7): 920-930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801167

ABSTRACT

Background: 3,5,3'-Triiodothyroacetic acid (TRIAC) is a T3-receptor agonist pharmacologically used in patients to mitigate T3 resistance. It is additionally explored to treat some symptoms of patients with inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8, SLC16A2). MCT8 is expressed along the blood-brain barrier, on neurons, astrocytes, and oligodendrocytes. Hence, pathogenic variants in MCT8 limit the access of TH into and their functions within the brain. TRIAC was shown to enter the brain independently of MCT8 and to modulate expression of TH-dependent genes. The aim of the study was to identify transporters that facilitate TRIAC uptake into cells. Methods: We performed a whole-genome RNAi screen in HepG2 cells stably expressing a T3-receptor-dependent luciferase reporter gene. Validation of hits from the primary and confirmatory secondary screen involved a counter screen with siRNAs and compared the cellular response to TRIAC to the effect of T3, in order to exclude siRNAs targeting the gene expression machinery. MDCK1 cells were stably transfected with cDNA encoding C-terminally myc-tagged versions of the identified TRIAC-preferring transporters. Several individual clones were selected after immunocytochemical characterization for biochemical characterization of their 125I-TRIAC transport activities. Results: We identified SLC22A9 and SLC29A2 as transporters mediating cellular uptake of TRIAC. SLC22A9 encodes the organic anion transporter 7 (OAT7), a sodium-independent organic anion transporter expressed in the plasma membrane in brain, pituitary, liver, and other organs. Competition with the SLC22A9/OAT7 substrate estrone-3-sulfate reduced 125I-TRIAC uptake. SLC29A2 encodes the equilibrative nucleoside transporter 2 (ENT2), which is ubiquitously expressed, including pituitary and brain. Coincubation with the SLC29A2/ENT2 inhibitor nitrobenzyl-6-thioinosine reduced 125I-TRIAC uptake. Moreover, ABCD1, an ATP-dependent peroxisomal pump, was identified as a 125I-TRIAC exporter in transfected MDCK1 cells. Conclusions: Knowledge of TRIAC transporter expression patterns, also during brain development, may thus in the future help to interpret observations on TRIAC effects, as well as understand why TRIAC may not show a desirable effect on cells or organs not expressing appropriate transporters. The identification of ABCD1 highlights the sensitivity of our established screening assay, but it may not hold significant relevance for patients undergoing TRIAC treatment.


Subject(s)
Monocarboxylic Acid Transporters , Symporters , Triiodothyronine , Humans , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Animals , Symporters/genetics , Symporters/metabolism , Dogs , Madin Darby Canine Kidney Cells , Hep G2 Cells , RNA Interference , Biological Transport , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics
12.
Cell Signal ; 120: 111214, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729322

ABSTRACT

Age-related diseases are intricately linked to the molecular processes underlying aging, with the decline of the antiaging protein Klotho being a key factor. Investigating these processes is crucial for developing therapeutic strategies. The age-associated reduction in Klotho expression, coupled with a decline in the endocrine hormone triiodothyronine (T3), prompted a detailed exploration of their potential interplay. Our research, conducted through both in-vitro and in-vivo studies on BALB/c mice, unveiled a significant capacity of T3 to upregulate various forms of Klotho via ATF-3/p-c-Jun transcription factor. This effect was particularly noteworthy in aged individuals, where Klotho expression had waned compared to their younger counterparts. Importantly, T3 demonstrated a promising therapeutic impact in rejuvenating Klotho expression in this context. Further investigations elucidated the molecular mechanisms underlying T3's impact on aging-related pathways. In-vitro and in-vivo experiments established T3's ability to downregulate the Wnt/ß-Catenin pathway by enhancing Klotho expression. In-silico analyses provided insights into Klotho's intricate role, showing its capacity to inhibit Wnt ligands such as Wnt3 and Wnt8a, consequently disrupting their interaction with the Wnt receptor. Additionally, T3 was found to downregulate kidney-specific GSK-3ß expression through the augmentation of Klotho expression. The study also highlighted T3's role in maintaining calcium and phosphate homeostasis via Klotho. This comprehensive investigation not only sheds light on the intricate mechanisms governing aging processes but also presents promising avenues for therapeutic interventions targeting the Wnt/ß-Catenin pathway implicated in various age-associated diseases.


Subject(s)
Glucuronidase , Kidney , Klotho Proteins , Mice, Inbred BALB C , Triiodothyronine , Wnt Signaling Pathway , Klotho Proteins/metabolism , Animals , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , Glucuronidase/metabolism , Wnt Signaling Pathway/drug effects , Mice , Kidney/metabolism , Humans , Male , beta Catenin/metabolism , Aging/metabolism , Computer Simulation
13.
Arq Bras Cardiol ; 121(4): e20230236, 2024 Apr.
Article in Portuguese, English | MEDLINE | ID: mdl-38695407

ABSTRACT

BACKGROUND: Vascular dysfunction constitutes the etiology of many diseases, such as myocardial infarction and hypertension, with the disruption of redox homeostasis playing a role in the imbalance of the vasomotor control mechanism. Our group previously has shown that thyroid hormones exert protective effects on the aortic tissue of infarcted rats by improving angiogenesis signaling. OBJECTIVE: Investigate the role of triiodothyronine (T3) on vascular response, exploring its effects on isolated aortas and whether there is an involvement of vascular redox mechanisms. METHODS: Isolated aortic rings (intact- and denuded-endothelium) precontracted with phenylephrine were incubated with T3 (10-8, 10-7, 10-6, 10-5, and 10-4 M), and tension was recorded using a force-displacement transducer coupled with an acquisition system. To assess the involvement of oxidative stress, aortic rings were preincubated with T3 and subsequently submitted to an in vitro reactive oxygen species (ROS) generation system. The level of significance adopted in the statistical analysis was 5%. RESULTS: T3 (10-4 M) promoted vasorelaxation of phenylephrine precontracted aortic rings in both intact- and denuded-endothelium conditions. Aortic rings preincubated in the presence of T3 (10-4 M) also showed decreased vasoconstriction elicited by phenylephrine (1 µM) in intact-endothelium preparations. Moreover, T3 (10-4 M) vasorelaxation effect persisted in aortic rings preincubated with NG-nitro-L-arginine methylester (L-NAME, 10 µM), a nonspecific NO synthase (NOS) inhibitor. Finally, T3 (10-4 M) exhibited, in vitro, an antioxidant role by reducing NADPH oxidase activity and increasing SOD activity in the aorta's homogenates. CONCLUSION: T3 exerts dependent- and independent-endothelium vasodilation effects, which may be related to its role in maintaining redox homeostasis.


FUNDAMENTO: A disfunção vascular constitui a etiologia de diversas doenças, incluindo infarto do miocárdio e hipertensão, diante da ruptura da homeostase oxi-redutiva ("redox"), desempenhando um papel no desequilíbrio do mecanismo de controle vasomotor. Nosso grupo demonstrou anteriormente que os hormônios tireoidianos melhoram a sinalização da angiogênese, exercendo efeitos protetores sobre o tecido aórtico de ratos infartados. OBJETIVOS: Investigar o papel da triiodotironina (T3) na resposta vascular, explorando seus efeitos em aortas isoladas e a presença de mecanismos redox vasculares. MÉTODOS: Anéis aórticos isolados (endotélio intacto e desnudado) pré-contraídos com fenilefrina foram incubados com T3 (10-8, 10-7, 10-6, 10-5 e 10-4 M) e a tensão foi registrada usando um transdutor de deslocamento de força acoplado a um sistema de coleta. Para avaliar o envolvimento do estresse oxidativo, os anéis aórticos foram pré-incubados com T3 e posteriormente submetidos a um sistema de geração de espécies reativas de oxigênio (ROS) in vitro. O nível de significância adotado na análise estatística foi de 5%. RESULTADOS: A T3 (10-4 M) promoveu o vasorrelaxamento dos anéis aórticos pré-contraídos com fenilefrina em endotélio intacto e desnudado. Os anéis aórticos pré-incubados na presença de T3 (10-4 M) também mostraram diminuição da vasoconstrição provocada pela fenilefrina (1 µM) em preparações de endotélio intacto. Além disso, o efeito vasorrelaxante da T3 (10-4 M) persistiu em anéis aórticos pré-incubados com éster metílico de NG-nitro-L-arginina (L-NAME, 10 µM), um inibidor inespecífico da NO sintase (NOS). Por fim, a T3 (10-4 M) exibiu, in vitro, um papel antioxidante ao reduzir a atividade da NADPH oxidase e aumentar a atividade da SOD nos homogenatos aórticos. CONCLUSÃO: A T3 exerce efeitos dependentes e independentes de endotélio, o que pode estar relacionado ao seu papel na manutenção da homeostase redox.


Subject(s)
Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Triiodothyronine , Vasodilation , Animals , Vasodilation/drug effects , Vasodilation/physiology , Male , Triiodothyronine/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Rats , Reproducibility of Results , Vasoconstrictor Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , In Vitro Techniques , Vasoconstriction/drug effects , Vasoconstriction/physiology
14.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693105

ABSTRACT

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Subject(s)
Camptothecin/analogs & derivatives , Colonic Neoplasms , Fluorouracil , Neoplastic Stem Cells , Spheroids, Cellular , Thyroid Hormone Receptors alpha , Triiodothyronine , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors alpha/genetics , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Triiodothyronine/pharmacology , Leucovorin/pharmacology , Leucovorin/therapeutic use , Camptothecin/pharmacology , Camptothecin/therapeutic use , Phenotype , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
15.
Arthritis Res Ther ; 26(1): 91, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664820

ABSTRACT

OBJECTIVE: To characterize aspects of triiodothyronine (T3) induced chondrocyte terminal maturation within the molecular osteoarthritis pathophysiology using the previously established T3 human ex vivo osteochondral explant model. DESIGNS: RNA-sequencing was performed on explant cartilage obtained from OA patients (n = 8), that was cultured ex vivo with or without T3 (10 ng/ml), and main findings were validated using RT-qPCR in an independent sample set (n = 22). Enrichment analysis was used for functional clustering and comparisons with available OA patient RNA-sequencing and GWAS datasets were used to establish relevance for OA pathophysiology by linking to OA patient genomic profiles. RESULTS: Besides the upregulation of known hypertrophic genes EPAS1 and ANKH, T3 treatment resulted in differential expression of 247 genes with main pathways linked to extracellular matrix and ossification. CCDC80, CDON, ANKH and ATOH8 were among the genes found to consistently mark early, ongoing and terminal maturational OA processes in patients. Furthermore, among the 37 OA risk genes that were significantly affected in cartilage by T3 were COL12A1, TNC, SPARC and PAPPA. CONCLUSIONS: RNA-sequencing results show that metabolic activation and recuperation of growth plate morphology are induced by T3 in OA chondrocytes, indicating terminal maturation is accelerated. The molecular mechanisms involved in hypertrophy were linked to all stages of OA pathophysiology and will be used to validate disease models for drug testing.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Osteogenesis , Triiodothyronine , Humans , Triiodothyronine/pharmacology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Osteogenesis/genetics , Female , Biomimetics/methods , Male , Aged , Middle Aged
16.
J Mol Cell Cardiol ; 191: 7-11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608929

ABSTRACT

Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.


Subject(s)
Cell Proliferation , Macrophages , Monocytes , Myocytes, Cardiac , Regeneration , Triiodothyronine , Animals , Regeneration/drug effects , Triiodothyronine/pharmacology , Monocytes/metabolism , Monocytes/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cell Proliferation/drug effects , Mice , Inflammation/metabolism , Inflammation/pathology , Animals, Newborn , Heart/drug effects , Heart/physiopathology , Mice, Inbred C57BL
17.
Exp Neurol ; 375: 114730, 2024 May.
Article in English | MEDLINE | ID: mdl-38401853

ABSTRACT

Demyelination is a proper syndrome in plenty of central nervous system (CNS) diseases, which is the main obstacle to recovery and still lacks an effective treatment. To overcome the limitations of the brain-blood barrier on drug permeability, we modified an exosome secreted by neural stem cells (NSCs), which had transfected with lentivirus armed with platelet-derived growth factors A (PDGFA)-ligand. Through the in vivo and in vitro exosomes targeting test, the migration ability to the lesion areas and OPCs significantly improved after ligand modification. Furthermore, the targeted exosomes loaded with 3,5, 30-L-triiodothyronine (T3) have a critical myelination ability in CNS development, administrated to the cuprizone animal model treatment. The data shows that the novel drug vector loaded with T3 significantly promotes remyelination compared with T3 alone. At the same time, it improved the CNS microenvironment by reducing astrogliosis, inhibiting pro-inflammatory microglia, and alleviating axon damage. This investigation provides a straightforward strategy to produce a targeting exosome and indicates a possible therapeutic manner for demyelinating disease.


Subject(s)
Demyelinating Diseases , Exosomes , Animals , Mice , Demyelinating Diseases/therapy , Demyelinating Diseases/drug therapy , Oligodendroglia , Ligands , Exosomes/metabolism , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , Triiodothyronine/therapeutic use , Cuprizone/toxicity , Mice, Inbred C57BL , Myelin Sheath/pathology , Disease Models, Animal
18.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396788

ABSTRACT

Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.


Subject(s)
Macrophages , Symporters , Thyroid Hormones , Animals , Mice , Macrophages/metabolism , Monocarboxylic Acid Transporters/genetics , Symporters/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Triiodothyronine/pharmacology , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism
19.
J Ethnopharmacol ; 326: 117908, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38367931

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY: This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS: In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS: QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS: Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.


Subject(s)
Goiter , MicroRNAs , Humans , Rats , Animals , MAP Kinase Signaling System , Fibroblast Growth Factor 2/metabolism , Triiodothyronine/pharmacology , Thyroxine , Endothelial Cells/metabolism , Angiogenesis , China , MicroRNAs/genetics , MicroRNAs/metabolism , Thyroid Hormones , Goiter/drug therapy , Cell Proliferation , Thyrotropin/metabolism , Body Weight
20.
Article in English | MEDLINE | ID: mdl-38218111

ABSTRACT

The amphibian olfactory system is highly distinct between aquatic tadpole and terrestrial frog life stages and therefore must remodel extensively during thyroid hormone (TH)-dependent metamorphosis. Developmentally appropriate functioning of the olfactory epithelium is critical for survival. Previous studies in other Rana [Lithobates] catesbeiana premetamorphic tadpole tissues showed that initiation of TH-induced metamorphosis can be uncoupled from execution of TH-dependent programs by holding tadpoles in the cold rather than at warmer permissive temperatures. TH-exposed tadpoles at the nonpermissive (5 °C) temperature do not undergo metamorphosis but retain a "molecular memory" of TH exposure that is activated upon shift to a permissive warm temperature. Herein, premetamorphic tadpoles were held at permissive (24 °C) or nonpermissive (5 °C) temperatures and injected with 10 pmoles/g body weight 3,5,3'-triiodothyronine (T3) or solvent control. Olfactory epithelium was collected at 48 h post-injection. RNA-sequencing (RNA-Seq) and reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analyses generated differentially expressed transcript profiles of 4328 and 54 contigs for permissive and nonpermissive temperatures, respectively. Translation, rRNA, spliceosome, and proteolytic processes gene ontologies were enriched by T3 treatment at 24 °C while negative regulation of cell proliferation was enriched by T3 at 5 °C. Of note, as found in other tissues, TH-induced basic leucine zipper-containing protein-encoding transcript, thibz, was significantly induced by T3 at both temperatures, suggesting a role in the establishment of molecular memory in the olfactory epithelium. The current study provides critical insights by deconstructing early TH-induced induction of postembryonic processes that may be targets for disruption by environmental contaminants.


Subject(s)
Ranidae , Thyroid Hormones , Animals , Temperature , Larva/genetics , Rana catesbeiana/genetics , Thyroid Hormones/pharmacology , Olfactory Mucosa , Metamorphosis, Biological/genetics , Triiodothyronine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL