Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.800
Filter
1.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824268

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Tumor-Associated Macrophages , Humans , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , MCF-7 Cells , Cell Movement/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Sequence Analysis, RNA/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
2.
Crit Rev Eukaryot Gene Expr ; 34(5): 31-43, 2024.
Article in English | MEDLINE | ID: mdl-38842202

ABSTRACT

Breast cancer is one of the most common malignant tumors worldwide. SLC7A2 is abnormally expressed in multiple cancers. However, its potential in triple negative breast cancer (TNBC) is still unclear. The purpose of this study was to investigate the roles of SLC7A2 and its underlying molecular mechanisms in TNBC. mRNA expression was detected by RT-qPCR. Protein expression was detected by western blot. Co-localization of ACOX1 and TCF1 was determined using FISH assay. Histone crotonylation was performed using in vitro histone crotonylation assay. Functional analysis was performed using CCK-8 and flow cytometry assays. Xenograft assay was conducted to further verify the role of SLC7A2 in TNBC. CD8A expression was detected using immunohistochemistry. We found that SLC7A2 is downregulated in TNBC tumors. Low levels are associated with advanced stages and lymph node metastasis. SLC7A2 expression is positively correlated with CD8A. SLC7A2-mediated lysine catabolism drives the activation of CD8+ T cells. Moreover, SLC7A2 promotes histone crotonylation via upregulating ACOX1. It also promotes interaction between ACOX1 and TCF1, thus promoting antitumor T cell immunity. Additionally, overexpression of SLC7A2 activates CD8+ T cells and enhances the chemosensitivity of anti-PD-1 therapies in vivo. In conclusion, SLC7A2 may function as an antitumor gene in TNBC by activating antitumor immunity, suggesting SLC7A2/ACOX1/TCF1 signaling as a promising therapeutic strategy.


Subject(s)
Lysine , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Humans , Female , Lysine/metabolism , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology
3.
J Cancer Res Clin Oncol ; 150(6): 291, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836955

ABSTRACT

PURPOSE: The neoadjuvant chemotherapy (NACT) regimen for triple negative breast cancer (TNBC) primarily consists of anthracyclines and taxanes, and the addition of platinum-based drugs can further enhance the efficacy. However, it is also accompanied by more adverse events, and considering the potential severe and irreversible toxicity of anthracyclines, an increasing number of studies are exploring nonanthracycline regimens that combine taxanes and platinum-based drugs. METHODS: The retrospective study included 273 stage II-III TNBC patients who received NACT. The AT group, consisting of 195 (71.4%) patients, received a combination of anthracyclines and taxanes, while the TCb group, consisting of 78 (28.6%) patients, received a combination of taxanes and carboplatin. Logistic regression analysis was performed to evaluate the factors influencing pathological complete response (pCR) and residual cancer burden (RCB). The log-rank test was used to assess the differences in event-free survival (EFS) and overall survival (OS) among the different treatment groups. Cox regression analysis was conducted to evaluate the factors influencing EFS and OS. RESULTS: After NACT and surgery, the TCb group had a higher rate of pCR at 44.9%, as compared to the AT group at 31.3%. The difference between the two groups was 13.6% (OR = 0.559, 95% CI 0.326-0.959, P = 0.035). The TCb group had a 57.7% rate of RCB 0-1, which was higher than the AT group's rate of 42.6%. The difference between the two groups was 15.1% (OR = 0.543, 95% CI 0.319-0.925, P = 0.024), With a median follow-up time of 40 months, the TCb group had better EFS (log-rank, P = 0.014) and OS (log-rank, P = 0.040) as compared to the AT group. Clinical TNM stage and RCB grade were identified as independent factors influencing EFS and OS, while treatment group was identified as an independent factor influencing EFS, with a close-to-significant impact on OS. CONCLUSION: In stage II-III triple TNBC patients, the NACT regimen combining taxanes and carboplatin yields higher rates of pCR and significant improvements in EFS and OS as compared to the regimen combining anthracyclines and taxanes.


Subject(s)
Anthracyclines , Antineoplastic Combined Chemotherapy Protocols , Carboplatin , Neoadjuvant Therapy , Taxoids , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Retrospective Studies , Carboplatin/administration & dosage , Anthracyclines/administration & dosage , Anthracyclines/therapeutic use , Neoadjuvant Therapy/methods , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Taxoids/administration & dosage , Taxoids/therapeutic use , Aged , Neoplasm Staging
4.
Clin Exp Pharmacol Physiol ; 51(7): e13900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843865

ABSTRACT

Traditional Chinese medicine, specifically the Jianpi Tiaoqi (JPTQ) decoction, has been explored for its role in treating breast cancer, particularly in inhibiting lung metastasis in affected mice. Our study evaluated the effects of JPTQ on several factors, including tumour growth, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT) and immune microenvironment regulation. We used bioluminescence imaging to observe in situ tumour growth and potential lung metastasis. Transcriptomic analysis provided insights into gene expression, whereas flow cytometry was used to examine changes in specific immune cells, such as CD4+ T cells and myeloid-derived suppressor cells. Several essential proteins and genes, including vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9) and B-cell lymphoma 2 (Bcl-2), were assessed through quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. Our findings showed that JPTQ treatment inhibited tumour proliferation in cancer-bearing mice. Bioluminescence imaging and pathological analysis indicated a reduction in lung metastasis. Transcriptome analysis of lung and tumour tissues indicated that the genes associated with EMT, angiogenesis, proliferation and apoptosis were regulated in the JPTQ-treated group. Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment of immune-related pathways. Flow cytometry indicated that JPTQ treatment reduced the proportion of monocyte-myeloid-derived suppressor cells in the lung and increased the number of CD4+ T cells in the peripheral blood and the number of T helper 1 (Th1) cells in the spleen (P < 0.05). E-cadherin and cleaved caspase 3 were upregulated, whereas Snail, Bcl-2, Ki67 and VEGF were downregulated in the lung and tumour tissues; moreover, the expression of MMP-9 was downregulated in the lung tissue (P < 0.05). In essence, JPTQ not only inhibits tumour growth in affected mice, but also promotes positive immune responses, reduces angiogenesis, boosts tumour cell apoptosis, reverses EMT and decreases breast cancer lung metastasis.


Subject(s)
Cell Proliferation , Drugs, Chinese Herbal , Epithelial-Mesenchymal Transition , Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Cell Proliferation/drug effects , Female , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology
5.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38847277

ABSTRACT

Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem­like cells remains unexplored. The present study investigated the effect of UA on MDA­MB­231 and BT­549 cell­derived triple­negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis­related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit­8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription­quantitative PCR and western blotting. BALB/c­nude mice were subcutaneously injected with MDA­MB­231­derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch­like ECH­associated protein 1 and suppresses nuclear factor erythroid­related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple­negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.


Subject(s)
Cell Proliferation , Ferroptosis , NF-E2-Related Factor 2 , Neoplastic Stem Cells , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Xenograft Model Antitumor Assays , Ferroptosis/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triterpenes/pharmacology , Humans , NF-E2-Related Factor 2/metabolism , Animals , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Female , Cell Proliferation/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
6.
Mol Cancer ; 23(1): 125, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849860

ABSTRACT

BACKGROUND: Breast cancer is the most common malignant tumor, and metastasis remains the major cause of poor prognosis. Glucose metabolic reprogramming is one of the prominent hallmarks in cancer, providing nutrients and energy to support dramatically elevated tumor growth and metastasis. Nevertheless, the potential mechanistic links between glycolysis and breast cancer progression have not been thoroughly elucidated. METHODS: RNA-seq analysis was used to identify glucose metabolism-related circRNAs. The expression of circSIPA1L3 in breast cancer tissues and serum was examined by qRT-PCR, and further assessed its diagnostic value. We also evaluated the prognostic potential of circSIPA1L3 by analyzing a cohort of 238 breast cancer patients. Gain- and loss-of-function experiments, transcriptomic analysis, and molecular biology experiments were conducted to explore the biological function and regulatory mechanism of circSIPA1L3. RESULTS: Using RNA-seq analysis, circSIPA1L3 was identified as the critical mediator responsible for metabolic adaption upon energy stress. Gain- and loss-of-function experiments revealed that circSIPA1L3 exerted a stimulative effect on breast cancer progression and glycolysis, which could also be transported by exosomes and facilitated malignant behaviors among breast cancer cells. Significantly, the elevated lactate secretion caused by circSIPA1L3-mediated glycolysis enhancement promoted the recruitment of tumor associated macrophage and their tumor-promoting roles. Mechanistically, EIF4A3 induced the cyclization and cytoplasmic export of circSIPA1L3, which inhibited ubiquitin-mediated IGF2BP3 degradation through enhancing the UPS7-IGF2BP3 interaction. Furthermore, circSIPA1L3 increased mRNA stability of the lactate export carrier SLC16A1 and the glucose intake enhancer RAB11A through either strengthening their interaction with IGF2BP3 or sponging miR-665, leading to enhanced glycolytic metabolism. Clinically, elevated circSIPA1L3 expression indicated unfavorable prognosis base on the cohort of 238 breast cancer patients. Moreover, circSIPA1L3 was highly expressed in the serum of breast cancer patients and exhibited high diagnostic value for breast cancer patients. CONCLUSIONS: Our study highlights the oncogenic role of circSIPA1L3 through mediating glucose metabolism, which might serve as a promising diagnostic and prognostic biomarker and potential therapeutic target for breast cancer.


Subject(s)
Disease Progression , Exosomes , Gene Expression Regulation, Neoplastic , Glucose , RNA, Circular , Triple Negative Breast Neoplasms , Humans , Female , Exosomes/metabolism , RNA, Circular/genetics , Glucose/metabolism , Mice , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Animals , Prognosis , Glycolysis , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Cell Proliferation , Metabolic Reprogramming , Membrane Proteins , Intracellular Signaling Peptides and Proteins
7.
Medicine (Baltimore) ; 103(23): e38434, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847725

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis, and the outcomes of common therapy were not favorable. METHODS: The samples of 84 patients with TNBC and 40 patients with breast fibroadenoma were collected in the pathology department specimen library of our hospital. The prognosis of patients was obtained through outpatient follow-up information, telephone and WeChat contacts, and medical records. The mRNA expression was analyzed using bioinformation and quantitative real-time polymerase chain reaction (qPCR). The protein expression was determined by hematoxylin-eosin staining and immunohistochemical staining. The results of survival analysis were visualized using Kaplan-Meier curves. RESULTS: The immunohistochemical staining showed that hypoxia-inducible factor-1alpha (HIF-1α) was mainly distributed in the nucleus and cytoplasm, while CD147 is mainly distributed in cell membrane and cytoplasm. The qPCR results exhibited that the expression level of HIF-1α and CD147 in TNBC tissue was significantly higher than that in breast fibroadenoma tissue. The expression of HIF-1α was related to the histological grade and lymph node metastasis in TNBC, and the expression of CD147 was related to Ki-67, histological grade and lymph node metastasis. There was a positive relationship between the expression of CD147 and HIF-1α. The upregulated expression of CD147 was closely related to the poor prognosis of OS in TNBC. CONCLUSION: CD147 could be a biomarker for the prognosis of TNBC and closely related to the expression of HIF-1α.


Subject(s)
Basigin , Hypoxia-Inducible Factor 1, alpha Subunit , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Female , Middle Aged , Basigin/metabolism , Basigin/genetics , Adult , Prognosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Lymphatic Metastasis , Fibroadenoma/pathology , Fibroadenoma/genetics , Fibroadenoma/metabolism , Kaplan-Meier Estimate , Immunohistochemistry , Aged
8.
J Egypt Natl Canc Inst ; 36(1): 20, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853190

ABSTRACT

BACKGROUND: The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS: A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS: The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION: The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.


Subject(s)
Breast Neoplasms , Machine Learning , Magnetic Resonance Imaging , Neoplasm Recurrence, Local , Humans , Female , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Adult , Algorithms , ROC Curve , Aged , Support Vector Machine , Prognosis , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Neoplasm Staging , Radiomics
9.
Recenti Prog Med ; 115(6): 21e-25e, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38853738

ABSTRACT

Triple negative disease, defined by a lack of tumor cell expression of estrogen receptor, progesterone receptor and HER2, remains to date the worst prognosis subtype and especially in metastatic disease triple negative breast cancer is still un unmet clinical need. However, even in this setting, now we can use new drugs such as immunotherapy and antibodies drug conjugated to improve outcome. Particularly, sacituzumab govitecan is the first Ab drug conjugated demonstrating a significant improvement in terms of overall and progression free survival in patients affected by metastatic TNBC pretreated with 2-3 previous lines of therapy.


Subject(s)
Neoplasm Recurrence, Local , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Neoplasm Recurrence, Local/drug therapy , Time Factors , Antibodies, Monoclonal, Humanized/administration & dosage , Chemotherapy, Adjuvant/methods , Antibodies, Bispecific/administration & dosage , Middle Aged , Camptothecin/analogs & derivatives , Immunoconjugates
10.
Recenti Prog Med ; 115(6): 26e-30e, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38853739

ABSTRACT

Triple-negative breast cancers patients who relapse within 12 months from the end of neoaadjuvant chemotherapy represent a subgroup with a particularly poor prognosis, due to resistance to common chemotherapy treatments. Therefore, innovative therapeutic strategies are necessary for these patients. The therapeutic arsenal for triple-negative breast cancer has been enriched in recent years with new drugs, including antibody-drug conjugates. Sacituzumab govitecan, the first antibody directed against Trop-2, has been shown to improve survival in triple-negative metastatic breast cancer (the most aggressive subtype of breast cancer) in women who have received at least two prior chemotherapy treatments in the metastatic setting. This drug has demonstrated its effectiveness even in patients with early relapse after neoadjuvant treatment. In this clinical case we describe the story of a young patient with triple-negative breast cancer, with lymphnodal recurrence, who relapses within the first 12 months after the end of neoadjuvant chemotherapy. Sacituzumab govitecan resulted in a rapid and impressive clinical and instrumental response, associated with an improvement in quality of life and excellent functional status during therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Neoadjuvant Therapy/methods , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Adult , Quality of Life , Treatment Outcome , Antibodies, Bispecific/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/administration & dosage , Immunoconjugates
11.
Recenti Prog Med ; 115(6): 31e-35e, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38853740

ABSTRACT

The higher frequency of metastasization and poor prognosis of triple-negative breast cancer require suitable expertise in order to set up an appropriate and effective treatment plan for these patients. Our case describes the clinical history of a 63-year-old BRCA1/2 wild-type woman with excellent ECOG performance status and advanced PD-L1 negative breast cancer with brain, nodal and hepatic metastases. When occurred the brain progression within one year from neoadjuvant chemotherapy for a locally advanced tumor, the patient was treated with brain stereotaxis and a systemic platinum-based therapy that was not completed due to poor tolerance. Later instrumental examinations confirmed a new systemic and visceral progression, for which the patient underwent new therapy with sacituzumab govitecan (SG). During this treatment, we observed a reduction of the target liver and nodal lesions. The onset after several months of two very small cortico-subcortical metastases, on which stereotactic radiotherapy was performed, did not lead us to discontinuate the treatment, that was ongoing for another six months, with an excellent control both of brain and systemic disease without any symptoms, until a new disease progression at other sites requiring a therapeutic change. The use of antibody-drug conjugates allowed a significant prolongation of time to progression and overall survival in our clinical scenario characterized by poor prognosis due to early recurrence and brain involvement.


Subject(s)
Antibodies, Monoclonal, Humanized , Brain Neoplasms , Camptothecin , Triple Negative Breast Neoplasms , Humans , Middle Aged , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Camptothecin/analogs & derivatives , Camptothecin/administration & dosage , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacology , Time Factors , Disease Progression , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Treatment Outcome
12.
Breast Cancer Res ; 26(1): 92, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840145

ABSTRACT

BACKGROUND: Identifying new targets in triple negative breast cancer (TNBC) remains critical. REG3A (regenerating islet-derived protein 3 A), a calcium-dependent lectin protein, was thoroughly investigated for its expression and functions in breast cancer. METHODS: Bioinformatics and local tissue analyses were employed to identify REG3A expression in breast cancer. Genetic techniques were employed to modify REG3A expression, and the resulting effects on the behaviors of breast cancer cells were examined. Subcutaneous xenograft models were established to investigate the involvement of REG3A in the in vivo growth of breast cancer cells. RESULTS: Analysis of the TCGA database uncovered increased REG3A levels in human breast cancer tissues. Additionally, REG3A mRNA and protein levels were elevated in TNBC tissues of locally treated patients, contrasting with low expression in adjacent normal tissues. In primary human TNBC cells REG3A shRNA notably hindered cell proliferation, migration, and invasion while triggering caspase-mediated apoptosis. Similarly, employing CRISPR-sgRNA for REG3A knockout showed significant anti-TNBC cell activity. Conversely, REG3A overexpression bolstered cell proliferation and migration. REG3A proved crucial for activating the Akt-mTOR cascade, as evidenced by decreased Akt-S6K1 phosphorylation upon REG3A silencing or knockout, which was reversed by REG3A overexpression. A constitutively active mutant S473D Akt1 (caAkt1) restored Akt-mTOR activation and counteracted the proliferation inhibition and apoptosis induced by REG3A knockdown in breast cancer cells. Crucially, REG3A played a key role in maintaining mTOR complex integrity. Bioinformatics identified zinc finger protein 680 (ZNF680) as a potential REG3A transcription factor. Knocking down or knocking out ZNF680 reduced REG3A expression, while its overexpression increased it in primary breast cancer cells. Additionally, enhanced binding between ZNF680 protein and the REG3A promoter was observed in breast cancer tissues and cells. In vivo, REG3A shRNA significantly inhibited primary TNBC cell xenograft growth. In REG3A-silenced xenograft tissues, reduced REG3A levels, Akt-mTOR inhibition, and activated apoptosis were evident. CONCLUSION: ZNF680-caused REG3A overexpression drives tumorigenesis in breast cancer possibly by stimulating Akt-mTOR activation, emerging as a promising and innovative cancer target.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Pancreatitis-Associated Proteins , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Female , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Animals , Mice , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Carcinogenesis/genetics , Signal Transduction , Xenograft Model Antitumor Assays
13.
Oncoimmunology ; 13(1): 2364382, 2024.
Article in English | MEDLINE | ID: mdl-38846083

ABSTRACT

Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tumors are not sensitive to endocrine therapy, and standardized TNBC treatment regimens are lacking. TNBC is a more immunogenic subtype of breast cancer, making it more responsive to immunotherapy intervention. Tumor-associated macrophages (TAMs) constitute one of the most abundant immune cell populations in TNBC tumors and contribute to cancer metastasis. This study examines the role of the protein kinase HUNK in tumor immunity. Gene expression analysis using NanoString's nCounter PanCancer Immune Profiling panel identified that targeting HUNK is associated with changes in the IL-4/IL-4 R cytokine signaling pathway. Experimental analysis shows that HUNK kinase activity regulates IL-4 production in mammary tumor cells, and this regulation is dependent on STAT3. In addition, HUNK-dependent regulation of IL-4 secreted from tumor cells induces polarization of macrophages into an M2-like phenotype associated with TAMs. In return, IL-4 induces cancer metastasis and macrophages to produce epidermal growth factor. These findings delineate a paracrine signaling exchange between tumor cells and TAMs regulated by HUNK and dependent on IL-4/IL-4 R. This highlights the potential of HUNK as a target for reducing TNBC metastasis through modulation of the TAM population.


Subject(s)
Interleukin-4 , Triple Negative Breast Neoplasms , Tumor-Associated Macrophages , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Female , Animals , Mice , Interleukin-4/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Cell Line, Tumor , Signal Transduction , Gene Expression Regulation, Neoplastic , Receptors, Interleukin-4/metabolism , Receptors, Interleukin-4/genetics
14.
Sci Rep ; 14(1): 13200, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851778

ABSTRACT

Protein kinase dysregulation induces cancer cell aggressiveness leading to rapid tumor progression and poor prognosis in TNBC patients. Many small-molecule kinase inhibitors have been tested in clinical trials to treat TNBC patients. In the previous study, we found that N-phenylpyrazoline small molecule acts as a protein kinase inhibitor in cervical cancer cells. However, there remains unknown about N-phenyl pyrazoline potency as a kinase inhibitor and its anti-cancer activity in TNBC cells. In this study, we investigated the activity of N-phenyl pyrazoline against TNBC cells via tyrosine kinase inhibition. Based on the MTT assay, the IC50 values for the N-phenyl pyrazoline 2, 5, A, B, C, and D against Hs578T were 12.63 µM, 3.95 µM, not available, 18.62 µM, 30.13 µM, and 26.79 µM, respectively. While only P5 exhibited the IC50 against MDA MB 231 (21.55 µM). Further, N-phenyl pyrazoline 5 treatment significantly inhibited the cell proliferation rate of Hs578T and MDA MB 231 cells. The migration assay showed that treatment with the compound N-phenyl pyrazoline 5 with 4 µM concentration significantly reduced cell migration of Hs578T cells. N-phenyl pyrazoline 5 treatment at 1 µM and 2 µM was able to reduce the tumorsphere size of Hs578t cells. A combination treatment of P5 and paclitaxel showed a synergistic effect with a combination index score > 1 in both TNBC cells. Further, the P5 predictively targeted the protein kinases that significantly correlated to breast cancer prognosis. The GSEA analysis result shows that receptor tyrosine kinase, Notch3, Notch4, and Ephrin signaling pathways were targeted by P5. The P5 treatment reduced the EGFR expression level and activation in TNBC cells.


Subject(s)
Cell Movement , Cell Proliferation , Paclitaxel , Pyrazoles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Paclitaxel/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Pyrazoles/pharmacology , Female , Cell Movement/drug effects , Protein Kinase Inhibitors/pharmacology , Drug Synergism , Antineoplastic Agents/pharmacology
15.
BMC Med Imaging ; 24(1): 136, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844842

ABSTRACT

BACKGROUND: To develop and validate a peritumoral vascular and intratumoral radiomics model to improve pretreatment predictions for pathologic complete responses (pCRs) to neoadjuvant chemoradiotherapy (NAC) in patients with triple-negative breast cancer (TNBC). METHODS: A total of 282 TNBC patients (93 in the primary cohort, 113 in the validation cohort, and 76 in The Cancer Imaging Archive [TCIA] cohort) were retrospectively included. The peritumoral vasculature on the maximum intensity projection (MIP) from pretreatment DCE-MRI was segmented by a Hessian matrix-based filter and then edited by a radiologist. Radiomics features were extracted from the tumor and peritumoral vasculature of the MIP images. The LASSO method was used for feature selection, and the k-nearest neighbor (k-NN) classifier was trained and validated to build a predictive model. The diagnostic performance was assessed using the ROC analysis. RESULTS: One hundred of the 282 patient (35.5%) with TNBC achieved pCRs after NAC. In predicting pCRs, the combined peritumoral vascular and intratumoral model (fusion model) yields a maximum AUC of 0.82 (95% confidence interval [CI]: 0.75, 0.88) in the primary cohort, a maximum AUC of 0.67 (95% CI: 0.57, 0.76) in the internal validation cohort, and a maximum AUC of 0.65 (95% CI: 0.52, 0.78) in TCIA cohort. The fusion model showed improved performance over the intratumoral model and the peritumoral vascular model, but not significantly (p > 0.05). CONCLUSION: This study suggested that combined peritumoral vascular and intratumoral radiomics model could provide a non-invasive tool to enable prediction of pCR in TNBC patients treated with NAC.


Subject(s)
Magnetic Resonance Imaging , Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Female , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Adult , Aged , Treatment Outcome , Pathologic Complete Response , Radiomics
16.
Med Oncol ; 41(6): 143, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717628

ABSTRACT

Picrorhiza kurroa, an "Indian gentian," a known Himalayan medicinal herb with rich source of phytochemicals like picrosides I, II, and other glycosides, has been traditionally used for the treatment of liver and respiratory ailments. Picrosides anti-proliferative, anti-oxidant, anti-inflammatory and other pharmacological properties were evaluated in treating triple-negative breast cancer (TNBC). Picroside I and II were procured from Sigma-Aldrich and were analyzed for anti-cancer activity in triple-negative breast cancer (MDA-MB-231) cells. Cell viability was analyzed using MTT and trypan blue assays. Apoptosis was analyzed through DNA fragmentation and Annexin V/PI flow cytometric analysis. Wound healing and cell survival assays were employed to determine the inhibition of invasion capacity and anti-proliferative activity of picrosides in MDA-MB-231 cells. Measurement of intracellular ROS was studied through mitochondrial membrane potential assessment using DiOC6 staining for anti-oxidant activity of picrosides in MDA-MB-231 cells. Both Picroside I and II have shown decreased cell viability of MDA-MB-231 cells with increasing concentrations. IC50 values of 95.3 µM and 130.8 µM have been obtained for Picroside I and II in MDA-MB-231 cells. Early apoptotic phase have shown an increase of 20% (p < 0.05) with increasing concentrations (0, 50, 75, and 100 µM) of Picroside I and 15% (p < 0.05) increase with Picroside II. Decrease in mitochondrial membrane potential of 2-2.5-fold (p < 0.05) was observed which indicated decreased reactive oxygen species (ROS) generation with increasing concentrations of Picroside I and II. An increasing percentage of 70-80% (p < 0.05) cell population was arrested in G0/G1 phase of cell cycle after Picroside I and II treatment in cancer cells. Our results suggest that Picroside I and II possess significant anti-proliferative and anti-cancer activity which is mediated by inhibition of cell growth, decreased mitochondrial membrane potential, DNA damage, apoptosis, and cell cycle arrest. Therefore, Picroside I and II can be developed as a potential anti-cancer drug of future and further mechanistic studies are underway to identify the mechanism of anti-cancer potential.


Subject(s)
Apoptosis , Cell Proliferation , Cinnamates , Iridoid Glucosides , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Iridoid Glucosides/pharmacology , Reactive Oxygen Species/metabolism , Female , Membrane Potential, Mitochondrial/drug effects , Cinnamates/pharmacology , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
17.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Article in English | MEDLINE | ID: mdl-38725852

ABSTRACT

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Subject(s)
Lipopolysaccharides , Neoplastic Stem Cells , SOX9 Transcription Factor , Humans , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Female , Lipopolysaccharides/pharmacology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Signal Transduction , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Gene Expression Regulation, Neoplastic
18.
Carbohydr Polym ; 338: 122196, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763723

ABSTRACT

Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 µg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.


Subject(s)
Hyaluronic Acid , Nanoparticles , Paclitaxel , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Triterpenes/chemistry , Triterpenes/pharmacology , Hyaluronic Acid/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Nanoparticles/chemistry , Animals , Female , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Cell Line, Tumor , Drug Liberation , Apoptosis/drug effects , Mice , Drug Carriers/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Mice, Inbred BALB C , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/chemistry
19.
J Transl Med ; 22(1): 423, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704606

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS: Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS: The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION: The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.


Subject(s)
Computer Simulation , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Long Noncoding , Triple Negative Breast Neoplasms , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Prognosis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Female , Treatment Outcome , Animals , Kaplan-Meier Estimate , Gene Regulatory Networks , Middle Aged , Cell Line, Tumor , ROC Curve , Gene Expression Profiling , Proportional Hazards Models , Immunity/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
20.
PeerJ ; 12: e17360, 2024.
Article in English | MEDLINE | ID: mdl-38737746

ABSTRACT

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Subject(s)
Benzopyrans , Breast Neoplasms , Cadherins , Epithelial-Mesenchymal Transition , Twist-Related Protein 1 , Vimentin , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Cadherins/metabolism , Vimentin/metabolism , Vimentin/genetics , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Benzopyrans/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Invasiveness/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...